JPH01142228A - Air-fuel ratio control device for engine - Google Patents

Air-fuel ratio control device for engine

Info

Publication number
JPH01142228A
JPH01142228A JP30177887A JP30177887A JPH01142228A JP H01142228 A JPH01142228 A JP H01142228A JP 30177887 A JP30177887 A JP 30177887A JP 30177887 A JP30177887 A JP 30177887A JP H01142228 A JPH01142228 A JP H01142228A
Authority
JP
Japan
Prior art keywords
fuel injection
cylinder
engine
air
inner pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30177887A
Other languages
Japanese (ja)
Inventor
Koji Morikawa
弘二 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP30177887A priority Critical patent/JPH01142228A/en
Publication of JPH01142228A publication Critical patent/JPH01142228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the dispersion of the air-fuel ratio by receiving the detection value of a cylinder inner pressure sensor at the first half of the intake stroke to determine the fuel injection quantity, performing the fuel injection at the second half of the intake stroke, and correcting the injection quantity in response to the throttle opening change quantity in the injection stroke. CONSTITUTION:During the operation of an engine, on which cylinder the cylinder inner pressure is detected is judged 12 based on the output of a crank angle sensor 8. The cylinder inner pressure in the preset period at the first half of the intake stroke is accumulated and differentiated based on the output of a cylinder inner pressure detecting means 1 to calculate 13 the cylinder inner pressure change speed. The corresponding intake air quantity is determined 15 in reference to a map 14 based on the engine rotating speed determined by a setting means 20 and the cylinder inner pressure change speed, and the fuel injection quantity is determined 16 based on this intake air quantity. The presence of the depression of an accelerator and the opening change quantity are calculated 17 from the output of a throttle opening sensor 10a, and the fuel injection quantity is corrected 19 according to the injection quantity correction value determined 18 based on the change quantity.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、エンジンの空燃比制御装置に関する。 The present invention relates to an air-fuel ratio control device for an engine.

【従来の技術】[Conventional technology]

この種の空燃比制御II装置としては、吸気系上流にエ
アフローメータ(フラッパ式あるいはホットワイヤ式な
どがある〉を取り付け、あるいは吸入管に圧力センサを
設けて計測し、その計測値に基いて金気筒の平均の空気
流量を算出し、燃わ1噴射弁における燃料噴射Rを決定
しているしのが知られている。 この方式での問題点は、気筒毎のバラツキに対応できな
いので、誤差を生じてしまうこと、実際にシリンダへ吸
い込んだ空気量を直接に計測していないので応答遅れが
大きく、運転状態における過渡特性が悪いなどである。 そこで、特開昭56−60831号公報所載のように、
筒内圧力を計測して燃料噴射を行なうものが提唱されて
いる。この方式は、上述のものと比較すれば、気筒のバ
ラツキ、応答性に対して改善される。
This type of air-fuel ratio control II device measures air by installing an air flow meter (flapper type or hot wire type) upstream of the intake system, or by installing a pressure sensor in the intake pipe, and then using the measured value to measure the air flow. It is known that Shino calculates the average air flow rate of the cylinders and determines the fuel injection R for the fuel 1 injector.The problem with this method is that it cannot deal with variations in each cylinder, so the error , the amount of air actually sucked into the cylinder is not directly measured, so there is a large response delay, and the transient characteristics under operating conditions are poor. like,
A system has been proposed that measures the cylinder pressure and injects fuel. Compared to the above-mentioned method, this method improves cylinder variation and responsiveness.

