JPH01141399A - Continuous dissolution treatment device for used nuclear fuel - Google Patents
Continuous dissolution treatment device for used nuclear fuelInfo
- Publication number
- JPH01141399A JPH01141399A JP62297619A JP29761987A JPH01141399A JP H01141399 A JPH01141399 A JP H01141399A JP 62297619 A JP62297619 A JP 62297619A JP 29761987 A JP29761987 A JP 29761987A JP H01141399 A JPH01141399 A JP H01141399A
- Authority
- JP
- Japan
- Prior art keywords
- dissolution
- fuel
- tank
- treatment liquid
- dissolution treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004090 dissolution Methods 0.000 title claims abstract description 96
- 239000002915 spent fuel radioactive waste Substances 0.000 title claims description 11
- 239000000446 fuel Substances 0.000 claims abstract description 61
- 239000007788 liquid Substances 0.000 claims abstract description 43
- 238000005192 partition Methods 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims description 22
- 238000002844 melting Methods 0.000 claims description 20
- 230000008018 melting Effects 0.000 claims description 20
- 239000003758 nuclear fuel Substances 0.000 claims description 9
- 239000012634 fragment Substances 0.000 claims 1
- 238000000638 solvent extraction Methods 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract 2
- 238000006731 degradation reaction Methods 0.000 abstract 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 32
- 229910017604 nitric acid Inorganic materials 0.000 description 32
- 238000000034 method Methods 0.000 description 20
- 230000007423 decrease Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- 229910052770 Uranium Inorganic materials 0.000 description 5
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 3
- 238000010309 melting process Methods 0.000 description 3
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 description 3
- 238000012958 reprocessing Methods 0.000 description 3
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 3
- 238000011437 continuous method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は使用済原子燃料の再処理工程において、燃料を
加熱された硝酸に溶解し、不溶解性の被覆材と分離する
装置に係り、特に、核分裂性物質の濃度の高い燃料を連
続的に高能率で溶解処理するのに好適な装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for dissolving fuel in heated nitric acid and separating it from an insoluble coating material in a spent nuclear fuel reprocessing process. In particular, the present invention relates to an apparatus suitable for continuously dissolving fuel with a high concentration of fissile material at high efficiency.
原子炉内における核分裂反応によりエネルギを放出し、
核分裂性物質を消費して使用に適さなくなった原子燃料
は、一般に、使用済原子燃料と呼ばれる。この使用済原
子燃料に含まれている核分裂性物質や原子燃料物質を回
収し、再利用するための工程が再処理である。Energy is released by the nuclear fission reaction inside the nuclear reactor,
Nuclear fuel that has consumed fissile material and is no longer suitable for use is generally referred to as spent nuclear fuel. Reprocessing is the process of recovering and reusing the fissile material and nuclear fuel material contained in this spent nuclear fuel.
再処理の工程は、更に、多岐にわたる単位工程から成っ
ている。ピュレックス法では、その最初の段階で、燃料
棒は小片に剪断され、続いて中味の原子燃料物質が硝酸
に溶解される。この燃料片の被覆管は、一般に、ジルコ
ニウム合金、あるいは、ステンレス鋼なので硝酸には溶
解せず、原子燃料物質が溶解し終えた後に分別可能とな
る。The reprocessing process further consists of a wide variety of unit steps. In the Purex process, in the first step, the fuel rods are sheared into small pieces, followed by dissolving the nuclear fuel material inside in nitric acid. The cladding tube of this fuel piece is generally made of zirconium alloy or stainless steel, so it does not dissolve in nitric acid and can be separated after the nuclear fuel material is completely dissolved.
ところで、使用済原子燃料の溶解を行う装置は。By the way, what about the equipment that melts spent nuclear fuel?
