JPH01142452A - Sf6 decomposition gas sensor for high voltage ac load switch - Google Patents

Sf6 decomposition gas sensor for high voltage ac load switch

Info

Publication number
JPH01142452A
JPH01142452A JP30209587A JP30209587A JPH01142452A JP H01142452 A JPH01142452 A JP H01142452A JP 30209587 A JP30209587 A JP 30209587A JP 30209587 A JP30209587 A JP 30209587A JP H01142452 A JPH01142452 A JP H01142452A
Authority
JP
Japan
Prior art keywords
gas
sensor
decomposition gas
epoxy resin
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30209587A
Other languages
Japanese (ja)
Inventor
Kenzo Kadotani
門谷 建蔵
Minoru Tomita
實 富田
Tadashi Yamazaki
忠 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saneisha Seisakusho KK
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Saneisha Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Saneisha Seisakusho KK filed Critical Hitachi Chemical Co Ltd
Priority to JP30209587A priority Critical patent/JPH01142452A/en
Publication of JPH01142452A publication Critical patent/JPH01142452A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To diagnose the inferiority of the switching operation of a contact or the losing effect of an adsorbent and to prevent an accident, by forming an SF6 decomposition gas sensor for a high voltage AC load switch from an epoxy resin molded product filled with a silicon-containing inorg. powder. CONSTITUTION:This sensor 1 is constituted by providing silver paste electrodes 3 to both surfaces of a disc-shape epoxy resin molded product filled with a silicon-containing inorg. powder whose surface resistance is gradually lowered by the long-time exposure to SF6 decomposition gas and leading out lead wires 4 from the electrodes 3. The surface insulating resistance of the disc is gradually lowered in such a state that the end surface of the disc is exposed to the SF6 decomposition gas and this insulating resistance is measured by applying DC high voltage between the electrodes 3. By this method, the inferiority of the switching operation of a contact or the losing effect of an adsorbent is diagnosed and an accident is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は消弧媒質としてSFaカスを封入した高圧交流
負荷開閉器(以下、ガス開閉器と称する)の容器内に配
置する8F、分解ガスセンサに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an 8F decomposition gas sensor disposed in a container of a high-pressure AC load switch (hereinafter referred to as a gas switch) in which SFa scum is sealed as an arc-extinguishing medium. Regarding.

(従来の技術) 従来から変電所K[かれるSFaガス絶縁開閉装置(G
IS)の絶縁診断方法の一種として、SFgガス中の部
分放電によって生じる分解ガスの濃度を、化学的に検出
するセンサが開発されている。
(Prior technology) Conventionally, substation K [SFa gas insulated switchgear (G
As a type of insulation diagnosis method for IS), a sensor has been developed that chemically detects the concentration of decomposed gas generated by partial discharge in SFg gas.

これらのセンサはSFg分解ガスに接触すると抵抗値が
急変するアルミナフォトフィルムポリマやポリアセチレ
ンの薄膜を用いたセンサである。GISの場合のように
、8Fs分解ガス濃度が比較的低く(0,1pPm以下
)、また部分放電の持続時間とともに次第に濃度が高く
なる場合には、このセンサが有効である。
These sensors use a thin film of alumina photo film polymer or polyacetylene whose resistance value suddenly changes when it comes into contact with SFg decomposition gas. This sensor is effective when the 8Fs decomposed gas concentration is relatively low (below 0.1 pPm) and gradually increases with the duration of the partial discharge, as in the case of GIS.

しかしガス開閉器では、容器内に開閉接点とセンナとS
Fs分解ガスの吸着剤が一緒になって入っている。接点
の開閉によるアーク放電で、がなり多量の分解ガスが生
じ、容器内の分解ガス濃度は一時的[100〜1100
0pI) にも達する。この分解ガスは次第に吸着剤に
よって吸着され1分解ガス濃度も平衡に近づくのである
が、前述の薄膜センサは、−時的に高濃度になった際に
作用してしまい、以後は使えなくなってしまう。
However, in a gas switch, there are switching contacts and senna and S in the container.
It also contains an adsorbent for Fs decomposition gas. The arc discharge caused by the opening and closing of the contacts generates a large amount of decomposed gas, and the decomposed gas concentration in the container temporarily decreases [100 to 1100].
0 pI). This decomposed gas is gradually adsorbed by the adsorbent, and the decomposed gas concentration approaches equilibrium, but the thin-film sensor described above works when the concentration reaches a high level and becomes unusable after that. .

