JPH01142466A - Sampling of insect bodily liquor - Google Patents

Sampling of insect bodily liquor

Info

Publication number
JPH01142466A
JPH01142466A JP30130587A JP30130587A JPH01142466A JP H01142466 A JPH01142466 A JP H01142466A JP 30130587 A JP30130587 A JP 30130587A JP 30130587 A JP30130587 A JP 30130587A JP H01142466 A JPH01142466 A JP H01142466A
Authority
JP
Japan
Prior art keywords
insect
solution
sample
hemolymph
liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30130587A
Other languages
Japanese (ja)
Inventor
Masakazu Tsuchiya
正和 土谷
Shuji Matsuura
脩治 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP30130587A priority Critical patent/JPH01142466A/en
Publication of JPH01142466A publication Critical patent/JPH01142466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To sample an insect bodily liquor handily and efficiently used for assay of beta-1,3-glucan GL or peptide glucan PG, by making a substance for irreversibly blocking serine protease SP coexist in a solution equivalent to the insect liquor used in the sampling of a liquor of an insect. CONSTITUTION:After the 5th instar of a silkworm larva is placed on ice for 10min, a leg of the third abdomen section is cut off and hemolymph exuding is dripped into 10ml of a 0.9% NaCl solution containing 2mM of p-APMSF to sample. About 15ml of hemolymph is obtained from 25 silkworm larvas and about 25ml of a hemolymph diluted liquid is obtained. The hemolymph thus obtained is treated centrifugally at a rate of 1,500Xg at a low temperature to remove blood cells. 37.5ml of an saturated ammonium sulfate is added to 25ml of a supernatant thus obtained to make a 60% saturated ammonium sulfate suspension, which is treated centrifugally at a rate of 10,000Xg for 20min to sample a sediment. This sediment is dissolved in 27ml of a 0.01M tris-malic acid buffer.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、昆虫体液の改良された採取方法に関するもの
である。更に詳しくは、本発明は、β−1,3−グルカ
ン(以下、GLと略記する。)或はペプチドグリカン(
以下、PGと略記する。)の定位等に用いられる昆虫体
液の改良された採取方法に関するもので、昆虫体液中に
含まれるフェノールオキシダーゼ(以下、I) Oと略
記する。)を最終的に活性化させるカスケード反応(以
下、この反応をPOのカスケード反応と略称する。)の
活性化を抑制し、体液の採取を簡便に且つ効率よく行う
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improved method for collecting insect body fluids. More specifically, the present invention relates to β-1,3-glucan (hereinafter abbreviated as GL) or peptidoglycan (
Hereinafter, it will be abbreviated as PG. This relates to an improved method for collecting insect body fluids used for localization of insect body fluids, etc., and is abbreviated as phenol oxidase (hereinafter abbreviated as I) O contained in insect body fluids. This invention relates to a method for easily and efficiently collecting body fluids by suppressing the activation of a cascade reaction (hereinafter, this reaction will be abbreviated as PO cascade reaction) that ultimately activates PO.

[発明の背景] 昆虫の体液中には、GL或はPGにより活性化される、
POのカスケード反応が存在することが知られている(
Ashida、 M、、 1shizaki、 Y、、
 Iwahara、 H,、Bioches+、 Bi
ophys、 Res、 Comn+un、、 Lu。
[Background of the Invention] In the body fluids of insects, there are molecules activated by GL or PG.
It is known that a cascade reaction of PO exists (
Ashida, M., Shizaki, Y.
Iwahara, H., Bioches+, Bi
ophys, Res, Comn+un,, Lu.

562−568.1983)。この反応を利用して、G
L或はPGを定量することが可能である。
562-568.1983). Using this reaction, G
It is possible to quantify L or PG.

現在のところ、この目的に利用できる昆虫の体液の採取
方法としては、戸田による方法(Ashida。
At present, the only method for collecting insect body fluids that can be used for this purpose is the method by Toda (Ashida et al.).

M、、 In5ect Blochem、、 ■、57
−65.1981)が報告されているのみである。この
方法は、昆虫を氷上に置いて動きを止めた後、ドウキビ
因子(サトウキビに含まれるグルコース、アミノ酸等か
らなる高分子物質)を不純物として含有するショ糖また
はドウキビ因子そのものを含んだ生理食塩水を体腔に注
射し、注射した液が漏れないように細い糸で昆虫を縛り
、室温で約20分間放置した後、脚を切って、滲出して
くる体液を採取するというものである。
M,, In5ect Blochem,, ■, 57
-65.1981) has been reported. This method involves placing the insect on ice to stop its movement, and then adding sucrose containing cane factor (a polymeric substance consisting of glucose, amino acids, etc. contained in sugarcane) as an impurity, or physiological saline containing cane factor itself. The insect is injected into the body cavity, tied up with a thin thread to prevent the injected liquid from leaking, and left at room temperature for about 20 minutes, then the leg is cut and the exuding body fluid is collected.

上記の記載から明らかなように、この方法はかなり繁雑
な操作を必要とする。更に、個体によってはPOのカス
ケード反応が活性化して、採取した体液がGL或はPG
の定量に使用できなくなったりする場合も多々あり、し
かも採取した体液のPOのカスケード反応が活性化して
いるか否かの判定には熟練を要する等の問題点をも有し
ていた。
As is clear from the above description, this method requires quite complicated operations. Furthermore, depending on the individual, the PO cascade reaction is activated, and the collected body fluid becomes GL or PG.
In many cases, the method cannot be used for quantifying PO, and furthermore, it requires skill to determine whether or not the PO cascade reaction in the collected body fluid is activated.

一方、GLはカビ、酵母等の真菌類に主に存在するもの
であり、PGは細菌細胞表層の基礎構造を成すものであ
るが、ダラム陰性菌よりダラム陽性菌の細胞表層中に多
く含まれていることが知られている。また、エンドトキ
シン(以下、ETと略記する。)として知られるリボ多
糖も、これらと共に細菌細胞表層を構成する成分である
が、これは主にダラム陰性菌の細胞表層中に存在してい
ることが知られている。
On the other hand, GL is mainly present in fungi such as molds and yeast, and PG forms the basic structure of the bacterial cell surface, but it is contained more in the cell surface of Durum-positive bacteria than Durum-negative bacteria. It is known that In addition, ribopolysaccharide, known as endotoxin (hereinafter abbreviated as ET), is also a component that constitutes the surface layer of bacterial cells, and it is known that it mainly exists in the cell surface layer of Durham-negative bacteria. Are known.

従って、生体体液中或は薬剤中等のGL、PG及びET
の各含量を定量することは、医学、薬学の分野において
特に有用であると考えられる。即ち、医学の分野に於い
ては、微生物感染症の診断時に、GLは真菌感染症の指
標として、PGはグラム陽性菌感染症の指標として、ま
たETはグラム陽性菌感染症の指標として利用すれば、
感染している菌の種類をより厳密に判定できる可能性が
ある。また、薬学の分野に於いても、同様の理由から、
薬剤がどの様な種類の細菌により汚染されているかの検
出が可能となると考えられる。
Therefore, GL, PG, and ET in biological body fluids or drugs, etc.
It is considered that quantifying each content of is particularly useful in the medical and pharmaceutical fields. That is, in the medical field, when diagnosing microbial infections, GL is used as an indicator of fungal infections, PG as an indicator of gram-positive bacterial infections, and ET as an indicator of gram-positive bacterial infections. Ba,
It may be possible to more precisely determine the type of infecting bacteria. Also, in the field of pharmaceutical science, for the same reason,
It is thought that it will be possible to detect what kind of bacteria a drug is contaminated with.