原子燃料を装荷した耐食性容器中に必要量の硝酸を加え
て燃料溶解を完了させた後、溶解処理液を取り出す、い
わゆる、回分方式と、容器に原子燃料と硝酸を装荷しな
がら溶解処理液を取り出す連続方式、並びに1両者の折
衷的な性格をもつ半連続方式がある。一般に、連続式は
回分式に比べ高効率である。特に、核分裂性物質の濃度
の高い原子燃料を溶解処理する装置では、第一に考慮す
べき技術的問題点である臨界安全対策上、溶解処理液を
充填する部分の幾何学的形状が制限されることを考慮す
ると、コンパクトな形状の装置で効率良く処理可能で、
かつ、処理量増大の対応も容易な連続式が有利である。The so-called batch method involves adding the necessary amount of nitric acid into a corrosion-resistant container loaded with nuclear fuel to complete the fuel dissolution, and then taking out the dissolving solution, and the other method is the so-called batch method, in which the dissolving solution is taken out while loading nuclear fuel and nitric acid into the container. There is a continuous method for extracting, as well as a semi-continuous method that is a compromise between the two. In general, continuous systems are more efficient than batch systems. In particular, in equipment that melts nuclear fuel with a high concentration of fissile material, the geometrical shape of the part filled with the melting solution is limited due to criticality safety measures, which is a technical issue that must be considered first. Taking this into consideration, it is possible to process efficiently with a compact device,
In addition, a continuous type is advantageous because it can easily cope with an increase in throughput.
原子燃料の代表的な物質である二酸化ウランを硝酸に溶
解する場合、溶解速度は二酸化ウランの表面積、硝酸の
濃度及び温度に影響される。溶解処理の末期には二酸化
ウラン燃料の表面積が小さくなるため、溶解速度が低下
し、少量残った燃料を溶解するのに長時間を要する。こ
のような溶解処理末期の溶解速度の低下への対策の一つ
として、連続式の溶解処理装置では、硝酸の液流と燃料
の移動が対向的に行われる向流接触方式の溶解が有効で
ある。溶解槽内の硝酸濃度は、硝酸の供給場所で高く、
排出場所では溶解反応で硝酸が消費されるため低くなっ
ている。向流接触方式では、溶解処理末期の燃−料が硝
酸濃度の高い場所へ移動するため、溶解速度の低下を抑
えることができる。When uranium dioxide, a typical substance in nuclear fuel, is dissolved in nitric acid, the rate of dissolution is affected by the surface area of uranium dioxide, the concentration of nitric acid, and temperature. At the end of the melting process, the surface area of the uranium dioxide fuel decreases, so the melting rate decreases, and it takes a long time to melt the small amount of remaining fuel. As one of the countermeasures against such a decrease in the dissolution rate at the end of the dissolution process, in continuous dissolution processing equipment, it is effective to use a countercurrent contact method of dissolution in which the nitric acid liquid flow and the fuel move in opposite directions. be. The nitric acid concentration in the dissolution tank is high at the nitric acid supply location.
At the discharge site, the concentration is low because nitric acid is consumed in the dissolution reaction. In the countercurrent contact method, the fuel at the end of the dissolution process moves to a place where the nitric acid concentration is high, so it is possible to suppress a decrease in the dissolution rate.
向流接触方式を採用した連続溶解処理装置の一例として
、特開昭56−94297号公報記載の処理物を連続的
に処理する装置が提供されている。この装置は、周路で
支持した燃料装荷かごを縦方向に回転移動させ、回転の
中心より下部に位置する燃料装荷かご内の燃料が、平板
状の溶解槽内の溶解処理液に浸漬して溶解処理するもの
である。溶解処理液は、溶解槽内における燃料装荷かご
の移動方向と対向するように、平板の溶解槽の一端から
供給され、他端から排出される。As an example of a continuous dissolution processing apparatus employing a countercurrent contact method, there is provided an apparatus for continuously processing a processed material as described in Japanese Patent Application Laid-Open No. 56-94297. This device rotates a fuel loading basket supported on a circumferential path in the vertical direction, and the fuel in the fuel loading basket located below the center of rotation is immersed in the dissolving treatment liquid in a flat plate-shaped dissolving tank. It is treated by dissolving it. The dissolution treatment liquid is supplied from one end of the flat plate dissolution tank and discharged from the other end so as to be opposite to the moving direction of the fuel loading basket within the dissolution tank.
また、特開昭61−169798号公報では別の型式の
連続溶解処理装置の例が記載されている。この装置では
、円環状の溶解槽内に複数の燃料装荷かごを配置し、溶
解処理液の流れと対向的に燃料装荷かごを、順次、一方
向に回転移動させる。Furthermore, Japanese Patent Application Laid-Open No. 169798/1983 describes another type of continuous melting treatment apparatus. In this device, a plurality of fuel loading baskets are arranged in an annular dissolving tank, and the fuel loading baskets are sequentially rotated in one direction in opposition to the flow of the dissolving treatment liquid.