【発明が解決しようとする問題点1 しかし、この方式でも、成るサイクルでH1測した空気
量に対応する燃料噴射量は、その丈イクルには反映され
ず、次のサイクルに使用されるため、本質的に応答遅れ
の要素を持っていた。 そこで、本発明は、エンジンの各気筒、各サイクル毎の
空燃比のバラツキ、変動を無くすると共に、応答遅れの
ない空燃比制御ができるエンジンの空燃比制御装置を提
供しようとするものである。 [問題点を解決するための手段] このため、本発明では、エンジン気筒内の圧力を検出づ
る筒内圧センサを具備し、上記筒内圧センサの検出値に
基いて各気筒対応の燃料噴射弁の燃料噴射mを設定する
ものにおいて、上記筒内圧センサの検出値の取込みを、
該当気筒における吸気行程前半に行い、そのサイクルの
吸入空気量を判定する手段と、上記判定結果に基いて吸
気行程後半に燃料噴射を行うための噴射量を設定する手
段と、吸気行程の最初から燃料噴射終了までの過程でス
ロットル開度の変化を検出する手段、このスロットル開
度に変化がある時には、その変化量に応じて噴rA吊を
補正する手段を具備している。 [作  用1 したがって、筒内圧センサの検出値が早期に取込まれる
ので、その結果として決定された燃料噴射mは、そのサ
イクルにおける吸気行程後半での燃料噴射において採用
されるので、全く応答遅れがない。また、吸気始めから
燃料噴射までの過程でスロットル操作がなされた場合に
もその補正ができる。しかも、筒内圧センサを使用する
メリットはそのまま生かされており、エンジンの各気筒
、各サイクル毎の空燃比のバラツキ、変動が無い。 【実 施 例] 以下、本発明の一実施例を図面を参照して具体的に説明
する。図において、符@1はエンジンであり、その各気
筒2a、 2b、・・・にはそれぞれ、筒内圧センサ3
a、 3b・・・が配設されており、また、各気筒への
吸気マニホルド4a、 4b・・・には、燃料噴射弁5
a、 5b・・・が設けられている。上記筒内圧センD
3a。 3b・・・は、その検出した信号をコントロールユニッ
ト6に供給し、コントロールユニット6では、以下に詳
述する手段を用いて、各気筒対応の燃料噴射弁5a、 
5b・・・に対する駆動信号を燃料噴射駆動手段7から
出力させる。なお、図中、符号8はクランク角センサで
あり、9は排気管、10は吸気系に設けられたスロット
ルバルブ、10aはスロットル開度センサである。 上記コン1〜ロールユニツト6は、筒内圧センサ3a、
 3b・・・の信号を受ける筒内圧検出手段11、クラ
ンク角センサ8からの信号でどの気筒について筒内圧を
検出するかを決定する気筒判別手段12、同じくクラン
ク角センサからの信号で各気筒における吸気行程前半の
所定191間、上記筒内圧検出手段11の出力信号を微
分して筒内圧力変化速度を求める筒内圧力変化速度算出
手段13、クランク角センサによりエンジン回転数を決
定するエンジン回転数設定手段20.エンジン回転数毎
に上記筒内圧力変化速度に対応する吸入空気量を予め設
定したマツプ14、上記筒内圧力変化速度算出手段13
とエンジン回転数設定手段20の出力値に基いて上記マ
ツプ14より吸入空気1を設定する吸入空気m設定手段
15および上記吸入空気量に対応して燃料噴1)[を決
定する燃料噴射m決定手段16、スロットル開度はンサ
10aの出力値の変化を微分値で求めるスロットル開度
変化算出手段17、上記微分値に応じて噴射層補正値を
設定する噴射型補正値設定手段18および上記補正値で
燃料噴11)lfaを補正する燃料噴射m決定手段19
を具備している。 なお、この実施例において、上記筒内圧力変化速度算出
手段13における所定期間とは、例えば、オーバラップ
TDCからATD030〜50′″程度とするとよい。 このような構成においては、先づ、ステップ5101で
クランク角センサからの信号により、気筒判別手段12
でどの気筒につき、筒内圧を検知するかを判別する。次
に、ステップ5102で、筒内圧検出手段11からの出
力信号を筒内圧力変化速度算出手段13で受けて、所定
期聞内における時々刻々の筒内圧を蓄積し、これを微分
して筒内圧力変化速度を得る。次にステップ8103で
エンジン回転数設定手段20でエンジン回転数を設定し
ステップ104で吸入空気設定手段15においてマツプ
14より該当の吸入空気量を取出す。次にステップ51
05において、燃料噴射m決定手段16で該当気筒に対
応する燃料噴射量を決定する。ステップ8106ではス
ロットル開度変化算出手段17において、クランク角セ
ンナ8が示す吸入行程のTDCから燃料噴射までの過程
におけるスロットル開度センサ10aの信号を微分し、
踏込みの有無および開度変化量を求める。そして、踏込
みがない場合には、ステップ$107へ移行して、上記
燃料噴射量決定手段16で決定された燃料噴射量を基本
噴射量としてステップ8108で駆動手段7を制御し、
該当燃料噴射弁を働かせる。もし、ステップ5106で
、スロットル開度が踏込み側(即ら開度変化が+側)に
移った場合には噴射量補正fi!設定手段18で補正値
を求め、ステップ5109で、燃料噴射m補正手段19
により、上記基本噴射量に対して、スロットル開度に対
応する補正値を加えて補正燃料噴04ffiを定め、こ
れによってステップ8108で駆動手段7を制御する。 また、ステップ8106でスロットル開度が戻し側(即
ち開度変化が一側)に移った場合には噴射m補正値設定
手段18で補正値を求め、ステップ$110で、燃料噴
射m補正手段19により上記基本燃料噴射mに対して、
スロットル開度に対応する補正値を加えて補正燃料噴射
量を定め、これによってステップ8108で駆動手段7
を制御する。 このようにして、吸気行程の前半において筒内圧センサ
3a、 3b・・・からの信号を演算し、吸入空気量を
求め、吸気行程の後半で対応する燃料噴射量で燃料噴射
するため、同一サイクル中で、検出から燃料噴射まで行
えることになり、応答遅れがない。 なお、上記実施例において、筒内圧力変化速度算出手段
13を用いて、筒内圧変化速度を求め、その値とエンジ
ン回転数に対応してマツプ14から吸入空気mを求めた
が、所定のクランク角Bにおいて、その時のね内圧セン
サの値とエンジン回転数からマツプ14を用いて吸入空
気量を求めるようにしてもよい。これは、所定クランク
角Bでの絶対圧<mI内圧センサの値)は負荷に対応し
ていると考えられるからである。このためには、第4図
にみられるように、TDCから所要クランク角△までの
間で筒内圧力変化速度を求める場合より遅い時期Bを用
いなければならない。これは、筒内圧力がサチュレート
するまで待つ必要があるからである。 【発明の効果】 本発明は、以、F詳述したようになり、筒内圧センサの
検出値は吸気行程の前半で取込まれるので、その結果と
して決定された燃料噴[1は、そのサイクルにおける吸
気行程後半での燃料噴射において採用されるから、全く
応答遅れがない。また、吸気始めから燃料噴射までの過
程で、スロットル操作がなされた場合にも、その補正が
できる。しかも、筒内圧センサを使用するメリットはそ
のまま生かされており、エンジンの各気筒、各サイクル
毎の空燃比のバラツキ、変動が無くなる。
[Problem to be solved by the invention 1] However, even with this method, the fuel injection amount corresponding to the air amount measured in H1 in a cycle is not reflected in the length of the cycle, but is used in the next cycle. It essentially had an element of delayed response. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an engine air-fuel ratio control device that can eliminate variations and fluctuations in the air-fuel ratio between each cylinder and each cycle of the engine, and can perform air-fuel ratio control without response delay. [Means for Solving the Problems] Therefore, the present invention includes a cylinder pressure sensor that detects the pressure inside the engine cylinder, and controls the fuel injection valve corresponding to each cylinder based on the detected value of the cylinder pressure sensor. When setting the fuel injection m, the detection value of the cylinder pressure sensor is taken in.
means for determining the intake air amount for the cycle in the first half of the intake stroke in the relevant cylinder; means for setting the injection amount for performing fuel injection in the second half of the intake stroke based on the determination result; The system is equipped with means for detecting changes in the throttle opening degree during the process up to the end of fuel injection, and means for correcting the injection rA suspension in accordance with the amount of change when there is a change in the throttle opening degree. [Effect 1] Therefore, since the detected value of the cylinder pressure sensor is taken in early, the fuel injection m determined as a result is adopted for fuel injection in the latter half of the intake stroke in that cycle, so there is no response delay at all. There is no. Further, even if the throttle is operated during the process from the start of intake to fuel injection, it can be corrected. Moreover, the advantages of using the in-cylinder pressure sensor are utilized as is, and there is no variation or fluctuation in the air-fuel ratio for each cylinder or each cycle of the engine. [Example] Hereinafter, an example of the present invention will be specifically described with reference to the drawings. In the figure, the symbol @1 is an engine, and each cylinder 2a, 2b, . . . has an in-cylinder pressure sensor 3.