また、医学、薬学の分野で、広<ETの検出に利用され
ているカブトガニの血球成分を用いる測定試薬、所謂リ
ムルステストに於いて、現在市販されているリムルステ
ストの大部分はETだけではなくGLとも反応すること
から、この測定法ては測定試料中に存在しているのがE
Tであるのか、Gしてあるのか或は両者の混合物である
のかを判定することは難しい。その為、昆虫体液から調
製したGL測定試薬によりGLも併せて測定すれば、リ
ムルステストに反応しているものがETのみであるかど
うかを確認することも可能となる。
In addition, in the medical and pharmaceutical fields, most of the Limulus tests currently available on the market are not only used for ET but also for GL. Because this measurement method reacts, the amount of E present in the measurement sample is
It is difficult to determine whether it is T, G, or a mixture of both. Therefore, if GL is also measured using a GL measuring reagent prepared from insect body fluid, it becomes possible to confirm whether only ET is reacting to the Limulus test.

以上のような理由から、GL或はPGの定量に利用可能
な昆虫体液をより簡便に効率良く採取できる方法の開発
が望まれていた。
For the reasons mentioned above, it has been desired to develop a method that can more easily and efficiently collect insect body fluids that can be used for quantifying GL or PG.

[発明の目的] 本発明は、上記した如き状況に鑑みなされたもので、G
L或はPGの定量に利用できる昆虫の体液を、簡便にか
つ効率良く採取する方法を提供することを目的とする。
[Object of the invention] The present invention was made in view of the above-mentioned situation, and
The purpose of the present invention is to provide a method for simply and efficiently collecting insect body fluids that can be used for quantifying L or PG.

[発明の構成] 上記目的を達成するために、本発明は次の構成よりなる
[Structure of the Invention] In order to achieve the above object, the present invention has the following structure.

「昆虫の体液を採取する際に使用する昆虫体液と等張な
溶液に、セリンプロテアーゼを不可逆的に阻害する物質
を共存させることを特徴とする、昆虫体液の採取方法。
``A method for collecting insect body fluids, which is characterized by coexisting a substance that irreversibly inhibits serine protease in a solution that is isotonic with the insect body fluids used when collecting insect body fluids.

」 即ち、本発明者らは、GL或はPGの定量に利用するこ
とのできる昆虫の体液を簡便に、且つ効率良く採取でき
る方法を開発すべく鋭意研究の結果、昆虫の体液を採取
する際に使用する昆虫体液と等張な溶液中に、セリンプ
ロテアーゼ(以下、SPと略記する。)を不可逆的に阻
害する物質、即ちSPインヒヒター(以下、sprと略
記する。)を共存させて昆虫の体液を採取し、過剰なS
PIは透析法、ゲル濾過法等により除去すれば、GL或
はPGとの反応性を保持した昆虫の体液が簡便に且つ効
率良く採取できることを見出し本発明を完成するに至っ
た。
That is, the present inventors have conducted intensive research to develop a method for easily and efficiently collecting insect body fluids that can be used for quantifying GL or PG. A substance that irreversibly inhibits serine protease (hereinafter abbreviated as SP), that is, an SP inhibitor (hereinafter abbreviated as spr), is coexisting in a solution that is isotonic with the insect body fluid used for insect production. Collect body fluids and remove excess S
The present invention was completed based on the discovery that insect body fluids retaining reactivity with GL or PG can be easily and efficiently collected by removing PI by dialysis, gel filtration, or the like.

本発明に用いることのできる昆虫としては、特に制限は
ないが、なるべく大型のもので飼育法の確立しているも
のが望ましく、例えはタバコスズメガ、カイコガ等の鱗
翅類、センチニクバエ、イエバエ等の双翅類、トノサマ
バッタ、エンマコウロギ等の重囲類、センツキカミキリ
等の甲虫類等が挙げられるが、これらに限定されない。
There are no particular restrictions on the insects that can be used in the present invention, but it is preferable to use large insects that have established breeding methods. Examples include, but are not limited to, pterygians, pycnids such as the grasshopper and the beetles, and beetles such as the beetle beetle.

体液としては、体腔から得られるヘモリンフ(hemo
lymph)が最も得られ易く、より一般的である。
Body fluids include hemolymph obtained from body cavities.
lymph) is the easiest to obtain and is more common.

本発明に用いられる、昆虫体液と等張な溶液としては、
昆虫体液と等張な性質を有するものであれば特に限定さ
れることなく使用することができるが、通常はyA!J
の簡便さから生理食塩水等が好ましく用いられる。
Solutions used in the present invention that are isotonic with insect body fluids include:
Any material can be used without particular limitation as long as it is isotonic with insect body fluids, but usually yA! J
Physiological saline or the like is preferably used because of its simplicity.

本発明で用いられるSPTとしては、SPを不可逆的に
阻害するものであって、昆虫体液中に存在するGL或は
PGと反応する成分と分離可能なものであれば特に限定
されることなく用いることができるが、分子量が比較的
小さく、例えば2,000以下で、透析により除去でき
るものが操作の面から好ましい。このようなSPIとし
ては、例えば(p−アミジノフェニル)メタンスルホニ
ルフルオリド(p−APMSF)、フェニルメタンスル
ホニルフルオリド(PMSF)、ジイソプロピルフルオ
ロリン酸(DFP)、p−ニトロフェニル−p′−グア
ニジノ安息香酸(NPGB)、ジヒドロキシクロロメチ
ルクマリン(D CC’)等が挙げられる。これらSP
Iの使用屓としては、体液の採取中に活性化してくるS
Pを不活化するのに必要な量以上を上記の等張液中に添
加しておけばよく特に限定されないが、好ましくは上記
等張液中に0.1−1On+M、より好ましくは0.5
〜5a+Mの範囲で添加される。
The SPT used in the present invention is not particularly limited as long as it irreversibly inhibits SP and can be separated from components that react with GL or PG present in insect body fluids. However, it is preferable from the viewpoint of operation that the molecular weight is relatively small, for example, 2,000 or less, and that it can be removed by dialysis. Examples of such SPI include (p-amidinophenyl)methanesulfonyl fluoride (p-APMSF), phenylmethanesulfonyl fluoride (PMSF), diisopropylfluorophosphate (DFP), p-nitrophenyl-p'-guanidino Examples include benzoic acid (NPGB) and dihydroxychloromethylcoumarin (DCC'). These SPs
The use of I is for S, which becomes activated during the collection of body fluids.
It is not particularly limited as long as it is added to the above isotonic solution in an amount equal to or more than the amount necessary to inactivate P, but preferably 0.1-1 On+M, more preferably 0.5
It is added in the range of ~5a+M.

本発明を実施するには、例えば以下の如く行えばよい。The present invention may be carried out, for example, as follows.