:’/X開閉器におけるSFg分解ガスセンサの役11
Jは、接点開閉時の7−り放電だよって生じた分解ガス
が1次第に吸着剤によって吸着されにくくなシ、平衡時
の分解ガス濃度が次第に高くなるのを検出することにあ
る。開閉動作が不良でアーク時間が長くなったり、開閉
回数そのものが多くなれば0発生する分解ガスの総量も
多くなる。一方で吸着剤が失効していたり、その量が不
十分であれば、内部の分解ガス濃度が平衡に達する時間
も長くかかり、平衡濃度も高くなる。これでは開閉器の
接点の消耗や絶縁物の劣化が異常に激しく9機器の寿命
も短いことになる。
:'/X Role of SFg decomposition gas sensor in switch 11
J is to detect that the decomposed gas generated by the 7-way discharge when the contacts are opened and closed is gradually less likely to be adsorbed by the adsorbent, and that the decomposed gas concentration at equilibrium gradually increases. If the arc time becomes longer due to poor opening/closing operation, or if the number of opening/closing operations increases, the total amount of decomposed gas generated also increases. On the other hand, if the adsorbent has expired or its amount is insufficient, it will take a long time for the internal cracked gas concentration to reach equilibrium, and the equilibrium concentration will also become high. This would lead to abnormally high wear and tear on the switch contacts and deterioration of the insulators, shortening the lifespan of the nine devices.

そこでガス開閉器用の8F6分解ガスセ/すとしては、
瞬時の分解ガス濃度に連名する必要はないが、濃度の時
間累積に対応するものがよい。なおGISでは内部のガ
スを採取し、ガス検知管やガスクロマトグラフを用いて
分解ガス濃度を検出することも行なわれている。しかし
この方法は主に平衡時の分解ガス濃度をみるものであり
、また柱上や地中に置かれる多数のガス開閉器の、1台
1台からガスを採取していたのでは非能率的である。
Therefore, as an 8F6 decomposition gas station for gas switches,
It is not necessary to refer to the instantaneous decomposed gas concentration, but it is preferable to correspond to the cumulative concentration over time. Note that in GIS, internal gas is sampled and the concentration of decomposed gas is detected using a gas detection tube or a gas chromatograph. However, this method mainly measures the concentration of decomposed gas at equilibrium, and it is inefficient to collect gas from each of the many gas switches placed on pillars or underground. It is.

(発明が解決しようとする問題点) 本発明は、瞬時の8(’s分解ガス濃度には比較的反応
せず1時間とともに変化する分解ガス濃度(つt、b開
閉時に高くなシ1次第に平衡するが。
(Problems to be Solved by the Invention) The present invention solves the problem of cracked gas concentration (t, b) which is relatively unresponsive to the instantaneous cracked gas concentration and which changes over the course of one hour (t, b) which increases when opening and closing. Equilibrium though.

運転年数の経過とともに平衡に達するまでの時間が長く
なシ、また平衡濃度も高くなる)の0時間累積に対応し
て徐々に絶縁抵抗が変化する。新規なセンサを提供する
ものである。このセンサの絶縁抵抗の変化を運転年数と
ともに追跡することKより1機器の異常(接点の異常お
よび吸着剤の異常)を検出でき、また正常な機器におい
ても余寿命の推定が可能になる。
As the number of years of operation increases, the time it takes to reach equilibrium becomes longer and the equilibrium concentration also becomes higher.Insulation resistance gradually changes in response to the accumulation of 0 hours. This provides a new sensor. By tracking changes in the insulation resistance of this sensor along with the number of years of operation, it is possible to detect abnormalities in one device (contact abnormalities and adsorbent abnormalities), and it is also possible to estimate the remaining life of normal devices.

(問題点を解決するための手段) 本発明は、けい素を含む無機質粉を充てんしたエポキシ
樹脂成形品を用いたガス開閉器用SFa分解ガスセンサ
に関する。この表面の2個所に電極をつけて、この電極
間の絶縁抵抗が測定される。
(Means for Solving the Problems) The present invention relates to an SFa decomposition gas sensor for a gas switch using an epoxy resin molded product filled with inorganic powder containing silicon. Electrodes are attached to two locations on this surface, and the insulation resistance between the electrodes is measured.