A, 3b... are arranged, and a fuel injection valve 5 is provided in the intake manifold 4a, 4b... for each cylinder.
a, 5b... are provided. Above cylinder pressure sensor D
3a. 3b... supplies the detected signals to the control unit 6, and the control unit 6 uses the means described in detail below to control the fuel injection valves 5a, 5a, and 3b corresponding to each cylinder.
A drive signal for 5b... is output from the fuel injection drive means 7. In the figure, numeral 8 is a crank angle sensor, 9 is an exhaust pipe, 10 is a throttle valve provided in the intake system, and 10a is a throttle opening sensor. The controller 1 to the roll unit 6 have a cylinder pressure sensor 3a,
Cylinder pressure detection means 11 receives signals from the crank angle sensor 8, cylinder discrimination means 12 determines in which cylinder the cylinder pressure is to be detected based on the signal from the crank angle sensor 8, and cylinder discrimination means 12 determines the cylinder pressure for each cylinder based on the signal from the crank angle sensor 8. During a predetermined 191 period in the first half of the intake stroke, the cylinder pressure change rate calculation means 13 calculates the cylinder pressure change rate by differentiating the output signal of the cylinder pressure detection means 11, and the engine rotation speed is determined by the crank angle sensor. Setting means 20. A map 14 in which the amount of intake air corresponding to the rate of change in cylinder pressure is set in advance for each engine speed, and the rate of change in cylinder pressure calculation means 13
and an intake air m setting means 15 which sets the intake air 1 from the map 14 based on the output value of the engine speed setting means 20, and a fuel injection m determination which determines the fuel injection 1) corresponding to the intake air amount. means 16, throttle opening change calculation means 17 for determining the throttle opening by a differential value of the change in the output value of the sensor 10a, injection type correction value setting means 18 for setting an injection layer correction value according to the differential value, and the above correction. Fuel injection m determining means 19 for correcting fuel injection 11) lfa by the value
Equipped with: In this embodiment, the predetermined period in the in-cylinder pressure change rate calculation means 13 may be, for example, about ATD 030 to 50'' from the overlap TDC. In such a configuration, first, step 5101 Based on the signal from the crank angle sensor, the cylinder discriminating means 12
to determine which cylinder's in-cylinder pressure is to be detected. Next, in step 5102, the output signal from the in-cylinder pressure detection means 11 is received by the in-cylinder pressure change rate calculation means 13, and the instantaneous in-cylinder pressure within a predetermined period is accumulated, and this is differentiated. Obtain the rate of pressure change. Next, in step 8103, the engine speed setting means 20 sets the engine speed, and in step 104, the intake air setting means 15 extracts the corresponding intake air amount from the map 14. Next step 51
At step 05, the fuel injection m determining means 16 determines the fuel injection amount corresponding to the relevant cylinder. In step 8106, the throttle opening change calculation means 17 differentiates the signal of the throttle opening sensor 10a in the process from TDC of the intake stroke indicated by the crank angle sensor 8 to fuel injection,
Determine the presence or absence of depression and the amount of change in opening. If there is no depression, the process moves to step $107, and the drive means 7 is controlled in step 8108 by using the fuel injection amount determined by the fuel injection amount determining means 16 as the basic injection amount,
Operate the applicable fuel injection valve. If, in step 5106, the throttle opening moves to the depression side (that is, the opening change changes to the + side), the injection amount correction fi! The setting means 18 obtains a correction value, and in step 5109, the fuel injection m correction means 19