即ち、SPIを含む、昆虫の体液と等張な溶液中に、昆
虫の体の一部を傷つけることにより滲出してくる体液を
直接滴下するか、或はSPiを含む、昆虫の体液と等張
な溶液を昆虫に注射した後、昆虫の体の一部を僅つける
ことにより滲出してくる体液を採取する。次いて、集め
た液を遠心分離にかけ血球等を除去する。更に、得られ
た体液を含む溶液中に過剰に存在するSPlを、透析法
That is, the body fluid exuded by injuring a part of the insect's body is directly dropped into a solution containing SPI that is isotonic with the insect's body fluid, or the solution containing SPi is isotonic with the insect's body fluid. After injecting a solution into an insect, the body fluid exuded by touching a part of the insect's body is collected. Next, the collected liquid is centrifuged to remove blood cells and the like. Furthermore, SP1 present in excess in the solution containing the obtained body fluid is removed by a dialysis method.

ゲル濾過法、イオン交換法、高速液体クロマトグラフィ
ー法等の生化学の分野で一般的に用いられる分離精製方
法のうちから、使用したSPIの性質に応じて最も適し
た方法を1種又は要すれば2種以上選択して除去するこ
とことにより、目的とする昆虫体液を含む溶液を得るこ
とができる。尚、このSPIの除去操作は、遠心分離操
作後、更に硫安分画等の常法により、昆虫体液成分をあ
る程度濃縮、精製を行った後に行うことも可能である。
Among the separation and purification methods commonly used in the field of biochemistry, such as gel filtration, ion exchange, and high-performance liquid chromatography, one or more of the most suitable methods are selected depending on the nature of the SPI used. By selecting and removing two or more types, a solution containing the desired insect body fluid can be obtained. This SPI removal operation can also be performed after centrifugation and after concentrating and purifying the insect body fluid components to some extent by conventional methods such as ammonium sulfate fractionation.

このようにして得られた昆虫体液の血漿成分を含む溶液
中には、ETとは反応しないが、GLと特異的に反応し
て酵素活性を発現する物質(或は発現を誘因する物質)
と、PGと特異的に反応して酵素活性を発現する物質(
或は発現を誘因する物質)とが共存しているので、これ
らのうちGLと特異的に反応して酵素活性を発現する(
或は発現を誘因する)物質を除去すればPCと特異的に
反応する試薬として、或はこれらのうちPGと特異的に
反応して酵素活性を発現する(或は発現を誘因する)物
質を除去すればGLと特異的に反応する試薬として使用
することができる。
In the solution containing the plasma component of the insect body fluid thus obtained, there is a substance that does not react with ET but reacts specifically with GL to express enzymatic activity (or a substance that induces expression).
and a substance that reacts specifically with PG to express enzyme activity (
or a substance that induces expression), which specifically reacts with GL and expresses enzyme activity (
If the substance (or inducing expression) is removed, it can be used as a reagent that specifically reacts with PC, or among these, a substance that specifically reacts with PG to express (or induce expression) enzyme activity. If removed, it can be used as a reagent that specifically reacts with GL.

この溶液から、GLと特異的に反応して酵素活性を発現
する(或は発現を誘因する)物質、或はPGと特異的に
反応して酵素活性を発現する(或は発現を誘因する)物
質を除去する方法としては、ゲル繞過法、電気泳動法、
高速液体りロマトグラフィー法、アフィニティークロマ
トグラフィー法等の生化学の分野で一般的に用いられる
分離精製方法がいずれも挙げられるが、PG或はGLを
結合させた担体を用いたアフィニティークロマトグラフ
ィーによりこれを行えば、極めて容易に且つ効率良くこ
れを行うことができるので、特に好ましい。また、アフ
ィニティークロマトグラフィーによりこれを行う際には
、不必要なPOのカスケード反応の活性化を防ぐために
、通常キレート剤が用いられるが、本発明に係るSPI
をこの代りに用いてもよい。
From this solution, a substance that specifically reacts with GL to express (or induces expression) enzyme activity, or a substance that specifically reacts with PG to express (or induces expression) enzyme activity. Methods for removing substances include gel filtration method, electrophoresis method,
Separation and purification methods commonly used in the field of biochemistry such as high-performance liquid chromatography and affinity chromatography can be used, but this method can be achieved by affinity chromatography using a carrier bound to PG or GL. It is particularly preferable to carry out this procedure because it can be carried out extremely easily and efficiently. Furthermore, when performing this by affinity chromatography, a chelating agent is usually used to prevent unnecessary activation of the PO cascade reaction, but the SPI according to the present invention
may be used instead.

また、昆虫の体液中に存在するPOのカスケード反応を
構成する因子は、未だ十分に解明されておらず、比較的
研究の進んでいる蚕の反応系に於いてさえ、わずかにP
O、プロフェノールオキシダーゼ活性化酵素(PPAE
) 、ベンゾイルアルギニンエチルエステル分解酵素(
B A E Ease)が見出されているにすぎず、他
にどのような因子が関与して全体の反応系を構成してい
るかは未だ解明されていない。即ち、これらのうち、P
PAE及びBAEEaseがSPであるということは知
られているが、通常の採取方法では活性化しやすい昆虫
体液中のPOのカスケード反応をSPIが抑制し、しか
も後処理後に得られる昆虫の血漿成分中にはGL或はP
Gで活性化される能力が保持されているということは意
外なことであった。
Furthermore, the factors that make up the cascade reaction of PO present in the body fluids of insects have not yet been fully elucidated, and even in the relatively well-researched reaction system of silkworms, only a small amount of PO exists in the body fluids of insects.
O, prophenol oxidase activating enzyme (PPAE)
), benzoyl arginine ethyl ester degrading enzyme (
BAE Ease) has only been discovered, and it has not yet been elucidated what other factors are involved in the overall reaction system. That is, among these, P
It is known that PAE and BAEEase are SPs, but SPI suppresses the cascade reaction of PO in insect body fluids, which is easily activated by conventional collection methods, and moreover, is GL or P
It was surprising that the ability to be activated by G was retained.

以下に実施例を挙げ、本発明を更に具体的に説明するが
、本発明はこれらにより何ら限定されるものではない。
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto.

[実施例] 実施例1゜ 第5齢の蚕幼虫を氷上に10分間置き動きを止めた後、
第3腹部節の脚を切り、滲出してくるヘモリンフを、2
11Mのp−APMSFを含む0.9%塩化ナトリウム
溶液101中に滴下して、採取した。25頭の蚕幼虫よ
り約15m1のへモリンフが得られ、約251のへモリ
ンフ希釈液を得た。これを1 、500 X gて5分
間、低温で遠心し、血球を除去した。得られた上清25
−1に37.5mlの飽和硫安溶液を加え60%飽和硫
安!3濁液とした後、10.OOOXgて20分間遠心
して沈殿を採取した。この沈殿を271の0.01Mト
リス−リンゴ酸緩衝液(0,15M NaClを含有、
pH6,5)に溶解し、200m門のp−APMSF溶
液をO,1ml加えた後、O,OIM )リス−リンゴ
酸緩衝液(0,15M NaClを含有、pH6,5)
 11で4回透析した。得られた透析内液を10.OO
OXgで20分間、低温で遠心し、目的の蚕血漿を得た
[Example] Example 1゜Fifth instar silkworm larvae were placed on ice for 10 minutes and stopped moving,
Cut the leg of the third abdominal segment and remove the hemolymph that oozes out.
It was collected by dropping it into a 0.9% sodium chloride solution 101 containing 11M p-APMSF. Approximately 15 ml of hemolymph was obtained from 25 silkworm larvae, and approximately 251 hemolymph dilutions were obtained. This was centrifuged at 1,500×g for 5 minutes at low temperature to remove blood cells. Obtained supernatant 25
Add 37.5ml of saturated ammonium sulfate solution to -1 to achieve 60% saturated ammonium sulfate! 3. After making a suspension, 10. The precipitate was collected by centrifugation at OOOXg for 20 minutes. This precipitate was dissolved in 271 0.01M Tris-malate buffer (containing 0.15M NaCl,
After adding O, 1 ml of 200 m p-APMSF solution, OIM) Lys-malate buffer (containing 0,15 M NaCl, pH 6,5)
It was dialyzed four times at 11. 10. The obtained dialyzed fluid was OO
The target silkworm plasma was obtained by centrifugation in OXg for 20 minutes at low temperature.