本発明においてけい素を含む無機質粉は、無機質粉の混
和物中での分散性、混和物の粘度、成形品の無ボイドの
点からエポキシ樹脂成形品に対して40〜60体積係の
範囲で用いることが好ましい。
In the present invention, the silicon-containing inorganic powder is used at a volume ratio of 40 to 60 with respect to the epoxy resin molded product in terms of dispersibility in the mixture of the inorganic powder, viscosity of the mixture, and void-free molded product. It is preferable to use

第1図は本発明の分解ガスセンサの構成の1例を示す断
面図である。センサ1はSF’a分解ガスに長時間さら
されると表面抵抗が次第に低下するけい素を含む無機質
粉を充てんしたエポキシ樹脂成形品2の円板の両面に銀
ペースト電極3をもうけ。
FIG. 1 is a cross-sectional view showing one example of the structure of the decomposed gas sensor of the present invention. The sensor 1 has silver paste electrodes 3 on both sides of a disc of an epoxy resin molded product 2 filled with an inorganic powder containing silicon whose surface resistance gradually decreases when exposed to SF'a decomposition gas for a long time.

この電極からリード線4を引出したものである。A lead wire 4 is drawn out from this electrode.

円板の端面がSFg分解ガスにさらされているうちに9
次第に表面絶縁抵抗が低下してぐるが、これを電極3の
間に直流高電圧を印加して測定するのである。
9 while the end face of the disk was exposed to SFg decomposition gas.
The surface insulation resistance gradually decreases, and this is measured by applying a DC high voltage between the electrodes 3.

けい素を含む無機質粉を充てんしたエポキシ樹脂成形品
の形状は円板である必要はなく、直方体であってもよい
。電極は銀ペースト、導電性塗料のほか、金属蒸着や金
属箔を接着剤ではり付けてもよい。
The shape of the epoxy resin molded product filled with inorganic powder containing silicon does not have to be a disk, and may be a rectangular parallelepiped. The electrodes may be made of silver paste, conductive paint, metal vapor deposition, or metal foil pasted with adhesive.

第2図〜第4図は本発明の他の実施例を示す形状のセン
サであり、第2図と第3図は断面図、第4図は平面図で
示す。第2図は上記のエポキシ樹脂成形品2に金属電極
8を一体モールドしたものである。第3図は金属棒8の
周囲に上記のエポキシ樹脂成形品2をモールドし外周に
電極3を塗布したものである。第4図は上記のエポキシ
樹脂成形品2の上に電極3a、3bを塗布したものであ
る。
2 to 4 show a sensor having a shape showing another embodiment of the present invention, FIGS. 2 and 3 are sectional views, and FIG. 4 is a plan view. FIG. 2 shows the above-mentioned epoxy resin molded product 2 with a metal electrode 8 integrally molded therein. FIG. 3 shows the above-mentioned epoxy resin molded product 2 molded around a metal rod 8 and an electrode 3 coated on the outer periphery. FIG. 4 shows electrodes 3a and 3b coated on the epoxy resin molded product 2 described above.

第2〜4図において4はリード線である。In FIGS. 2 to 4, 4 is a lead wire.

ガス開閉器の接点を開閉する際に生ずるアークにより、
8Fgガスはまず次のように分解する。
Due to the arc that occurs when opening and closing the contacts of a gas switch,
8Fg gas is first decomposed as follows.

Srg−→SFa+2F 次に8F4が微量に残留する水分と反応する。Srg-→SFa+2F Next, 8F4 reacts with the trace amount of remaining moisture.

SFn+H20→5OFz+ 2 HF5OFz+H2
0→80g+2HF このようにして生じたHF’(ぶつ化水素)はSiと非
常に反応し易い。例えばシリカ(SiOz)と激しく反
応する。
SFn+H20→5OFz+ 2 HF5OFz+H2
0→80g+2HF HF' (hydrogen fluoride) thus generated is very likely to react with Si. For example, it reacts violently with silica (SiOz).

