JPH01109298A - Nuclear reactor vessel - Google Patents

Nuclear reactor vessel

Info

Publication number
JPH01109298A
JPH01109298A JP62263901A JP26390187A JPH01109298A JP H01109298 A JPH01109298 A JP H01109298A JP 62263901 A JP62263901 A JP 62263901A JP 26390187 A JP26390187 A JP 26390187A JP H01109298 A JPH01109298 A JP H01109298A
Authority
JP
Japan
Prior art keywords
reactor
vessel
core
reactor vessel
support structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263901A
Other languages
Japanese (ja)
Inventor
Takuro Suzuki
卓郎 鈴木
Noriyuki Terakado
寺門 典之
Katsuhisa Sekine
勝久 関根
Manabu Madokoro
間所 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62263901A priority Critical patent/JPH01109298A/en
Publication of JPH01109298A publication Critical patent/JPH01109298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To prevent the local buckling of a nuclear reactor vessel by connecting the supporting structure of the reactor core to the barrel part of the reactor vessel, providing the supporting part of the reactor vessel to the barrel part as well and matching the positions thereof. CONSTITUTION:The core supporting structure 5 is the ribbed structure to support the core 4 and is joined to the reactor vessel 1. A reactor supporting mechanism 16 exists in a cylindrical shape by passing a safe vessel 2 at the same height as the height of the joint part thereof and is joined to a reactor building 12 to support the entire part of the reactor. Seismic load acts over the entire part of the reactor but the load acting on the core 4 is transmitted through the structure 5 to the vessel 1 when an earthquake arises at this time. Since the vessel 1 has the structure 16 in the same position as the joint position of the structure 5, the load transmitted from the structure 5 can be passed to the reactor building 12 without exerting the load on the vessel 1. The local buckling of the vessel 1 is thus prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速増殖炉(以下FBRと略す)の原子炉容
器に係り、特に、地震時に原子炉全体に作用するせん断
力により発生する原子炉容器の耐座屈強度を増すのに好
適な原子炉の構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a nuclear reactor vessel of a fast breeder reactor (hereinafter abbreviated as FBR), and in particular, the present invention relates to a nuclear reactor vessel of a fast breeder reactor (hereinafter abbreviated as FBR), and in particular, the present invention relates to a nuclear reactor vessel of a fast breeder reactor (hereinafter abbreviated as FBR). The present invention relates to a nuclear reactor structure suitable for increasing the buckling strength of a reactor vessel.

〔従来の技術〕[Conventional technology]

従来の構造について、スーパーフェニックスを例にとり
、第4図により以下に説明する。
The conventional structure will be explained below with reference to FIG. 4, taking the Super Phoenix as an example.

原子炉容器1は、板厚が50mm、直径20m程度の薄
肉容器で原子炉−次冷却材11及び炉内構造物を内包し
、ルーフスラブ構造3より直接溶接により吊り下げられ
ている。主要器内は水平隔壁14により冷却材が上部の
ホットブレナムと下部のコールドプレナムに分けられる
。炉心4は、容器1の底の鎖部に設置する炉心支持構造
物5により支持されている。
The reactor vessel 1 is a thin-walled vessel with a plate thickness of 50 mm and a diameter of about 20 m, enclosing a sub-reactor coolant 11 and reactor internal structures, and is suspended from a roof slab structure 3 by direct welding. Inside the main vessel, the coolant is divided into an upper hot plenum and a lower cold plenum by a horizontal partition 14. The reactor core 4 is supported by a core support structure 5 installed in a chain at the bottom of the vessel 1 .

ルーフスラブ強度部材は、軽量で、かつ、高剛性を確保
するため、マルチセルボックスビーム構造で構成され、
容器1及び熱交換器8.ポンプ等の機器を搭載し、最外
周でルーフスラブ3の支持部によりペデスタルに設置し
である。ルーフスラブは軽量であるが剛性が大きいため
、地震に対しても十分な強度を持っている。
The roof slab strength member is constructed with a multi-cell box beam structure to ensure lightweight and high rigidity.
Container 1 and heat exchanger 8. It is equipped with equipment such as a pump, and is installed on the pedestal by the supporting part of the roof slab 3 at the outermost periphery. Roof slabs are lightweight but highly rigid, so they have sufficient strength to withstand earthquakes.