尚、p−A P M S Fの代りにNPGBを使用し
た場合でも同様の結果が得られた。
Note that similar results were obtained when NPGB was used instead of p-APMSF.

実施例2゜ 第5齢の蚕幼虫を氷上に10分間置き動きを止めた後、
2mMのp−APMSFを含む0.9%塩化ナトリウム
溶液を、蚕の第5及び第6腹部節の間より注射した。注
射した液が漏れないように細い糸で第5腹部節の前を縛
り、第3腹部節の足を切り、滲出してくる体液(ヘモリ
ンフ)を、採取した。
Example 2 After placing the fifth instar silkworm larva on ice for 10 minutes and stopping its movement,
A 0.9% sodium chloride solution containing 2mM p-APMSF was injected into the silkworm between the 5th and 6th abdominal segments. To prevent the injected fluid from leaking, the front of the fifth abdominal segment was tied with a thin thread, the leg of the third abdominal segment was cut, and the exuding body fluid (hemorymph) was collected.

採取した体液を、1,500X3で5分間、低温で遠心
し、血球を除去した。得られた上清10m1に200m
Mのp−APMSF溶液0.05m1を加え、更に10
.OOOXgて20分間、低温で遠心した後、上清を0
.01M )リス−リンゴ酸緩衝液(0,15M Na
C1を含有、pH6,5)で平衡化したセファデックス
G−25(ファルマシア社商品名)のカラム(2,5X
 15c++1)に通して、カラムのボイドボリューム
に溶出されてきた蛋白のピークを集めて、目的の蚕血漿
を得た。
The collected body fluid was centrifuged at 1,500×3 for 5 minutes at low temperature to remove blood cells. Add 200ml to 10ml of the supernatant obtained.
Add 0.05 ml of p-APMSF solution of M, and add 10 ml of p-APMSF solution.
.. After centrifugation at low temperature for 20 minutes at OOOXg, remove the supernatant.
.. 01M) Lis-malate buffer (0,15M Na
Sephadex G-25 (trade name, Pharmacia) column (2.5X) equilibrated with
15c++1), and the protein peaks eluted in the void volume of the column were collected to obtain the desired silkworm plasma.

参考例1゜ (1)PG固定化セファロース4Bカラムの調製常法に
より、ミクロコツカス ルテウス(Micrococc
us 1uteus)より得られた精製P G 153
+sgを8011IM酢酸アンモニウム1531に懸濁
し、卵白リゾチーム1.5s+gを加えて45℃で4分
間攪拌加温後、37℃で2時間消化した。ミリポアフィ
ルタ−(HAWPo 4700)で濾過し、濾液を凍結
乾燥した。凍結乾燥品を蒸留水61で溶解し、その5.
51をセファデックスG−50SF (ファルマシア社
商品名)のカラム(溶出液:50mM炭酸アンモニウム
溶液、2.5X90cim、溶出速度: 15a+l/
hr)でゲル濾過を行った。
Reference Example 1゜(1) Preparation of PG-immobilized Sepharose 4B column Micrococcus luteus (Micrococc luteus)
Purified PG 153 obtained from
+sg was suspended in 8011IM ammonium acetate 1531, 1.5s+g of egg white lysozyme was added, and the mixture was stirred and heated at 45°C for 4 minutes, and then digested at 37°C for 2 hours. It was filtered through a Millipore filter (HAWPo 4700) and the filtrate was lyophilized. 5. Dissolve the freeze-dried product in distilled water 61.
51 to a column of Sephadex G-50SF (trade name of Pharmacia) (eluent: 50mM ammonium carbonate solution, 2.5X90cim, elution rate: 15a+l/
Gel filtration was performed at hr).

消化された°結果生ずる還元糖の活性のある分画の中心
部を集めて凍結乾燥し、その凍結乾燥品をO9団炭酸ナ
トリウム緩衝液(pH0) 6.3mlに溶解してPG
溶液とした。このP G N ?aとCNBr活性化セ
ファ0−ス4B(ファルマシア社商品名) 2.73を
常法に従って反応させ、PG固定化セファロース4Bと
した。
The core of the active fraction of reducing sugars resulting from the digestion was collected and lyophilized, and the lyophilized product was dissolved in 6.3 ml of O9 group sodium carbonate buffer (pH 0) to prepare PG.
It was made into a solution. This PGN? a and CNBr-activated Sepharose 4B (trade name of Pharmacia) 2.73 were reacted according to a conventional method to obtain PG-immobilized Sepharose 4B.

この様にして得られた、PG固定化セファロース4Bを
カラム(0,6X 1.7cm)に充填し、0.01M
 )リス−リンゴ酸緩衝液[0,15M KCI及び1
 mM EDTA (エチレンジアミン四酢酸)を含む
。pH6,5゜以下、TMBと略称する。]て平衡化し
、PGカラムとした。
The PG-immobilized Sepharose 4B obtained in this way was packed into a column (0.6 x 1.7 cm), and 0.01 M
) Lys-malate buffer [0,15M KCI and 1
Contains mM EDTA (ethylenediaminetetraacetic acid). pH below 6.5°, abbreviated as TMB. ] to equilibrate and prepare a PG column.

(2)GL試薬の調製 実施例1て得られた蚕血漿に100mM EDTA溶液
(p)16.5)をEDTAの終濃度がll11Mとな
るように添加し、その溶液15m1を(1)で得られた
PGカラムで処理した(溶出液:TMB、溶出速度: 
6ml/hr)。試料を注入した直後から12m1の溶
出液を集めGL試薬とした。
(2) Preparation of GL reagent A 100mM EDTA solution (p) 16.5) was added to the silkworm plasma obtained in Example 1 so that the final concentration of EDTA was 111M, and 15ml of the solution obtained in (1) was added. (Eluent: TMB, Elution rate:
6ml/hr). Immediately after injecting the sample, 12 ml of eluate was collected and used as a GL reagent.

(3)GL試薬及び蚕体液中の不活性酵素のザイモサン
(β−1,3−グルカン)又はPGによる活性化度の測
定 (測定操作法) 実施例1で得られた全血漿又は(2)で得られたGL試
薬200μlに80+*M CaCl2溶液20μmを
添加し、更にI B/mlのザイモサン溶液或は111
g/l+IのPG温溶液20μm加えてよく混合し、2
5℃で反応させた。所定の時間に所定量の反応液を採取
し、POの活性化度或はBAEEaseの活性値を測定
した。
(3) Measurement of the degree of activation of inactive enzymes in GL reagent and silkworm body fluid by zymosan (β-1,3-glucan) or PG (measurement procedure) Whole plasma obtained in Example 1 or (2) Add 20 μm of 80+*M CaCl2 solution to 200 μl of the GL reagent obtained above, and add I B/ml zymosan solution or 111
Add 20μm of g/l+I PG warm solution and mix well.
The reaction was carried out at 5°C. A predetermined amount of the reaction solution was collected at a predetermined time, and the degree of PO activation or BAEEase activity value was measured.