SiO鵞+4HF−→2 HzO+ S i F4HF
は分子の大きさが小さいので、プラスチック内によく浸
透する。そしてSiのあるところに至シ9反応してSi
gnを生じる。SiF4は沸点−86℃の気体なので9
表面のプラスチック被膜を破裂させて穴ができる。Si
F4はさらに微量のHF’および水分と反応する。
SiO+4HF-→2 HzO+ SiF4HF
Because of its small molecular size, it easily penetrates into plastics. Then, where Si is present, Si9 reacts and Si
produces gn. SiF4 is a gas with a boiling point of -86℃, so 9
The plastic coating on the surface ruptures, creating a hole. Si
F4 further reacts with trace amounts of HF' and moisture.

SiF4+2HF+H雪0→HzSiFs+HzOこの
Hz8iFsは強い電解質性があり1表面抵抗を著しく
低下させる。高電圧が印加されている絶縁部分の表面抵
抗が局所的忙低下すると9局所的な電界集中が生じて沿
面絶縁破壊がシこる。
SiF4+2HF+H Snow 0→HzSiFs+HzOThis Hz8iFs has strong electrolytic properties and significantly reduces the surface resistance. When the surface resistance of an insulating part to which a high voltage is applied decreases locally, local electric field concentration occurs and creepage breakdown occurs.

そこで一般にSFgガス絶縁機器に使用する絶縁部品は
、シリカの代りに、HF’におかされないアルミナなど
の粉末を充てんしたエポキシ樹脂成形品が使われている
。またガラス繊維もSit含むもので、ガラス繊維強化
エポキシ樹脂成形品(GFRP)では9表面に耐食性塗
料をぬるか。
Therefore, insulating parts used in SFg gas insulated equipment are generally epoxy resin molded products filled with powder such as alumina, which is not susceptible to HF', instead of silica. Glass fibers also contain Sit, and for glass fiber reinforced epoxy resin molded products (GFRP), should corrosion-resistant paint be applied to the surface?

又は表面には有機質繊維基材の層をもうけている。Alternatively, a layer of organic fiber base material is provided on the surface.

その耐食層の厚さはHPの浸透をさけるため、厚さ0.
3−以上にしている。また気密パツキンの0リングには
、Siを含むシリシーンゴムをさけて。
The thickness of the corrosion-resistant layer is 0.5 mm to avoid penetration of HP.
3- or higher. Also, avoid using silicone rubber containing Si for the O-ring of the airtight gasket.

一般にネオプレ/ゴムを使用している。Generally neoprene/rubber is used.

材料の耐SFm分解ガス性を評価するには、−膜材料を
HFガスふん囲気中において9表面抵抗の経時変化をみ
る。かつてはSFaガス中で放電させて分解ガスを生じ
させ、そのふん囲気中においていたが、その後HFガス
ふん囲気中でも十分圧模擬できることがわかっている。
To evaluate the SFm decomposition gas resistance of the material, - Observe the change in surface resistance over time of the membrane material in an HF gas atmosphere. In the past, decomposed gas was generated by discharging in SFa gas and placed in the atmosphere, but it has since been found that the pressure can be sufficiently simulated even in the atmosphere of HF gas.

第5図は本発明の実施例で測定に用いた器具であり、ポ
リ四ふつ化エチレン製の容器5の下部に。
FIG. 5 shows the equipment used for measurement in the examples of the present invention, which is placed at the bottom of a container 5 made of polytetrafluoroethylene.

301HF水溶液7を入れ、上部の空間に供試センサ1
を引出し端子6からぶら下げておいた。そして室温に放
置しておき、所定の期日後に端子間に直流1000Vを
印加し1分後の絶縁抵抗を測定した。
Pour 301HF aqueous solution 7 and place sample sensor 1 in the upper space.
was left hanging from the drawer terminal 6. Then, it was left at room temperature, and after a predetermined date, a DC voltage of 1000 V was applied between the terminals, and the insulation resistance was measured after 1 minute.

本発明では、8F’s分解ガスに長時間さらすと表面抵
抗が低下する固体絶縁材料として、けい素を含む無機質
粉を充てんしたエポキシ樹脂成形品が用いられる。
In the present invention, an epoxy resin molded article filled with inorganic powder containing silicon is used as a solid insulating material whose surface resistance decreases when exposed to 8F's decomposition gas for a long time.