上記の連続溶解処理装置では、溶解反応によるNO8ガ
スの発生や加熱による水蒸気の発生による溶解槽内の液
流動、及び、加熱による熱流動、または、場合によって
は1局部的な硝酸濃度の低下を防ぐために撹拌用のガス
を吹き込むことにより、溶解槽内の液が混合される。硝
酸と燃料の向流の速度は液流速と比較して小さいため、
溶解槽内の硝酸濃度は混合されて均一化し、向流接触が
保持不可能となり、溶解末期に浸漬される硝酸濃度が向
流接解の場合と比較して低下することにより溶解処理の
効率が低下する懸念がある。In the continuous melting treatment equipment described above, liquid flow in the melting tank due to the generation of NO8 gas due to the dissolution reaction, generation of water vapor due to heating, thermal flow due to heating, or in some cases, a local decrease in nitric acid concentration. In order to prevent this, the liquid in the dissolution tank is mixed by blowing in a stirring gas. Since the countercurrent velocity of nitric acid and fuel is small compared to the liquid flow velocity,
The concentration of nitric acid in the melting tank is mixed and becomes uniform, making it impossible to maintain countercurrent contact, and the concentration of nitric acid immersed in the final stage of melting decreases compared to the case of countercurrent contact, which reduces the efficiency of the melting process. There are concerns that this will decline.
本発明の目的は、溶解処理液と燃料の向流接触方式の利
点である溶解処理末期における溶解速度の低下による溶
解処理効率の低下を抑えうる機構をもつ連続溶解処理装
置を提供することにある。An object of the present invention is to provide a continuous dissolution treatment apparatus having a mechanism capable of suppressing a decrease in dissolution processing efficiency due to a decrease in dissolution rate at the final stage of dissolution treatment, which is an advantage of the countercurrent contact method of dissolution treatment liquid and fuel. .
上記目的は、円環状の槽内を隔壁で仕切り、仕切られた
一端から溶解処理液を槽内へ供給し、他端から排出する
溶解槽の中に、使用済原子燃料の剪断片を装荷した複数
の燃料装荷かごを配置し、燃料装荷かごの下部を溶解処
理液に浸漬することによって、使用済原子燃料を溶解処
理する装置において、溶解槽の内部を複数の領域に仕切
り、かつ、隣接し合う領域間を一定の方向に溶解処理液
が流れるようにするための仕切り板を設けることにより
達成される。これにより、溶解槽内の溶解処理液の濃度
の高低が保持される。また、燃料が溶解処理液の流れる
方向と対向する方向に移動するように、燃料装荷かごを
、順次、回転移動させ、溶解槽内の各領域に、順次、浸
漬させる燃料装荷かご回転装置を設置する。The above purpose is to load the sheared pieces of spent nuclear fuel into the annular tank, which is partitioned by partition walls, and the dissolution treatment liquid is supplied into the tank from one partitioned end and discharged from the other end. In an apparatus for dissolving spent nuclear fuel by arranging a plurality of fuel loading baskets and immersing the lower part of the fuel loading basket in a dissolution treatment liquid, the interior of the dissolution tank is partitioned into a plurality of regions, and each area is adjacent to the other. This is achieved by providing a partition plate to allow the dissolving treatment liquid to flow in a fixed direction between the matching areas. Thereby, the concentration level of the dissolution treatment liquid in the dissolution tank is maintained. In addition, a fuel loading basket rotating device is installed that sequentially rotates the fuel loading basket and immerses it in each area in the dissolution tank so that the fuel moves in the direction opposite to the direction in which the dissolving treatment liquid flows. do.
本発明の装置によれば、溶解槽内で、溶解処理液である
硝酸は隔壁の一端から供給され、他端から排出される間
の複数の領域に区分され、燃料装荷かごが硝酸の排出側
から供給側へ、順次、浸漬することにより、供給側の領
域では硝酸濃度が高く、排出側の領域では低く保たれる
。これにより、溶解処理末期の燃料は、順次、高い濃度
の硝酸へ浸漬され、溶解反応表面積の減少による溶解速
度の低下を抑えるため、溶解処理時間を短縮することが
でき、装置の処理効率の向上を図ることができる。According to the device of the present invention, the dissolving tank is divided into a plurality of regions in which nitric acid, which is a dissolving treatment liquid, is supplied from one end of the partition wall and discharged from the other end, and the fuel loading basket is located at the nitric acid discharge side. By sequentially dipping from the supply side to the supply side, the nitric acid concentration is kept high in the supply side area and low in the discharge side area. As a result, the fuel at the end of the dissolution process is sequentially immersed in high-concentration nitric acid, which suppresses the drop in dissolution rate due to the decrease in the dissolution reaction surface area, thereby shortening the dissolution process time and improving the processing efficiency of the equipment. can be achieved.