■PO活性化度の測定 基質溶液(4mM4−メチルカテコール及び8wM4−
ヒドロキシプロリンエチルエステル含有0.1Mリン酸
緩衝液、pH6,0) 1 mlに試料(前記反応液)
10μmを加え30℃でlθ分公園応させた後、生成す
るキノン色素の520na+の吸光度を測定してPOの
活性化度を求めた。
■Measurement of PO activation degree Substrate solution (4mM 4-methylcatechol and 8wM4-
0.1M phosphate buffer containing hydroxyproline ethyl ester, pH 6.0) Add sample (above reaction solution) to 1 ml
After adding 10 μm and causing a lθ partial reaction at 30° C., the degree of PO activation was determined by measuring the absorbance of 520 na+ of the quinone dye produced.

第1図に各種試料を基質溶液と反応させたときの反応時
間による520nsに於ける吸光度の変化を示す。ただ
し、・−・−はザイモサンとGL試薬とを、−ム−はP
GとGL試薬とを、−〇−はザイモサンと全血漿とを、
また、−Δ−はPGと全血漿とを夫々反応させて得られ
た試料を用いたときの吸光度変化を夫々示す。
FIG. 1 shows changes in absorbance at 520 ns depending on the reaction time when various samples were reacted with a substrate solution. However, ...- means zymosan and GL reagent, and -mu- means P.
G and GL reagent, -〇- means zymosan and whole plasma,
Moreover, -Δ- indicates the absorbance change when using samples obtained by reacting PG and whole plasma, respectively.

■BAEEa、se活性の測定 予め25℃に・保温した基質溶液[2mM N−α−ベ
ンゾイル−し−アルギニンエチルエステル、1mMNA
Dにコチンアミドアデニンジヌクレオチド)、0.11
8/mlアルコールデヒドロゲナーゼ、0.25M )
リス(ヒドロキシメチル)アミノメタン及び0.2Mセ
ミカルバジド含有、1)H8,5、at 25℃]1m
lに試料307Llを加えてよく混合し、25℃で反応
させて、生ずるNA口■ (還元型ニコチンアミドアデ
ニンジヌクレオチド)の340止の吸光度の増加を測定
した。
■Measurement of BAEEa, se activity Substrate solution kept at 25°C in advance [2mM N-α-benzoyl-arginine ethyl ester, 1mM N.A.
D is cotinamide adenine dinucleotide), 0.11
8/ml alcohol dehydrogenase, 0.25M)
Contains lis(hydroxymethyl)aminomethane and 0.2M semicarbazide, 1) H8.5, at 25°C] 1m
307 L of sample was added to 1, mixed well, and reacted at 25° C., and the increase in absorbance of the resulting NA (reduced nicotinamide adenine dinucleotide) at 340 was measured.

尚、BAEEaseの1単位(U)は上記反応条件下で
1公園にlnmol のエタノールを生成する黴とした
In addition, one unit (U) of BAEEase was defined as a mold that produces lnmol of ethanol per park under the above reaction conditions.

結果を表1に示す。尚、表中に於いて、試料Aは全血漿
とザイモサン溶液とを、試料Bは全血漿とPG温溶液を
、試料CはGL試薬とザイモサン溶液とを、試料りはG
L試薬とPG温溶液を夫々反応させて得られた試料を示
す。
The results are shown in Table 1. In addition, in the table, sample A is whole plasma and zymosan solution, sample B is whole plasma and PG warm solution, sample C is GL reagent and zymosan solution, and sample is G
Samples obtained by reacting the L reagent and the PG warm solution are shown.

表1 これらの結果から明らかなように、全血漿中の酵素はザ
イモサン及びPGにより活性化されるが、GL試薬中の
酵素はザイモサンによってのみ活性化され、PGによっ
ては活性化されないことが判る。
Table 1 As is clear from these results, the enzyme in the whole plasma is activated by zymosan and PG, but the enzyme in the GL reagent is activated only by zymosan and not by PG.

尚、実施例2により得られた全血漿を用いて同様の操作
を行ったところ同様の結果が得られた。
Incidentally, when the same operation was performed using the whole plasma obtained in Example 2, similar results were obtained.

参考例2.カードランによる検量線の作成(測定操作) 参考例1の(2)で得られたGL試薬21に80wMC
aCl 2溶液200μmを添加しよく混合した。この
10μmに所定濃度のカードラン溶液lOμlを加え3
0℃で60分分触加温後参考例1で用いたPO活性測定
用基質溶液11を加え、更に30℃でlO分公園応させ
た後、520nmの吸光度を測定した(測定値;E、)
。別に、カードラン溶液の代りに精製水を用いて同様に
操作して盲検値(Ear)を得た。
Reference example 2. Creation of a calibration curve using curdlan (measurement operation) Add 80 wMC to the GL reagent 21 obtained in (2) of Reference Example 1.
200 μm of aCl 2 solution was added and mixed well. Add 10 μl of curdlan solution of a specified concentration to this 10 μm.
After tactile heating at 0°C for 60 minutes, the substrate solution 11 for PO activity measurement used in Reference Example 1 was added, and after further reaction at 30°C, the absorbance at 520 nm was measured (measured value; E, )
. Separately, a blind value (Ear) was obtained by performing the same operation using purified water instead of the curdlan solution.

(結果) 第2図に、カードラン濃度と(E−Ellll)値の関
係を横軸、縦軸共に対数軸を用いて示した。
(Results) FIG. 2 shows the relationship between the curdlan concentration and the (E-Ellll) value using logarithmic axes for both the horizontal and vertical axes.

この結果から明らかな如く、検量線は良好な直線性を示
した。
As is clear from this result, the calibration curve showed good linearity.

参考例3.カードランによる検量線の作成(測定操作) 参考例1の(2)で得られたGL試薬21に80mMC
aCl 2溶液200μmを添加しよく混合した。この
70μmに、0.1Mリン酸緩衝液(20w+M L−
ドーパ含有、pH6,0) 70μm及び所定濃度のカ
ードラン溶液70μmを加えてよく混合し、25℃で、
トキシノメータ−(和光純薬工業(株)製)を用いて透
過光量が5%減少するまでの時間(Δt)を測定した。
Reference example 3. Creation of a calibration curve using curdlan (measurement operation) Add 80mMC to the GL reagent 21 obtained in (2) of Reference Example 1.
200 μm of aCl 2 solution was added and mixed well. Add 0.1M phosphate buffer (20w+M L-
Dopa-containing, pH 6,0) 70 μm and 70 μm of curdlan solution of the specified concentration were added, mixed well, and heated at 25°C.
The time (Δt) until the amount of transmitted light decreased by 5% was measured using a toxinometer (manufactured by Wako Pure Chemical Industries, Ltd.).

(結果) 第3図に、Δtとカードラン濃度の関係を横軸、縦軸共
に対数軸を用いて示した。
(Results) FIG. 3 shows the relationship between Δt and curdlan concentration using logarithmic axes for both the horizontal and vertical axes.