けい素を含む無機質粉としてはシリカ、シリコンカーバ
イド、タルク、ガラス粉などが用いられる。SF、分解
ガスにさらされて短時間に表面抵抗が低下してしまう場
合には、成形品の表面に合成樹脂ラッカーを薄く塗布し
て、HFガスの浸透を遅らせるようにしてもよい、また
充てん材とじて前述のけい素を含む無機質粉とアルミナ
、水利アルミナ、ジルコン、ドロマイト、ぶつ化アルミ
ニウムなどのけい素を含まない無機質粉を混合して用い
てもよい。
Silica, silicon carbide, talc, glass powder, etc. are used as the inorganic powder containing silicon. If the surface resistance decreases in a short time due to exposure to SF or decomposition gas, a thin layer of synthetic resin lacquer may be applied to the surface of the molded product to delay the penetration of HF gas. As the material, the above-mentioned silicon-containing inorganic powder may be mixed with a silicon-free inorganic powder such as alumina, water-containing alumina, zircon, dolomite, and aluminum oxide.

(実施例) 以下、実施例について説明する。センサの形状は第1図
のようであり、直径20−9厚さ10−の充てん材入り
エポキシ成形品2の側平面に、エポキシ樹脂系銀ペース
ト「エピナールEN−40804(日立化成工業■製)
を塗布し、130℃で1時間硬化して電極3とした。リ
ード線4にはポリ四ふつ化エチレン被覆銅線を用いた。
(Example) Examples will be described below. The shape of the sensor is as shown in Fig. 1, and an epoxy resin-based silver paste "Epinal EN-40804 (manufactured by Hitachi Chemical Co., Ltd.) is applied to the side plane of a filled epoxy molded product 2 with a diameter of 20 mm and a thickness of 10 mm.
was applied and cured at 130° C. for 1 hour to obtain electrode 3. As the lead wire 4, a polytetrafluoroethylene coated copper wire was used.

充てん材入りエポキシ成形品には、エポキシ樹脂として
エピコート828(シェル社製)100重量部、HN−
2200(日立化成工業■製エポキシ樹脂硬化剤)80
重量部およびN、N−ジメチルベンジルアミン0.5重
量部を用いた。充てん材の種類およびその充てん量(成
形品に対する体積%)は次表のとうシである。
For the epoxy molded product containing filler, 100 parts by weight of Epikote 828 (manufactured by Shell) and HN-
2200 (Epoxy resin curing agent manufactured by Hitachi Chemical Co., Ltd.) 80
parts by weight and 0.5 parts by weight of N,N-dimethylbenzylamine were used. The type of filler and its filling amount (volume % relative to the molded product) are shown in the table below.

比較例はSF6分解ガスにおかされないアルミナ粉を充
てんした。実施例1はシリカ粉を充てんした。実施例2
はアルミナ粉とシリカ粉を半々に充てんした。実施例4
.5.6は夫々、シリコンカーバイド、ガラス粉、タル
ク粉を充てんした。なお実施例3は、実施例1の成形品
で第1図のセンサを構成したのち、アクリル系ラッカー
「タッフイTF−1141J(日立化成工業■製)をス
プレーして風乾し、厚さ10μmの塗膜を形成させた。
A comparative example was filled with alumina powder that was not affected by SF6 decomposition gas. Example 1 was filled with silica powder. Example 2
was filled with half alumina powder and half silica powder. Example 4
.. 5.6 were filled with silicon carbide, glass powder, and talcum powder, respectively. In Example 3, the sensor shown in Figure 1 was constructed using the molded product of Example 1, and then an acrylic lacquer "Tuffy TF-1141J (manufactured by Hitachi Chemical Co., Ltd.) was sprayed and air-dried to form a coating with a thickness of 10 μm. A film was formed.