以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.
第1図は本発明の一実施例の連続溶解処理装置の基本的
な概念図である。円環状の溶解槽1はその内部を隔壁4
で仕切られ、溶解処理液3の流れがせき止められている
。また、溶解槽1内は複数の仕切り板5によって仕切ら
れた複数の溶解領域8で構成される。仕切り板5には各
々溶解処理液3が流入・流出するための隙間を設け、隣
接した溶解領域8の間を溶解処理液が流れるような構造
になっている。隔壁4をはさんで片側に溶解処理液3の
供給口6、他側に排出ロアが配置される。FIG. 1 is a basic conceptual diagram of a continuous dissolution treatment apparatus according to an embodiment of the present invention. The annular dissolving tank 1 has a partition wall 4 inside.
The flow of the dissolution treatment liquid 3 is blocked. Further, the inside of the dissolution tank 1 is composed of a plurality of dissolution regions 8 partitioned by a plurality of partition plates 5. The partition plates 5 are each provided with a gap through which the dissolution treatment liquid 3 flows in and out, and the structure is such that the dissolution treatment liquid flows between adjacent dissolution regions 8 . A supply port 6 for the dissolution treatment liquid 3 is disposed on one side of the partition wall 4, and a discharge lower is disposed on the other side.
各溶解領域8の内部には、−個または複数個の燃料装荷
かと2を配置する。Inside each melting zone 8 - or more fuel loads 2 are arranged.
この連続溶解処理装置において、供給口6から溶解処理
液3を供給し、排出ロアから排出すると、溶解槽1内の
溶解処理液は、図中に矢印で示すように、各溶解領域8
間を一方向に流れる。In this continuous dissolution processing apparatus, when the dissolution processing liquid 3 is supplied from the supply port 6 and discharged from the discharge lower, the dissolution processing liquid in the dissolution tank 1 is transferred to each dissolution area 8 as shown by the arrow in the figure.
flows in one direction between.
第2図は第1図に示す機能をもつ連続溶解処理装置の溶
解槽の一実施例を示す斜視図である。溶解槽1の外壁に
は、隔壁4をはさんで供給口6と排出ロアが接続される
。仕切り板5は液面よりやや低い位置から底板9までの
間を仕切り、溶解処理液3が仕切り板5の上をオーバー
フローすることにより、隣接した溶解領域8間に一方向
の液流が生じるようにしたものである。FIG. 2 is a perspective view showing an embodiment of a dissolution tank of a continuous dissolution processing apparatus having the functions shown in FIG. A supply port 6 and a discharge lower are connected to the outer wall of the dissolution tank 1 with a partition wall 4 in between. The partition plate 5 partitions the area from a position slightly lower than the liquid level to the bottom plate 9, so that when the dissolving treatment liquid 3 overflows on the partition plate 5, a unidirectional liquid flow is generated between the adjacent dissolving regions 8. This is what I did.
第3図は溶解槽内における溶解処理液と燃料装荷かごの
移動方向、及び、溶解処理液中の硝酸及びウラン濃度の
分布を説明するものである。FIG. 3 explains the moving direction of the dissolution treatment liquid and the fuel loading basket in the dissolution tank, and the distribution of nitric acid and uranium concentrations in the dissolution treatment liquid.