この結果から明らかな如く、この場合の検量線も良好な
直線性を示した。
As is clear from this result, the calibration curve in this case also showed good linearity.

参考例4.カードランビーズカラムの調製カードラン(
和光純薬工業(株)!り粉末9gに純水270++lを
加えて攪拌しスラリーを得た。これにlN−NaOH3
0a+l を加えるとカードランは溶解し、カードラン
の水酸化ナトリウム水溶液が得られた。
Reference example 4. Preparation of Curdlan Bead Column Curdlan (
Wako Pure Chemical Industries, Ltd.! 270++ liters of pure water was added to 9 g of powder and stirred to obtain a slurry. To this, lN-NaOH3
When 0a+l was added, curdlan was dissolved, and an aqueous sodium hydroxide solution of curdlan was obtained.

81容のビーカーに、トルエン1.21 、界面活性剤
エマレックスIC−806g  (日本エマルジョン社
商品名、ポリオキシエチレン硬化ヒマシ油誘導体)を加
え、スクリュー型攪拌翼にて800rp+mの速度で攪
拌下に上記カードランの水酸化ナトリウム水溶液を室温
にて滴下した。この様にして得られたカードラン分散液
をトルエン21及び酢酸11からなる液に800rp−
の速度で攪拌しながら加え、約1時間攪拌を続けた。約
8時間静置することにより、生成したビーズは沈殿した
。デカンテーションによって溶媒を除去し、得られた沈
殿を純水81にて5回洗浄するとpHは中性となり、ま
た有機溶媒は完全に除去され、カードランビーズ240
1を得た。
To an 81-volume beaker, 1.21 g of toluene and 6 g of surfactant Emarex IC-80 (product name of Nippon Emulsion Co., Ltd., polyoxyethylene hardened castor oil derivative) were added, and the mixture was stirred at a speed of 800 rpm+m using a screw-type stirring blade. The above sodium hydroxide aqueous solution of curdlan was added dropwise at room temperature. The thus obtained curdlan dispersion was added to a solution consisting of 21 parts of toluene and 11 parts of acetic acid at 800 rpm.
and stirring was continued for about 1 hour. By allowing the mixture to stand for about 8 hours, the generated beads were precipitated. The solvent was removed by decantation, and the resulting precipitate was washed five times with pure water 81 to make the pH neutral, and the organic solvent was completely removed.
I got 1.

これを分級し、50〜100μmの粒径のものく平均粒
径約80μa1)をTMBテ平衡化し、カラム(1,3
x2 、3cm )に充填してカードランビーズカラム
とした。
This was classified, and the particles with a particle size of 50 to 100 μm (average particle size of about 80 μa1) were equilibrated with TMB column (1, 3
x2, 3 cm) to form a curdlan bead column.

参考例5゜ (1)PG試薬の調製 実施例2で得られた全血漿51に7M820m1を加え
てよく混合したものを試料とし、参考例4により得られ
たカードランビーズカラムで処理した。
Reference Example 5゜(1) Preparation of PG Reagent 820 ml of 7M was added to the whole plasma 51 obtained in Example 2 and mixed well, which was used as a sample and treated with the curdlan beads column obtained in Reference Example 4.

素通りの蛋白分画約251を、2251の飽和硫酸アン
モニウム溶液中へ滴下した後、l@攪拌した。
Approximately 251 of the protein fraction passed through was dropped into a saturated ammonium sulfate solution of 2251, followed by stirring.

遠心分離(16,000X g、20分間)して沈殿を
集め、 ′沈殿を41のTMBに溶解し、TMB 50
0111を外液として透析した。これを再び遠心分離(
16,000Xg、 20分間)し、上清をTMBで全
量51として、PG試薬とした。
Collect the precipitate by centrifugation (16,000 x g, 20 min), dissolve the precipitate in TMB 50
0111 was dialyzed as an external solution. Centrifuge this again (
16,000×g for 20 minutes), and the supernatant was made up to a total volume of 51 with TMB to use as a PG reagent.

(2)PG試薬及び蚕血漿中の不活性酵素のザイモサン
(β−1,3−グルカン)またはPGによる活性化度の
測定 (測定操作法) 実施例1で得られた全血漿又は(2)で得られたPG試
薬200μ+に80+mM CaCl2溶液20μmを
添加し、更にI nag/mlのザイモサン溶液或はI
 B/mlのPG温溶液20μm加えてよく混合し、2
5℃で反応させた。所定の時間に所定量の反応液を採取
し、POの活性化度或はBAEEaseの活性値を測定
した。
(2) PG reagent and measurement of the degree of activation of inactive enzymes in silkworm plasma by zymosan (β-1,3-glucan) or PG (measurement procedure) Whole plasma obtained in Example 1 or (2) Add 20μm of 80+mM CaCl2 solution to 200μ+ of the PG reagent obtained in , and add I nag/ml zymosan solution or I
Add 20 μm of B/ml PG warm solution and mix well.
The reaction was carried out at 5°C. A predetermined amount of the reaction solution was collected at a predetermined time, and the degree of PO activation or BAEEase activity value was measured.

■po活性化度の測定 基質溶液(4mM4−メチルカテコール及び8mM4−
ヒドロキシプロリンエチルエステル含有’0.1Mリン
酸緩衝液、pH6,0) 1 +*Iに試料(前記反応
液)108mを加え30℃で10分間反応させた後、生
成するキノン色素の5201の吸光度を測定してPOの
活性化度を求めた。
■Measurement of po activation degree Substrate solution (4mM 4-methylcatechol and 8mM 4-methylcatechol
After adding 108 m of the sample (above reaction solution) to hydroxyproline ethyl ester-containing 0.1 M phosphate buffer, pH 6,0) 1 + was measured to determine the degree of PO activation.

第4図に各種試料を基質溶液と反応させたときの反応時
間による520nmに於ける吸光度の変化を示す。ただ
し、−・−はザイモサンとPG試薬とを、−ム−はPG
とPG試薬とを、−〇−はザイモサンと全血漿とを、ま
た、−Δ−はPGと全血漿とを夫々反応させて得られた
試料を用いたときの吸光度変化を夫々示す。
FIG. 4 shows changes in absorbance at 520 nm depending on reaction time when various samples were reacted with a substrate solution. However, -・- means zymosan and PG reagent, and -mu- means PG reagent.
The graph shows the change in absorbance when using samples obtained by reacting zymosan with the PG reagent, -0- with zymosan and whole plasma, and -Δ- with PG and whole plasma, respectively.

■BAEEase活性の測定 予め25℃に保温した基質溶液[2n+M N−α−ベ
ンゾイル−し−アルギニンエチルエステル、1mM N
AD 。
■Measurement of BAEEase activity Substrate solution [2n+M N-α-benzoyl-thi-arginine ethyl ester, 1mM N
AD.

0.1mg/mlアルコールデヒドロゲナーゼ、0.2
5M )リス(ヒドロキシメチル)アミノメタン及び0
.2Mセミカルバジド含有、pH8,5、at 2S℃
コ11に試料30μlを加えてよく混合し、25℃で反
応させて、生ずるNADHの340rvの吸光度の増加
を測定した。
0.1mg/ml alcohol dehydrogenase, 0.2
5M) lis(hydroxymethyl)aminomethane and 0
.. Contains 2M semicarbazide, pH 8.5, at 2S°C
30 μl of the sample was added to Co. 11, mixed well, and reacted at 25° C., and the increase in absorbance of the resulting NADH at 340 rv was measured.