第6図および第7図は前述の方法で測定した絶縁抵抗の
経日変化を示すグラフである。第6図でアルミナ粉を充
てんした比較例のセンサはHFガス中に放置しても絶縁
抵抗がほとんど低下しないのでセ/すとして不適である
。シリカ粉を充てんした実施例1のセンサは、絶縁抵抗
が6桁も低下し感度がよいといえる。しかし逆に感度が
よすぎるため、開閉時のSFm分解ガス濃度の高い状態
でかなりの劣化を生じてしまう可能性がある。
FIGS. 6 and 7 are graphs showing changes in insulation resistance over time measured by the method described above. In the comparative sensor shown in FIG. 6, which is filled with alumina powder, the insulation resistance hardly decreases even if it is left in HF gas, so it is not suitable as a sensor. The sensor of Example 1 filled with silica powder can be said to have good sensitivity, with insulation resistance reduced by six orders of magnitude. On the other hand, because the sensitivity is too high, there is a possibility that considerable deterioration may occur in a state where the concentration of SFm decomposed gas is high during opening and closing.

シリカ粉とアルミナ粉を半々に混合して充てんした実施
例2のセンナは実施例1のセンサよシも感度をにぶくし
たものであるが、絶縁抵抗の低下は4桁程度で飽和する
傾向がみられる。実施例1のセンサにアクリル系ラッカ
ーの塗膜(厚さ10μm)をtlどこした実施例3のセ
ンナは放置日数とともに絶縁抵抗の桁がほぼ一様に低下
するので。
The senna of Example 2, which was filled with a 50/50 mixture of silica powder and alumina powder, had lower sensitivity than the sensor of Example 1, but the decrease in insulation resistance tended to reach saturation at about 4 digits. It will be done. In the sensor of Example 3, in which a coating film (thickness: 10 μm) of acrylic lacquer was applied to the sensor of Example 1, the insulation resistance decreased almost uniformly with the number of days left.

センサの機能としてすぐれている。また絶縁抵抗の低下
も最終的には実施例1と同じく6桁までゆくであろう。
Excellent sensor function. Further, the reduction in insulation resistance will eventually reach six orders of magnitude as in Example 1.

合成樹脂塗膜が薄すぎると実施例1に近くなり。If the synthetic resin coating film is too thin, it will be similar to Example 1.

逆に厚すぎると感度が悪くなるので、厚さは5〜20 
ttmの範囲にするのが好ましい。
On the other hand, if it is too thick, the sensitivity will deteriorate, so the thickness should be 5 to 20.
It is preferable to set it in the range of ttm.

第7図に示される実施例4〜6のセンサも実施例1#1
どの低下(6桁)はないが、SFg分解ガスセンサとし
ては十分に使えるといえる。
The sensors of Examples 4 to 6 shown in FIG. 7 are also Example 1 #1.
Although there is no decrease (6 digits), it can be said that it can be used satisfactorily as an SFg decomposition gas sensor.

(発明の効果) 本発明のSF”s分解ガスセンサは、エポキシ樹脂に、
けい素を含む粉末を充てんしたエポキシ樹脂成形品の表
面抵抗が、SFg分解ガスに長時間さらされると次第に
低下する現象を応用したセンサである。
(Effects of the invention) The SF"s decomposed gas sensor of the present invention includes epoxy resin,
This sensor utilizes the phenomenon that the surface resistance of an epoxy resin molded product filled with silicon-containing powder gradually decreases when exposed to SFg decomposition gas for a long time.

このセンサをガス開閉器内に配置し、外部から絶縁抵抗
の経年変化をチエツクすることによシ。
This sensor is placed inside the gas switch and external changes in insulation resistance can be checked over time.

接点開閉動作の不良や吸着剤の失効を診断でき。It can diagnose defects in contact opening/closing operation and failure of adsorbent.

事故を未然に防止する、ことができる。It is possible to prevent accidents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は9本発明の分解ガスセンサの構成の1例を示す
断面図、第2図〜第3図は本発明の他の実施例を示すセ
ンサの断面図、第4図は同じく平面図、第5図はセンサ
の機能評価用装置の断面図。 第6図および第7図はセンサの絶縁抵抗の経時変化を示
すグラフである。 符号の説明 1・・・センサ      2・・・エポキシ樹脂成形
品3・・・銀ペースト電極  4・・・リード線5・・
・容器       6・・・引出し端子7・・・HF
水溶液    8・・・金属電極放僅口数(ヨ) 葛 6 図
FIG. 1 is a sectional view showing one example of the configuration of a decomposed gas sensor of the present invention, FIGS. 2 and 3 are sectional views of a sensor showing other embodiments of the present invention, and FIG. 4 is a plan view, FIG. 5 is a sectional view of a sensor function evaluation device. FIGS. 6 and 7 are graphs showing changes in insulation resistance of the sensor over time. Explanation of symbols 1...Sensor 2...Epoxy resin molded product 3...Silver paste electrode 4...Lead wire 5...
・Container 6...Output terminal 7...HF
Aqueous solution 8... Number of metal electrodes released (Y) Kudzu 6 Figure

Claims (1)

【特許請求の範囲】 1、けい素を含む無機質粉を充てんしたエポキシ樹脂成
形品を用いた高圧交流負荷開閉器用SF_6分解ガスセ
ンサ。 3、けい素を含む無機質粉を充てんしたエポキシ樹脂成
形品の表面に合成樹脂塗膜を、厚さ5〜20μmに塗布
した特許請求の範囲第1項記載の高圧交流負荷開閉器用
SF_6分解ガスセンサ。
[Claims] 1. SF_6 decomposed gas sensor for high-pressure AC load switch using an epoxy resin molded product filled with inorganic powder containing silicon. 3. The SF_6 decomposed gas sensor for a high-pressure AC load switch according to claim 1, wherein a synthetic resin coating film is applied to a thickness of 5 to 20 μm on the surface of an epoxy resin molded product filled with inorganic powder containing silicon.
JP30209587A 1987-11-30 1987-11-30 Sf6 decomposition gas sensor for high voltage ac load switch Pending JPH01142452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30209587A JPH01142452A (en) 1987-11-30 1987-11-30 Sf6 decomposition gas sensor for high voltage ac load switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30209587A JPH01142452A (en) 1987-11-30 1987-11-30 Sf6 decomposition gas sensor for high voltage ac load switch

Publications (1)

Publication Number Publication Date
JPH01142452A true JPH01142452A (en) 1989-06-05

Family

ID=17904866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30209587A Pending JPH01142452A (en) 1987-11-30 1987-11-30 Sf6 decomposition gas sensor for high voltage ac load switch

Country Status (1)

Country Link
JP (1) JPH01142452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003235982B2 (en) * 2002-04-30 2005-10-13 Yoshino Kogyosho Co., Ltd. Trigger type fluid ejector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003235982B2 (en) * 2002-04-30 2005-10-13 Yoshino Kogyosho Co., Ltd. Trigger type fluid ejector

Similar Documents

Publication Publication Date Title
US3388211A (en) Sealing bushing and wall member for electrical apparatus and method of assembling same
CA1099785A (en) Determination of hydrogen
JPH01142452A (en) Sf6 decomposition gas sensor for high voltage ac load switch
JPH01142453A (en) Sf6 decomposition gas sensor for high voltage ac load switch
Suzuki et al. Degradation of insulating materials, including SiO2 due to SF6 gas dissociation products
Stuckless et al. Degradation of silica-filled epoxy spacers by arc contaminated gases in SF6-insulated equipment
JPH01142450A (en) Sf6 decomposition gas sensor for high voltage ac load switch
JPH05347233A (en) Electric dual layer capacitor and manufacture thereof
US4176336A (en) Lacquer-encapsulated carbon film resistor
JPS613040A (en) Gas sensor
US3742411A (en) Core and coil with protective covering
JPS6228747Y2 (en)
CN219776973U (en) Device for measuring pressure of sealed container with insulating coating on inner side
CN110031513B (en) Miniature sensor for detecting Cu vapor content in environment-friendly switch equipment
CN220895270U (en) Plastic shell filled type fixed resistor
JPH0345111A (en) Gas-insulated machine
CN206671528U (en) A kind of dielectric dissipation factor standard
CN116448310A (en) Device for measuring pressure of container with insulating coating on inner side
CN208297597U (en) A kind of electron capacitance formula voltage sensor
EP4024638A1 (en) Apparatus for the generation, the distribution and/or the usage of electrical energy and method for coating at least one part of the same
JPS5954183A (en) Zinc oxide arrester
JPS613038A (en) Gas sensor
JPS613039A (en) Gas sensor
CN2140555Y (en) Metallized polypropylene membrane medium capacitor
JPS61285013A (en) Sf6 decomposition gas detector