図中の矢印B1〜Baは溶解処理液3の流れを示す。供
給口6から供給された後、仕切り板5の上をオーバーフ
ローして流れ、排出ロアより排出される。燃料14を装
荷した燃料装荷かと2は排出ロア側の溶解領域8eに浸
漬し、溶解反応が進行するに従って、矢印A l−A
aに示すように溶解領域8aまで順次移動する。以上の
動作を連続的に繰り返すと、溶解槽1内の濃度分布は図
中のグラフに示すようになる。グラフCは硝酸濃度、グ
ラフDはウラン濃度を示す。供給口6側の溶解領域8a
内へは矢印B1により連続的に硝酸が供給され、供給さ
れて増加した液量分だけ反応で消費して硝酸濃度の低下
した液が溶解領域8bへ流出するため、常に溶解領域8
bよりも硝酸濃度が高くウラン濃度が低くなる。これに
対して排出ロア側の溶解領域8e内は、反応で硝酸が消
費されウラン濃度が高くなった液が流入し、常に、溶解
領域8dよりも硝酸濃度が低くウラン濃度が高くなる。Arrows B1 to Ba in the figure indicate the flow of the dissolving treatment liquid 3. After being supplied from the supply port 6, it overflows and flows over the partition plate 5, and is discharged from the discharge lower. The fuel tank 2 loaded with the fuel 14 is immersed in the melting region 8e on the discharge lower side, and as the melting reaction progresses, the arrow A l-A
As shown in a, it moves sequentially to the melting area 8a. When the above operations are repeated continuously, the concentration distribution in the dissolution tank 1 becomes as shown in the graph in the figure. Graph C shows the nitric acid concentration, and graph D shows the uranium concentration. Melting area 8a on the supply port 6 side
Nitric acid is continuously supplied into the interior according to the arrow B1, and the increased amount of the supplied liquid is consumed in the reaction and the liquid whose nitric acid concentration has decreased flows out to the dissolution area 8b, so that the liquid is always kept in the dissolution area 8.
The nitric acid concentration is higher and the uranium concentration is lower than in b. On the other hand, in the dissolution region 8e on the discharge lower side, a liquid with a high uranium concentration due to the consumption of nitric acid flows into the dissolution region 8e, so that the nitric acid concentration is always lower and the uranium concentration is higher than in the dissolution region 8d.
よって、溶解処理末期に、反応表面積の減少した燃料は
、順次、硝酸濃度の高い領域に浸漬されるため、溶解速
度の低下を抑え、溶解処理効率を上げることができる。Therefore, at the end of the dissolution process, the fuel whose reaction surface area has been reduced is sequentially immersed in a region with a high nitric acid concentration, thereby suppressing a decrease in the dissolution rate and increasing the efficiency of the dissolution process.
第4図は、第3図に示す燃料装荷かごの移動を行うため
の機構を備えた本発明の一実施例の連続溶解処理装置の
断面図である。燃料装荷かと2は一体化された燃料装荷
かご支持板13で支持されて、溶解槽1内に配置される
。燃料装荷かご支持板13は燃料装荷かご回転昇降装置
9の回転軸に接続される。燃料装荷かと2を移動する際
には、燃料装荷かご支持板13ごと隔壁、及び、仕切り
板と干渉しない高さまで矢印Eの方向に上昇し、矢印F
の方向に回転した後、再び、下降して溶解槽1内に戻す
という動作を行う。FIG. 4 is a sectional view of a continuous melting treatment apparatus according to an embodiment of the present invention, which is equipped with a mechanism for moving the fuel loading basket shown in FIG. 3. The fuel loading cage 2 is supported by an integrated fuel loading cage support plate 13 and is disposed within the melting tank 1. The fuel loading car support plate 13 is connected to the rotating shaft of the fuel loading car rotating/elevating device 9 . When moving the fuel loading car 2, the fuel loading car support plate 13 should be raised in the direction of arrow E until it reaches a height that does not interfere with the bulkhead or partition plate, and
After rotating in the direction, it descends again and returns to the melting tank 1.
また、溶解処理の終了した燃料装荷かご2内に残存する
ハルを取出すために、上部カバー12上に燃料装荷かご
反転装置10を設置し、その側面にハル抜出口11を配
置する。上昇した時の位置で燃料装荷かご反転装置10
は燃料装荷かと2をつかみ、燃料装荷かご支持板13が
下降した後、燃料装荷かと2を矢印Gで示すように反転
し、内部のハルをハル抜出口11より排出する。次に、
燃料装荷かご支持板13が上昇した際に、燃料装荷かご
反転装[10は燃料装荷かと2を放し、再び、下降して
空の燃料装荷かと2を溶解槽1内へ戻す。これにより、
連続溶解運転が可能になる。Further, in order to take out the hull remaining in the fuel loading basket 2 after the melting process has been completed, a fuel loading basket reversing device 10 is installed on the upper cover 12, and a hull extraction port 11 is arranged on the side thereof. Fuel loading car reversing device 10 in the raised position
grips the fuel loading car 2, and after the fuel loading car support plate 13 is lowered, the fuel loading car 2 is reversed as shown by arrow G, and the internal hull is discharged from the hull extraction port 11. next,
When the fuel loading car supporting plate 13 is raised, the fuel loading car reversing device [10] releases the fuel loading cage 2 and descends again to return the empty fuel loading cage 2 into the melting tank 1. This results in
Continuous melting operation becomes possible.