尚、B A E E aseのl単位(U)は上記反応
条件下て1分間に1rvolのエタノールを生成する量
とした。
Incidentally, the l unit (U) of B A E Ease was defined as the amount that would produce 1 rvol of ethanol per minute under the above reaction conditions.

結果を表2に示す。尚、表中に於いて、試料A′はザイ
モサンと全血漿とを、試料B′はPGと全血漿とを、試
料C9はザイモサンとPG試薬とを、試料D′はPGと
PG試薬とを夫々反応させて得られた試料を示す。
The results are shown in Table 2. In the table, sample A' contains zymosan and whole plasma, sample B' contains PG and whole plasma, sample C9 contains zymosan and PG reagent, and sample D' contains PG and PG reagent. The samples obtained by each reaction are shown.

表2 これらの結果から明らかなように、蚕血漿中の酵素はザ
イモサン及びPGにより活性化されるが、PG試薬中の
酵素はPGによってのみ活性化され、ザイモサンによっ
ては活性化されないことが判る。
Table 2 As is clear from these results, the enzyme in silkworm plasma is activated by zymosan and PG, but the enzyme in the PG reagent is activated only by PG and not by zymosan.

尚、実施例2により得られた全血漿を用いて同様の操作
を行ったところ同様の結果が得られた。
Incidentally, when the same operation was performed using the whole plasma obtained in Example 2, similar results were obtained.

参考例6.PGによる検量線の作成 (測定操作) 参考例5の(1)で得られたPG試薬21に80+wM
CaCI 2溶液200μlを添加しよく混合した。こ
のlOμlに所定濃度のPG溶液lOμmを加え30℃
で60分分触加温後参考例5で用いたPO活性測定用基
質溶液11を加え、更に30℃でIO分公園応させた後
、520n+sの吸光度を測定した(測定値;E、)。
Reference example 6. Creation of a calibration curve using PG (measurement operation) Add 80+wM to the PG reagent 21 obtained in Reference Example 5 (1)
200 μl of CaCI 2 solution was added and mixed well. To this lOμl, add lOμm of a PG solution with a predetermined concentration and hold at 30°C.
After tactile heating for 60 minutes, substrate solution 11 for PO activity measurement used in Reference Example 5 was added, and after further reaction at 30° C., the absorbance at 520 n+s was measured (measured value; E).

別に、PG溶液の代りに精製水を用いて同様に操作して
盲検値(Eel)を得た。
Separately, a blind value (Eel) was obtained by performing the same operation using purified water instead of the PG solution.

(結果) 第5図に、PCl1度と(E−−Eel)値の関係を横
軸、縦軸共に対数軸を用いて示した。
(Results) FIG. 5 shows the relationship between the PCl1 degree and the (E--Eel) value using logarithmic axes for both the horizontal and vertical axes.

この結果から明らかな如く、検量線は良好な直線性を示
した。
As is clear from this result, the calibration curve showed good linearity.

参考例7.PGによる検量線の作成 (測定操作) 参考例5の(1)で得られたPG試薬21に80w+M
CaCI 2溶液200μmを添加しよく混合した。こ
の70μmに、0.1Mリン酸緩衝液(20mM L−
ドーパ含有、pH6,0) 70μl及び所定濃度のカ
ードラン溶液70μmを加えてよく混合し、25℃で、
トキシノメーター(和光純薬工業(株)製)を用いて透
過光量が5%減少するまでの時間(Δt)を測定した。
Reference example 7. Creation of a calibration curve using PG (measurement operation) Add 80w+M to the PG reagent 21 obtained in Reference Example 5 (1)
200 μm of CaCI 2 solution was added and mixed well. Add 0.1M phosphate buffer (20mM L-
Add 70 μl of dopa-containing, pH 6,0) and 70 μm of curdlan solution of a specified concentration, mix well, and heat at 25°C.
The time (Δt) until the amount of transmitted light decreased by 5% was measured using a toxinometer (manufactured by Wako Pure Chemical Industries, Ltd.).

(結果) 第6図に、ΔtとPCl3度の関係を横軸、縦軸共に対
数軸を用いて示した。
(Results) FIG. 6 shows the relationship between Δt and PCl3 degrees using logarithmic axes for both the horizontal and vertical axes.

この結果から明らかな如く、この場合の検量線も良好な
直線性を示した。
As is clear from this result, the calibration curve in this case also showed good linearity.

[発明の効果] 以上述べた如く、本発明は、GL或はPG測定試薬の原
料となる昆虫体液の、簡便で且つ効率の良い採取方法を
提供するものであり、斯業に貢献するところ大なる発明
である。
[Effects of the Invention] As described above, the present invention provides a simple and efficient method for collecting insect body fluid, which is a raw material for GL or PG measuring reagents, and makes a major contribution to this industry. This is an invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、参考例1に於いて得られた各種試料と基質溶
液とを反応させたときの、反応時間による520rv(
こ於ける吸光度の変化を示し、横軸の各時間(分)につ
いて得られた520n+sの吸光度を縦軸に沿ってプロ
ットした点を結んだものである。 但し、−・−は試料としてGL試薬とザイモサンとの反
応液を、−ム−はGL試薬とPGとの反応液を、−〇−
は全血漿とザイモサンとの反応液を、また、−Δ−は全
血漿とPGとの反応液を夫々用いたときの結果を示す。 第2図は、参考例2に於いて得られた検量線を示し、横
軸はカードラン濃度(ng/+*I )を、また、縦軸
は520止に於ける、盲検値を差し引いた吸光度を夫々
示す。 第3図は、参考例3に於いて得られた検量線を示し、横
軸はカードラン濃度(ng/ml )を、また、縦軸は
透過光量が5%減少するまでの時間(分)を夫々示す。 第4[!lは、参考例5に於いて得られた各種試料と基
質溶液とを反応させたときの、反応時間による520n
s(こ於ける吸光度の変化を示し、横軸の各時間(分)
について得られた520n−の吸光度を縦軸に沿ってプ
ロットした点を結んだものである。 但し、−・−は試料としてPG試薬とザイモサンとの反
応液を、−ム一はPG試薬とPGとの反応液を、−〇−
は全血漿とザイモサンとの反応液を、また、−Δ−は全
血漿とPGとの反応液を夫々用いたときの結果を示す。 第5図は、参考例6に於いて得られた検量線を示し、横
軸はPCl3度(ng/w+l)を、また、縦軸は52
0rvに於ける、盲検値を差し引いた吸光度を夫々示す
。 第6図は、参考例7に於いて得られた検量線を示し、横
軸はPG濃度(ng/ml)を、また、縦軸は透過光量
が5%減少するまでの時間(分)を夫々示す。 特許出願人 和光純薬工業株式会社 第1図 時 間  (分) 第2al カードラン濃度 (ng/ml) 第3図 0.1  1,0 10.0 カードラン濃度(ng/ml) 第411 II  間  (仕] 第5図 PO壇度(n9/ml)
Figure 1 shows the reaction time of 520 rv (
It shows the change in absorbance at this point, and connects the points obtained by plotting the absorbance at 520n+s obtained for each time (minute) on the horizontal axis along the vertical axis. However, -・- is a reaction solution of GL reagent and zymosan as a sample, -mu- is a reaction solution of GL reagent and PG, -〇-
1 shows the results when the reaction solution of whole plasma and zymosan was used, and -Δ- shows the result when the reaction solution of whole plasma and PG was used, respectively. Figure 2 shows the calibration curve obtained in Reference Example 2, where the horizontal axis shows the curdlan concentration (ng/+*I), and the vertical axis shows the blinded value at 520% subtracted. The absorbance is shown respectively. Figure 3 shows the calibration curve obtained in Reference Example 3, with the horizontal axis representing the curdlan concentration (ng/ml) and the vertical axis representing the time required for the amount of transmitted light to decrease by 5% (minutes). are shown respectively. 4th [! l is 520n depending on the reaction time when the various samples obtained in Reference Example 5 were reacted with the substrate solution.
s (indicates the change in absorbance at this point, each time (minute) on the horizontal axis)
It connects the points obtained by plotting the absorbance at 520n- obtained for 520n along the vertical axis. However, -・- is a reaction solution of PG reagent and zymosan as a sample, -mu is a reaction solution of PG reagent and PG, -〇-
1 shows the results when the reaction solution of whole plasma and zymosan was used, and -Δ- shows the result when the reaction solution of whole plasma and PG was used, respectively. FIG. 5 shows the calibration curve obtained in Reference Example 6, where the horizontal axis represents PCl3 degrees (ng/w+l), and the vertical axis represents 52 degrees PCl (ng/w+l).
The absorbance at 0 rv after subtracting the blind value is shown. Figure 6 shows the calibration curve obtained in Reference Example 7, where the horizontal axis represents the PG concentration (ng/ml) and the vertical axis represents the time (minutes) until the amount of transmitted light decreases by 5%. Show each. Patent applicant Wako Pure Chemical Industries, Ltd. Figure 1 Time (minutes) 2al Curdlan concentration (ng/ml) Figure 3 0.1 1,0 10.0 Curdlan concentration (ng/ml) 411 II Figure 5 PO stage (n9/ml)

Claims (3)

【特許請求の範囲】[Claims] (1)セリンプロテアーゼを不可逆的に阻害する物質を
共存させた、昆虫体液と等張な溶液を用いて、昆虫の体
液を採取することを特徴とする、昆虫体液の採取方法。
(1) A method for collecting insect body fluids, which comprises collecting insect body fluids using a solution that is isotonic with insect body fluids and in which a substance that irreversibly inhibits serine protease is present.
(2)セリンプロテアーゼを不可逆的に阻害する物質を
共存させた、昆虫体液と等張な溶液に、昆虫の体液を滴
下することにより行う特許請求の範囲第1項に記載の昆
虫体液の採取方法。
(2) The method for collecting insect body fluid according to claim 1, which is carried out by dropping the insect body fluid into a solution that is isotonic with the insect body fluid and in which a substance that irreversibly inhibits serine protease is present. .
(3)セリンプロテアーゼを不可逆的に阻害する物質を
共存させた、昆虫体液と等張な溶液を、昆虫の体内に注
射した後に体液を採取する特許請求の範囲第1項に記載
の昆虫体液の採取方法。
(3) The insect body fluid according to claim 1, wherein the body fluid is collected after injecting into the body of the insect a solution that is isotonic with the insect body fluid and in which a substance that irreversibly inhibits serine protease is present. Collection method.
JP30130587A 1987-11-28 1987-11-28 Sampling of insect bodily liquor Pending JPH01142466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30130587A JPH01142466A (en) 1987-11-28 1987-11-28 Sampling of insect bodily liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30130587A JPH01142466A (en) 1987-11-28 1987-11-28 Sampling of insect bodily liquor

Publications (1)

Publication Number Publication Date
JPH01142466A true JPH01142466A (en) 1989-06-05

Family

ID=17895243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30130587A Pending JPH01142466A (en) 1987-11-28 1987-11-28 Sampling of insect bodily liquor

Country Status (1)

Country Link
JP (1) JPH01142466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626428A1 (en) * 1996-07-01 1998-01-15 Heinzl Joachim Droplet cloud generator
WO1998048617A1 (en) * 1997-04-28 1998-11-05 Japan As Represented By Director General Of Natio Nal Institute Of Sericultural And Entomological Science Ministry Of Agriculture, Forestry And Fisherries Method of collecting insect humors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626428A1 (en) * 1996-07-01 1998-01-15 Heinzl Joachim Droplet cloud generator
WO1998048617A1 (en) * 1997-04-28 1998-11-05 Japan As Represented By Director General Of Natio Nal Institute Of Sericultural And Entomological Science Ministry Of Agriculture, Forestry And Fisherries Method of collecting insect humors
US5866317A (en) * 1997-04-28 1999-02-02 Japan As Represented By Director General Of National Institute Of Sericultural And Entomological Science Ministry Of Agriculture, Forestry&Fisheries Method for collecting hemolymph of insects
GB2327678A (en) * 1997-04-28 1999-02-03 Director General Of National Intitute Of Sericultural And Entomological Science Process for the collection of insect hemolymph

Similar Documents

Publication Publication Date Title
US4006059A (en) Hydrophobic noncovalent binding of proteins to support materials
Kirby et al. Thrombocytin, a serine protease from Bothrops atrox venom. 1. Purification and characterization of the enzyme
US4970152A (en) Reagents for determining peptidoglycan and β-1,3-glucan
EP0203509B1 (en) Method for the quantitative determination of protein-C and an activating preparation for its implementation.
JP2007513607A (en) Colorimetric substrate, colorimetric sensor, and method of use
SU946389A3 (en) Method of producing trombine like enzymes
EP2723886B1 (en) Determination of direct thrombin inhibitors in serum or urine
JPH01142466A (en) Sampling of insect bodily liquor
Roberson et al. Relation of particle size of C polysaccharide complexes of group A streptococci to toxic effects on connective tissue
JP2003520043A (en) Composition for detecting β-1,3-glucan, method for producing the same, and kit for detecting β-1,3-glucan using the same
JPH04355339A (en) Trace specimem sampling device
Wolfson Location of alpha-2-globulin by demonstration of alkaline phosphatase during paper electrophoresis
CN1548534A (en) Reptilase and its production process and application
Bhargava et al. Comparison of hemorrhagic factors of the venoms of Naja naja, Agkistrodon piscivorus and Apis mellifera
CA1151542A (en) Process for preparing the third component of the complement from human blood plasma
JPS6171358A (en) Neutrophil function examining chemical
JPH07114706B2 (en) New measurement reagent
JPH07114707B2 (en) New measurement reagent
FR2464475A1 (en) PROCESS AND PRODUCT FOR THE SEPARATION OF GLYCOPROTEINS AND THEIR APPLICATION IN PARTICULAR TO THE DETERMINATION OF HEMOGLOBIN GLYCOSYLE
KR100485947B1 (en) Composition for detecting β-1,3-glucan, preparation method thereof and diagnostic kit detecting β-1,3-glucan
RU2253871C1 (en) Method for immunosorbent production
Day The dissociation of bovine factor V and isolation of the activated form
SU660378A1 (en) Method of immobilizing luciferase of fireflies
RU1772760C (en) Method of differential diagnosis of bacterial bronchial asthma and atopic asthma
SU1668950A1 (en) Method for determining calpain activity in biological material