炉心4は、十数枚の半径方向リブで構成された炉心支持
構造物5で支持されている。この各々のリブの内周部は
、中性子連へい体を収納する円筒容器に溶接で接続し、
外周部は容器鎖部に設置されるスカート構造13に溶接
で接続される。
The core 4 is supported by a core support structure 5 made up of more than ten radial ribs. The inner periphery of each rib is connected by welding to a cylindrical container that houses the neutron shield.
The outer periphery is connected by welding to a skirt structure 13 installed on the container chain.

次に、地震の場合について述べる。水平地震時にはルー
フスラブ3の支持部には、原子炉容器全重量が加わる。
Next, we will discuss the case of an earthquake. During a horizontal earthquake, the entire weight of the reactor vessel is applied to the supporting portion of the roof slab 3.

炉心4の重量は、炉心支持構造物5を介して、容器1の
鎖部に伝わり、容器を通ってルーフスラブ3の支持部に
伝わる。コールドプレナムの重量は、容器1の鎖部に一
様に伝わり、容器1を通ってルーフスラブ3の支持部に
伝わる。
The weight of the core 4 is transferred via the core support structure 5 to the chains of the vessel 1 and through the vessel to the supports of the roof slab 3 . The weight of the cold plenum is transferred uniformly to the chains of the vessel 1 and through the vessel 1 to the supports of the roof slab 3.

ホットプレナムの重量は、はじめ、垂直隔壁17に加わ
り、次に、水平隔壁14に伝わる。それから容器1を通
ってルーフスラブ3の支持部に伝わる。ポンプ9及び熱
交換器8の重量は半分が水平隔壁14を介して隔壁溶接
部に伝わり、容器1を通ってルーフスラブ3の支持部に
伝わる。残り半分は直接ルーフスラブ3の支持部に伝わ
る。
The weight of the hot plenum is first applied to the vertical bulkheads 17 and then transferred to the horizontal bulkheads 14. It then passes through the container 1 to the support of the roof slab 3. Half of the weight of the pump 9 and the heat exchanger 8 is transferred via the horizontal bulkhead 14 to the bulkhead weld and through the vessel 1 to the support of the roof slab 3. The remaining half is transmitted directly to the support of the roof slab 3.

炉上部のルーフスラブ3の重量2回転プラグの重量は、
直接ルーフスラブ3の支持部に伝わる。
The weight of the roof slab 3 at the top of the furnace The weight of the two-turn plug is:
It is transmitted directly to the support part of the roof slab 3.

ここで、炉心4の重量、コールドプレナムの重量、ホッ
トプレナムの重量、ポンプ9と熱交換器8の重量の半分
は、地震時には、容器1を介して原子炉の支持部である
ルーフスラブ3の支持部に伝わる。
Here, in the event of an earthquake, the weight of the reactor core 4, the weight of the cold plenum, the weight of the hot plenum, and half of the weight of the pump 9 and heat exchanger 8 are It is transmitted to the support part.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

−従来構造は、水平地震時には原子炉全重量の70%は
、容器1の胴体の中央部以下に加わり、容器1の胴体を
介して原子炉支持部であるルーフスラブ3の支持部に伝
わる。従って、容器1の胴部は大きなせん断力を受ける
ことになりせん断崖屈が発生し易い、*た、容器1の胴
体には補強となるものがないので、結果的に、容器胴体
1のせん断剛性が小さく、せん断崖屈に対する強度が低
くなる。
- In the conventional structure, in the event of a horizontal earthquake, 70% of the total weight of the reactor is added to the center of the body of the vessel 1 and below, and is transmitted through the body of the vessel 1 to the support part of the roof slab 3, which is the reactor support part. Therefore, the body of the container 1 is subjected to a large shear force, and shear cliff bending is likely to occur. It has low rigidity and low strength against shear cliff bending.

本発明の目的は、原子炉支持部の位置を考慮して、容器
胴体に加わるせん断力を極力小さくシ。
An object of the present invention is to minimize the shear force applied to the vessel body by considering the position of the reactor support.

せん断座屈発生の可能性を低くすること、及び、原子炉
支持部を主容器胴体の補強として設置し、容器胴体のせ
ん断剛性を上げてせん断座屈に対する強度を増すことに
ある。
The purpose is to reduce the possibility of shear buckling, and to increase the shear rigidity of the main vessel body by installing the reactor support section to reinforce the main vessel body, thereby increasing its strength against shear buckling.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、タンク型FBHの原子炉構造において、
炉心を支持するために炉心支持構造物として、リブ状の
支持構造物を炉心から原子炉容器の胴部に接続し、また
、原子炉容器そのものの支持部も容器の胴部に設け、こ
の両者の位置を一致させることによって達成される。
The above purpose is to
A rib-shaped support structure is connected from the core to the body of the reactor vessel as a core support structure to support the reactor core, and a supporting part of the reactor vessel itself is also provided in the body of the vessel. This is achieved by matching the positions of the

〔作用〕[Effect]

本発明の原子炉構造で地震が作用した場合、まず、炉心
に作用する荷重は炉心支持構造物によりこれを通して原
子炉容器に伝えられる。原子炉容器には炉心支持構造物
の接合部と同じ位置に容器の支持部があるので、炉心支
持構造物から伝わった荷重は原子炉容器に負担をかける
ことなく、効果的に原子炉建屋へと流きれる。次に、原
子炉容器の内部にあるNa冷却材、内部構造物、[子炉
容器に取り付いている付属構造物、及び、原子炉容器本
体、原子炉容器蓋(ルーフスラブ、回転プラグ)のそれ
ぞれに作用する荷重は炉心支持構造物位置原子炉容器上
部の原子炉容器蓋から伝わってくるが、これらも主に炉
心支持構造物の位置より荷重が伝えられるため、効果的
に原子炉建屋へと流される。
When an earthquake occurs in the reactor structure of the present invention, the load acting on the reactor core is first transmitted to the reactor vessel through the core support structure. Since the reactor vessel has a supporting part of the vessel at the same position as the joint of the core support structure, the load transmitted from the reactor core support structure is effectively transferred to the reactor building without putting a burden on the reactor vessel. I can flow completely. Next, we will examine the Na coolant inside the reactor vessel, the internal structures, the attached structures attached to the sub-reactor vessel, the reactor vessel body, and the reactor vessel lid (roof slab, rotating plug). The load acting on the core support structure is transmitted from the reactor vessel lid at the top of the reactor vessel, but these loads are also transmitted mainly from the core support structure position, so they are not effectively transferred to the reactor building. be swept away.

また、原子炉容器蓋は軽量で、かつ、剛な構造となって
いるので、重量的には影響を与えずに原子炉容器の上部
に加わる荷重を伝達することができる。
Further, since the reactor vessel lid is lightweight and has a rigid structure, it is possible to transmit the load applied to the upper part of the reactor vessel without affecting the weight.

このように、炉心支持構造物、及び、原子炉容器の支持
部を地震時に作用する荷重の伝達に有効な位置に設けて
いるので、地震に対して高い安全性を保つことができる
In this way, since the core support structure and the support portion of the reactor vessel are provided at positions that are effective for transmitting loads that act during an earthquake, high safety against earthquakes can be maintained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図は原子炉本体の縦断面図である。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a longitudinal cross-sectional view of the reactor main body.

図において、1は原子炉容器、2は安全容器、3は原子
炉容器蓋、4は炉心、5は炉心支持構造、6は炉心上部
機構、7は制御棒駆動機構、8は熱交換器、9は循環ポ
ンプ、10は配管、11は冷却材、12は原子炉建屋、
14は隔壁、16は原子炉容器支持構造である。
In the figure, 1 is a reactor vessel, 2 is a safety vessel, 3 is a reactor vessel lid, 4 is a reactor core, 5 is a core support structure, 6 is a core upper mechanism, 7 is a control rod drive mechanism, 8 is a heat exchanger, 9 is a circulation pump, 10 is piping, 11 is a coolant, 12 is a reactor building,
14 is a partition wall, and 16 is a reactor vessel support structure.

原子炉容器1と原子炉容器1の外側に設けられた安全容
器2は原子炉容器蓋3に取り付けられている。原子炉容
器1内には炉心4が設けられ炉心4は炉心支持構造5を
介して原子炉容器1に取り付けられている。また、原子
炉容器蓋3を貫通して炉心上部機構6が設けられており
、炉心上部機構6には制御棒駆動機構7が設けられてい
る。制御棒駆動機構7によって制御棒(図示せず)が炉
心4内に対し、挿入、引き抜きが行なわれ出力が制御さ
れるようになっている。
A reactor vessel 1 and a safety vessel 2 provided outside the reactor vessel 1 are attached to a reactor vessel lid 3. A reactor core 4 is provided within the reactor vessel 1, and the reactor core 4 is attached to the reactor vessel 1 via a core support structure 5. Further, a core upper mechanism 6 is provided passing through the reactor vessel lid 3, and a control rod drive mechanism 7 is provided in the core upper mechanism 6. A control rod drive mechanism 7 inserts and withdraws a control rod (not shown) into the reactor core 4, thereby controlling the output.

また、原子炉容器蓋3を貫通して熱交換器8と循環ポン
プ9が設けられており、熱交換器8の上部には熱を原子
炉容器1の外に導く配管10が設けられ、配管1oには
原子炉建屋12側と熱交換器8側との間がフレキシブル
構造(図示せず)に接続されており、互いに独立に動く
ことができる。
Further, a heat exchanger 8 and a circulation pump 9 are provided penetrating the reactor vessel lid 3, and a pipe 10 is provided above the heat exchanger 8 to guide heat to the outside of the reactor vessel 1. 1o, the reactor building 12 side and the heat exchanger 8 side are connected by a flexible structure (not shown) and can move independently of each other.

また、炉心4と炉心支持構造5は冷却材11中に浸漬さ
れ、熱交換器8.循環ポンプ9及び炉心上部機構6は下
部を冷却材11中に浸漬されている。
The reactor core 4 and core support structure 5 are also immersed in a coolant 11, and a heat exchanger 8. The lower portions of the circulation pump 9 and the upper core mechanism 6 are immersed in the coolant 11.

炉心4内で核分裂によって生じた熱により加熱された冷
却材11は炉心4の上面から原子炉容器1の中を上部に
流れ、熱交換器8内に流入し熱交換している。そして、
熱交換により低温となった冷却材11は熱交換I8の下
部から原子炉容器1内下部に流出し循環ポンプ9によっ
て炉心4の下部に送られる。
The coolant 11 heated by the heat generated by nuclear fission in the reactor core 4 flows upward in the reactor vessel 1 from the upper surface of the reactor core 4, and flows into the heat exchanger 8 for heat exchange. and,
The coolant 11 whose temperature has become low due to the heat exchange flows out from the lower part of the heat exchanger I8 to the lower part of the reactor vessel 1, and is sent to the lower part of the reactor core 4 by the circulation pump 9.

原子炉容器1は原子炉容器支持構造16により支持され
、これにより原子炉全体が支持される。
The reactor vessel 1 is supported by a reactor vessel support structure 16, which supports the entire nuclear reactor.

第2図は原子炉容器支持構造の詳細図であり、第3図は
支持構造の平面図である。
FIG. 2 is a detailed view of the reactor vessel support structure, and FIG. 3 is a plan view of the support structure.

炉心支持構造5はリブ状の構造物で炉心2を支持し原子
炉容器1に接合している。この接合部と同じ高さで安全
容器2を貫通して円筒形状に原子炉支持構造16があり
、原子炉建屋12と接合して、原子炉構造全体を支持し
ている。
The core support structure 5 is a rib-shaped structure that supports the reactor core 2 and is joined to the reactor vessel 1. There is a cylindrical reactor support structure 16 that penetrates the safety vessel 2 at the same height as this joint, and is joined to the reactor building 12 to support the entire reactor structure.

本発明はこのように構成されているので以下に示す作用
を奏することができる。
Since the present invention is configured as described above, it can exhibit the following effects.

地震が発生した場合、原子炉全体には地震荷重が作用す
るが、まず、炉心4に作用する荷重は炉心支持構造5を
介して原子炉容器1に伝えられる。
When an earthquake occurs, an earthquake load acts on the entire nuclear reactor, and first, the load acting on the reactor core 4 is transmitted to the reactor vessel 1 via the core support structure 5.

原子炉容器1には炉心支持構造5の接合部と同じ位置に
原子炉容器支持構i16があるので、炉心支持構造5か
ら伝わった荷重が原子炉容器1に負担をかけることなく
原子炉建屋12へと流すことができる。次に、原子炉容
器1の内部にある冷却材119M子炉容器上蓋3とこれ
に取り付いている炉心上部機構6.熱交換器8.循環ポ
ンプ9等の付属構造物、及び、原子炉容器1本体のそれ
ぞれに作用する荷重は炉心支持構造5の位置からと原子
炉容器蓋3から伝わってくるが、これらも主に炉心支持
構造より荷重が伝えられるため、有効に原子炉建屋12
へと流される。
Since the reactor vessel 1 has the reactor vessel support structure i16 at the same position as the joint of the reactor core support structure 5, the load transmitted from the reactor core support structure 5 is not applied to the reactor vessel 1 and is transferred to the reactor building 12. can flow to. Next, the coolant 119M sub-reactor vessel upper cover 3 inside the reactor vessel 1 and the core upper mechanism 6 attached thereto. Heat exchanger8. The loads acting on the attached structures such as the circulation pump 9 and the reactor vessel 1 body are transmitted from the position of the core support structure 5 and the reactor vessel lid 3, but these are also mainly transmitted from the core support structure. Because the load is transmitted, the reactor building 12 is effectively
be swept away.