本実施例では、複数の仕切り板で溶解槽内を区切り、オ
ーバフローにより各領域間を一方向に液が流れることに
より、簡単な構造では溶解槽内の硝酸濃度の差を保ち、
燃料装荷かごを支持板で一体化して移動することにより
、燃料を硝酸濃度の高い領域へ順次浸漬する動作を一つ
の装置で可能にした。これにより、溶解処理末期で反応
表面積の減少した燃料を、順次硝酸濃度の高い液に接触
させる向流接触方式を模擬することができ、溶解処理末
期における溶解速度の低下を抑えた効率の良い連続溶解
処理が可能になる。In this example, the inside of the dissolution tank is divided by a plurality of partition plates, and the liquid flows in one direction between each region by overflow, so that the difference in nitric acid concentration within the dissolution tank can be maintained with a simple structure.
By integrating the fuel loading basket with a support plate and moving it, it is possible to sequentially immerse fuel into regions with high nitric acid concentration using a single device. This makes it possible to simulate a countercurrent contact method in which the fuel, whose reaction surface area has decreased at the end of the dissolution process, is sequentially brought into contact with a liquid with a high nitric acid concentration. Dissolution processing becomes possible.
本実施例では、各溶解領域内に燃料装荷かとが一つずつ
入る形状を示したが、これに限らず各溶解領域内に浸漬
する燃料装荷かとはいくつでも良く、かつ、各溶解領域
内の燃料装荷かごの数が異なっていても良い。また、溶
解末期に燃料装荷かごが浸漬される箇所にのみ仕切り板
を設け、溶解末期には必ず硝酸濃度の高い溶解処理液に
浸漬するのでも良い。In this embodiment, one fuel load is immersed in each melting area, but the shape is not limited to this, and any number of fuel loads may be immersed in each melting area, and The number of fuel loading baskets may be different. Alternatively, a partition plate may be provided only at the location where the fuel loading basket is immersed at the final stage of dissolution, and the fuel basket may be immersed in the dissolution processing solution having a high concentration of nitric acid at the final stage of dissolution.
本発明によれば、溶解処理末期における溶解速度の低下
による溶解処理効率の低下を抑えることが可能となり、
これにより、連続溶解処理装置のコンパクト化が図られ
、大処理容量化への対応が容易になった。According to the present invention, it is possible to suppress a decrease in dissolution processing efficiency due to a decrease in dissolution rate at the final stage of dissolution processing,
As a result, the continuous dissolution processing apparatus has been made more compact, and it has become easier to handle larger processing capacity.
第1図は本発明の一実施例の連続溶解処理装置の説明図
、第2図は第1図の溶解槽の斜視図、第3図は溶解槽内
における溶解処理液と燃料装荷かごの移動方向及び溶解
処理液中の硝酸及びウラン濃度説明図、第4図は燃料装
荷かごの移動機構を備えた本発明の連続溶解処理装置の
断面図である。
1・・・溶解槽、2・・・燃料装荷かと、3・・・溶解
処理液、乎 l 目
早 2 回Fig. 1 is an explanatory diagram of a continuous dissolution processing apparatus according to an embodiment of the present invention, Fig. 2 is a perspective view of the dissolution tank shown in Fig. 1, and Fig. 3 is a movement of the dissolution processing liquid and fuel loading basket in the dissolution tank. FIG. 4 is a cross-sectional view of the continuous dissolution processing apparatus of the present invention, which is equipped with a moving mechanism for a fuel loading basket. 1...Dissolution tank, 2...Fuel loading, 3...Dissolution processing liquid, 乎I At a glance 2 times
Claims (1)
溶解処理液を前記槽内へ供給し他端から排出する溶解槽
の中に、使用済原子燃料の剪断片を装荷した複数の燃料
装荷かごを配置し、前記燃料装荷かごの下部を前記溶解
処理液に浸漬することによつて前記使用済原子燃料を溶
解処理する装置において、 前記溶解槽の内部を複数の領域に仕切り、かつ、隣接し
合う領域間を一定の方向に前記溶解処理液が流れるよう
にするための仕切り板を設けたことを特徴とする使用済
原子燃料の連続溶解処理装置。 2、前記燃料装荷かごが、前記溶解処理液の流れる方向
と対向する方向に、順次、前記溶解槽内の各領域間を移
動するための、前記燃料装荷かごの回転移動装置を設け
たことを特徴とする特許請求の範囲第1項記載の使用済