Accordingly, a correction value corresponding to the throttle opening is added to the basic injection amount to determine a corrected fuel injection 04ffi, and the driving means 7 is thereby controlled in step 8108. Further, if the throttle opening moves to the return side (that is, the opening changes to one side) in step 8106, a correction value is determined by the injection m correction value setting means 18, and in step $110, the correction value is determined by the fuel injection m correction value setting means 19. Accordingly, for the above basic fuel injection m,
A correction value corresponding to the throttle opening is added to determine the corrected fuel injection amount, and thereby, in step 8108, the drive means 7
control. In this way, in the first half of the intake stroke, the signals from the cylinder pressure sensors 3a, 3b, etc. are calculated to determine the amount of intake air, and in the second half of the intake stroke, fuel is injected with the corresponding fuel injection amount, so the same cycle This means that everything from detection to fuel injection can be performed within the system, so there is no response delay. In the above embodiment, the in-cylinder pressure change rate was determined using the in-cylinder pressure change rate calculation means 13, and the intake air m was determined from the map 14 in accordance with that value and the engine speed. At corner B, the amount of intake air may be determined using the map 14 from the value of the internal pressure sensor and the engine speed at that time. This is because it is considered that the absolute pressure at the predetermined crank angle B<mI internal pressure sensor value) corresponds to the load. For this purpose, as shown in FIG. 4, it is necessary to use a time period B that is slower than when determining the rate of change in cylinder pressure between TDC and the required crank angle Δ. This is because it is necessary to wait until the cylinder pressure is saturated. Effects of the Invention The present invention is as described in detail below. Since the detected value of the cylinder pressure sensor is taken in the first half of the intake stroke, the fuel injection [1] determined as a result is Since it is used for fuel injection in the latter half of the intake stroke, there is no response delay at all. Furthermore, even if the throttle is operated during the process from the start of intake to fuel injection, it can be corrected. Moreover, the advantages of using the cylinder pressure sensor are still utilized, and variations and fluctuations in the air-fuel ratio between each cylinder and each cycle of the engine are eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略構成図、第2図は
コントロールユニットの構成を示すブロック図、第3図
は制御のプローチ1P−ト、第4図は、気筒内圧力変化
の状況を示すグラフである。 1・・・エンジン、2a、 2b・・・気筒、3a、 
3b〜・・・筒内圧センサ、4a、 4b〜・・・吸気
マニホルド、5a、 5b〜・・・燃料噴射弁、6・・
・コントロールユニット、7・・・燃料噴射駆動手段、
8・・・クランク角センサ、11・・・筒内圧検出手段
、12・・・気筒判別手段、13・・・筒内圧力変化速
度算出手段、14・・・マツプ、15・・・吸入空気酷
設定手段、16・・・燃料噴射化決定手段、17・・・
スロットル開度変化算出手段、18・・・噴rJ4吊補
正値設定手段、19・・・燃料噴射量補正手段。 特許出願人    富士重工業株式会社代理人 弁理士
  小 橋 信 浮 量   弁理士   村  井     進手続補正書
(方式)、  5゜ 昭和63年 3月18日 特許庁長官 ノJ)   Jll   声し  夫殿1
、事件の表示                   
  6゛昭和62年特 許 願 第301770号  
         1、発明の名称 エンジンの空燃比制御装置            7
゜3、補正をする者 事件との関係  特  許  出願人 〜 補正命令の日付(発送日) 昭和63年2月23日 補正の対象 7面の一部(第2図、第3図) 補正の内容 1III紙の通り
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing the configuration of a control unit, Fig. 3 is a control approach 1P, and Fig. 4 is a diagram showing a change in cylinder pressure. This is a graph showing the situation. 1...Engine, 2a, 2b...Cylinder, 3a,
3b~... Cylinder pressure sensor, 4a, 4b~... Intake manifold, 5a, 5b~... Fuel injection valve, 6...
- Control unit, 7... fuel injection drive means,
8... Crank angle sensor, 11... Cylinder pressure detection means, 12... Cylinder discrimination means, 13... Cylinder pressure change rate calculation means, 14... Map, 15... Intake air severity Setting means, 16...Fuel injection determining means, 17...
Throttle opening degree change calculation means, 18... Injection rJ4 suspension correction value setting means, 19... Fuel injection amount correction means. Patent Applicant: Fuji Heavy Industries Co., Ltd. Agent, Patent Attorney: Makoto Kobashi, Patent Attorney: Susumu Murai, Procedural Amendment (Method), 5゜March 18, 1988, Commissioner of the Japan Patent Office, No. 1)
, incident display
6゛1986 Patent Application No. 301770
1. Name of the invention Engine air-fuel ratio control device 7
゜3. Relationship with the case of the person making the amendment Patent applicant ~ Date of amendment order (shipment date) February 23, 1985 Part of the 7 pages subject to amendment (Figures 2 and 3) Amendment Contents 1III As per the paper

Claims (1)

【特許請求の範囲】[Claims] エンジン気筒内の圧力を検出する筒内圧センサを具備し
、上記筒内圧センサの検出値に基いて各気筒対応の燃料
噴射弁の燃料噴射量を設定するものにおいて、上記筒内
圧センサの検出値の取込みを、該当気筒における吸気行
程前半に行い、そのサイクルの吸入空気量を判定する手
段と、上記判定結果に基いて吸気行程後半に燃料噴射を
行うための噴射量を設定する手段と、吸気行程の最初か
ら燃料噴射終了までの過程でスロットル開度の変化を検
出する手段、このスロットル開度に変化がある時には、
その変化量に応じて噴射量を補正する手段を具備したこ
とを特徴とするエンジンの空燃比制御装置。
The engine is equipped with a cylinder pressure sensor that detects the pressure in the cylinder, and sets the fuel injection amount of the fuel injection valve corresponding to each cylinder based on the detection value of the cylinder pressure sensor, a means for determining the intake air amount for the cycle by performing intake in the first half of the intake stroke in the relevant cylinder; a means for setting an injection amount for injecting fuel in the second half of the intake stroke based on the determination result; A means for detecting changes in throttle opening during the process from the beginning of fuel injection to the end of fuel injection, and when there is a change in throttle opening,
An air-fuel ratio control device for an engine, comprising means for correcting an injection amount according to the amount of change.
JP30177887A 1987-11-28 1987-11-28 Air-fuel ratio control device for engine Pending JPH01142228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30177887A JPH01142228A (en) 1987-11-28 1987-11-28 Air-fuel ratio control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30177887A JPH01142228A (en) 1987-11-28 1987-11-28 Air-fuel ratio control device for engine

Publications (1)

Publication Number Publication Date
JPH01142228A true JPH01142228A (en) 1989-06-05

Family

ID=17901058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30177887A Pending JPH01142228A (en) 1987-11-28 1987-11-28 Air-fuel ratio control device for engine

Country Status (1)

Country Link
JP (1) JPH01142228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245969A (en) * 1991-11-06 1993-09-21 Mitsubishi Denki K.K. Engine control device and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245969A (en) * 1991-11-06 1993-09-21 Mitsubishi Denki K.K. Engine control device and control method thereof

Similar Documents

Publication Publication Date Title
US5554801A (en) Diagnosis apparatus and method for a cylinder pressure sensor
JPH06117306A (en) Lean combustion control device for internal combustion engine/and fuel injection quantity control device provided therewith
JP2829698B2 (en) Device for detecting combustion state of internal combustion engine
KR900001300B1 (en) Fuel-injection control system for gasoline engine
JPH01142228A (en) Air-fuel ratio control device for engine
JPH04279742A (en) Fuel injection control device of internal combustion engine
JP2001123879A (en) Combustion state detecting device for internal combustion engine
JPH0477139B2 (en)
JPH01142241A (en) Air-fuel ratio control device for engine
JPH04101044A (en) Fuel feeding controller for multicylinder internal combustion engine
US5107816A (en) Air-fuel ratio control apparatus
JP2566803B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2527321Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP3017868B2 (en) Engine control device
JPH09203343A (en) Air-fuel ratio detecting device for internal combustion engine
JP2556194B2 (en) Idle rotation control device for internal combustion engine
JPH0212290Y2 (en)
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2591318B2 (en) Diesel engine exhaust recirculation system
JPH0493633A (en) Cylinder internal pressure detection device for internal combustion engine
JPH06146979A (en) Surge detector and air fuel ratio controller for engine
JPS58158347A (en) Control system of engine for automobile
JPH06288289A (en) Fuel status judging device for internal combustion engine
JPH0739816B2 (en) Fuel supply control device for internal combustion engine
JPH0758052B2 (en) Electronically controlled fuel injection device for internal combustion engine