また、原子炉容器蓋3は軽量で、かつ、剛な構造となっ
ているので、重量的には影響を与えずに原子炉容器上部
に加わる荷重を伝達することができる。
Further, since the reactor vessel lid 3 is lightweight and has a rigid structure, it is possible to transmit the load applied to the upper part of the reactor vessel without affecting the weight.

このように、本実施例によれば地震時に原子炉本体に加
わる荷重を効果的に原子炉建屋12に流すことができる
In this way, according to this embodiment, the load applied to the reactor body during an earthquake can be effectively transferred to the reactor building 12.

従って、原子炉本体には地震時に発生するせん断力と補
強部外の胴体の長さに関連してぜん断座屈が発生するが
、本実施例によれば、まず炉心4に作用する荷重は支持
構造を伝わって原子炉建屋12に流れるため、支持点と
の距離は無いとして考えられるので、座屈はほとんど発
生しない。続いてその他の部分に作用する荷重について
も、主に荷重は炉心支持構造の位置より伝わるため、地
震荷重は原子炉容器1の胴体をほとんど通らないで効率
的に原子炉容器支持構造16に流れ、原子炉容器の耐座
屈強度を増している。原子炉容器上部構造物(ルーフス
ラブ32回転プラグ7)は重量が小さいので原子炉容器
支持構造16からの距離が離れても座屈への影響は小さ
い。
Therefore, shear buckling occurs in the reactor body due to the shear force generated during an earthquake and the length of the fuselage outside the reinforced part, but according to this embodiment, the load acting on the reactor core 4 is Since it flows into the reactor building 12 through the support structure, it is considered that there is no distance from the support point, so buckling hardly occurs. Concerning the loads acting on other parts, the loads are mainly transmitted from the position of the reactor core support structure, so the seismic load is efficiently transferred to the reactor vessel support structure 16 without passing through the body of the reactor vessel 1. , increasing the buckling strength of the reactor vessel. Since the reactor vessel upper structure (roof slab 32 rotating plug 7) has a small weight, even if it is separated from the reactor vessel support structure 16, its influence on buckling is small.

ここで、耐座屈強度の割合を従来の場合と本発明の場合
で比較してみると、従来の場合は原子炉本体の上端に支
持点があり、座屈に関係する主な荷重が容器胴部に全体
の約70%作用し、支持点から作用点までの距離が上端
から容器胴部となるのに対し、本発明の場合では、原子
炉本体の胴部に支持点があるため、座屈に関係する主な
荷重が全体の約30%に低下し、支持点から作用点まで
の距離は容器支持部から上端となる。従って、本発明の
場合はせん断力が半減し、かつ、原子炉容器胴部に補強
が入ったことになるので酎座屈強度は、二倍以上になる
Comparing the ratio of buckling strength between the conventional case and the present invention, we find that in the conventional case, the support point is at the upper end of the reactor body, and the main load related to buckling is on the vessel. Approximately 70% of the total force acts on the body, and the distance from the support point to the point of action is from the upper end to the vessel body, whereas in the case of the present invention, the support point is on the body of the reactor body. The main load related to buckling is reduced to about 30% of the total, and the distance from the support point to the point of action is from the container support to the top. Therefore, in the case of the present invention, the shear force is halved and the reactor vessel body is reinforced, so the buckling strength is more than doubled.

さらに、炉心支持構造5を原子炉容器1に単に接合させ
ると、荷重が薄肉の容器に作用するため。
Furthermore, if the core support structure 5 is simply joined to the reactor vessel 1, the load will act on the thin vessel.

局部座屈が発生するが、本発明では炉心支持構造5と支
持部である原子炉容器支持構造16の位置を一致させて
いるので局部座屈の発生を防ぐことができる。
Although local buckling occurs, in the present invention, since the positions of the core support structure 5 and the reactor vessel support structure 16, which is a support portion, are aligned, it is possible to prevent the occurrence of local buckling.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子炉本体に作用する荷重の大きさと
荷重の作用点から支持点までの距離を小さくでき、せん
断剛性を高められるので座屈を発生しにくくすることが
できる。さらに、原子炉容器の局部座屈を防ぐことがで
きる。
According to the present invention, the magnitude of the load acting on the reactor main body and the distance from the point of application of the load to the support point can be reduced, and shear rigidity can be increased, so buckling can be made less likely to occur. Furthermore, local buckling of the reactor vessel can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による原子炉構造の一実施例の縦断面図
、第2図は本発明による原子炉容器支持構造の詳細断面
図、第3図は本発明による支持構造の平面図、第4図は
従来の原子炉構造の縦断面図である。 1・・・原子炉容器、2・・・安全容器、3・・・原子
炉容器蓋、4・・・炉心、5・・・炉心支持構造、6・
・・炉心上部機構、7・・・制御棒駆動機構、8・・・
熱交換器。 第1図 第3図 第4図
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the nuclear reactor structure according to the present invention, FIG. 2 is a detailed cross-sectional view of the reactor vessel support structure according to the present invention, and FIG. 3 is a plan view of the support structure according to the present invention. Figure 4 is a longitudinal sectional view of a conventional nuclear reactor structure. DESCRIPTION OF SYMBOLS 1... Reactor vessel, 2... Safety vessel, 3... Reactor vessel lid, 4... Reactor core, 5... Core support structure, 6...
... Core upper mechanism, 7... Control rod drive mechanism, 8...
Heat exchanger. Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、炉心および一次冷却系機器などを収納する原子炉容
器において、 前記炉心の支持構造物を前記原子炉容器の胴部に接続し
、前記原子炉容器の支持部も前記胴部に設け、両者の位
置を一致させたことを特徴とする原子炉容器。
[Claims] 1. In a reactor vessel housing a reactor core, primary cooling system equipment, etc., the support structure of the reactor core is connected to the body of the reactor vessel, and the support part of the reactor vessel is also connected to the body of the reactor vessel. A nuclear reactor vessel characterized in that it is provided in the body and the positions of both are aligned.
JP62263901A 1987-10-21 1987-10-21 Nuclear reactor vessel Pending JPH01109298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263901A JPH01109298A (en) 1987-10-21 1987-10-21 Nuclear reactor vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263901A JPH01109298A (en) 1987-10-21 1987-10-21 Nuclear reactor vessel

Publications (1)

Publication Number Publication Date
JPH01109298A true JPH01109298A (en) 1989-04-26

Family

ID=17395831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263901A Pending JPH01109298A (en) 1987-10-21 1987-10-21 Nuclear reactor vessel

Country Status (1)

Country Link
JP (1) JPH01109298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211771A1 (en) * 2017-05-15 2018-11-22 三菱Fbrシステムズ株式会社 Tank-type nuclear reactor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211771A1 (en) * 2017-05-15 2018-11-22 三菱Fbrシステムズ株式会社 Tank-type nuclear reactor structure

Similar Documents

Publication Publication Date Title
JPH0198996A (en) Liquid metal cooled reactor and preheating of closed bottom of sodium tank thereof
US3318780A (en) Pressure-proof completely enclosed reactor containment structure
KR960008855B1 (en) Passive cooling system for top entry liquid metal cooled nuclear reactors
US3929568A (en) Nuclear power plant containment construction
JPH01109298A (en) Nuclear reactor vessel
SU1036256A3 (en) Support arrangement for supplying heat carrier circulation system
US4681731A (en) Nuclear reactor construction with bottom supported reactor vessel
EP0162956A2 (en) Modular liquid metal nuclear reactor
JPS6367874B2 (en)
JPH01142496A (en) Nuclear reactor vessel
JP2723246B2 (en) Fast breeder reactor
JPS58168994A (en) Tank type fast breeder
JPH0314151B2 (en)
EP1213725B1 (en) Ring plate around openings in reinforced concrete containment vessel
JPS62182696A (en) Roof slab
JPH01242996A (en) Fast breeder
JPH0325193Y2 (en)
JPH0516558B2 (en)
JPH03108694A (en) Fast breeder reactor
JPH0367599B2 (en)
JPH01210895A (en) Fast breeder
JPS61120098A (en) Support structure of piping in container for nuclear reactor
JPS61140889A (en) Reactor structure of fast breeder reactor
JPH02103493A (en) Nuclear reactor vessel
JPS61169795A (en) Housing for nuclear reactor