原子燃料の連続溶解処理装置。[Scope of Claims] 1. The inside of an annular tank is partitioned by partition walls, and the spent nuclear fuel is sheared into the dissolution tank where the dissolution treatment liquid is supplied into the tank from one partitioned end and discharged from the other end. In the apparatus for dissolving the spent nuclear fuel by arranging a plurality of fuel loading baskets loaded with nuclear fuel fragments and immersing the lower part of the fuel loading basket in the dissolution treatment liquid, 1. A continuous dissolution processing apparatus for spent nuclear fuel, characterized in that a partition plate is provided for partitioning the regions and for allowing the dissolution processing liquid to flow in a fixed direction between adjacent regions. 2. A rotary movement device for the fuel loading basket is provided for sequentially moving the fuel loading basket between regions in the dissolving tank in a direction opposite to the direction in which the dissolving treatment liquid flows. A continuous melting and processing apparatus for spent nuclear fuel according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29761987A JPH0812273B2 (en) | 1987-11-27 | 1987-11-27 | Continuous spent fuel processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29761987A JPH0812273B2 (en) | 1987-11-27 | 1987-11-27 | Continuous spent fuel processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01141399A true JPH01141399A (en) | 1989-06-02 |
JPH0812273B2 JPH0812273B2 (en) | 1996-02-07 |
Family
ID=17848902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29761987A Expired - Fee Related JPH0812273B2 (en) | 1987-11-27 | 1987-11-27 | Continuous spent fuel processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0812273B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6221096A (en) * | 1985-07-19 | 1987-01-29 | 三菱重工業株式会社 | Melter for previously irradiated nuclear fuel |
JPS6236593A (en) * | 1985-08-12 | 1987-02-17 | 三菱重工業株式会社 | Melter for irradiated nuclear fuel |
-
1987
- 1987-11-27 JP JP29761987A patent/JPH0812273B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6221096A (en) * | 1985-07-19 | 1987-01-29 | 三菱重工業株式会社 | Melter for previously irradiated nuclear fuel |
JPS6236593A (en) * | 1985-08-12 | 1987-02-17 | 三菱重工業株式会社 | Melter for irradiated nuclear fuel |
Also Published As
Publication number | Publication date |
---|---|
JPH0812273B2 (en) | 1996-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Simpson et al. | Nuclear fuel, reprocessing of | |
US4246238A (en) | Dissolver for removing nuclear fuel materials from fuel element segments | |
US3251745A (en) | Nuclear reactor and integrated fuelblanket system therefor | |
US4435363A (en) | Continuous countercurrent liquid-solids contactor | |
RU2136063C1 (en) | Apparatus for dissolving spent fuel elements and apparatus for treating solid particles with liquid | |
JPH01141399A (en) | Continuous dissolution treatment device for used nuclear fuel | |
US4297324A (en) | Apparatus for the continuous processing of compounds in a liquid | |
US3565587A (en) | Liquid sealed gas tight dissolver with vibrating tray means | |
JPH10132989A (en) | Solution tank | |
US6365019B1 (en) | Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel | |
US3730689A (en) | Apparatus for leaching core material from sheared segments of clad nuclear fuel pins | |
US4312836A (en) | Apparatus for the continuous treatment of the compounds in a corrosive liquid | |
JPH0316639B2 (en) | ||
US3607107A (en) | Plural spent-reactor-fuel dissolvers having selective feed means | |
US3382046A (en) | Apparatus for decanning fuel elements | |
Auchapt et al. | Development of a continuous dissolution process for the new reprocessing plants at La Hague | |
JPH054639B2 (en) | ||
Groenier | Equipment for the dissolution of core material from sheared power reactor fuels | |
US7279139B2 (en) | Agitation type powder dissolving apparatus for reprocessing spent nuclear fuel | |
GB2220602A (en) | Method of, and apparatus for, cutting | |
JPS6236593A (en) | Melter for irradiated nuclear fuel | |
JP2006322816A (en) | Reprocessing method for spent nuclear fuel | |
JPS6256899A (en) | Melting tank for reprocessing nuclear fuel | |
JPS61258195A (en) | Melting tank for reprocessing nuclear fuel | |
JPS61270696A (en) | Nulcear fuel melter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |