JPH01141305A - Measuring instrument for depth of minute groove - Google Patents

Measuring instrument for depth of minute groove

Info

Publication number
JPH01141305A
JPH01141305A JP29774987A JP29774987A JPH01141305A JP H01141305 A JPH01141305 A JP H01141305A JP 29774987 A JP29774987 A JP 29774987A JP 29774987 A JP29774987 A JP 29774987A JP H01141305 A JPH01141305 A JP H01141305A
Authority
JP
Japan
Prior art keywords
sample
section
white light
light
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29774987A
Other languages
Japanese (ja)
Inventor
Kazumasa Takada
和正 高田
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29774987A priority Critical patent/JPH01141305A/en
Publication of JPH01141305A publication Critical patent/JPH01141305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To improve the portability, and also, to raise the measurement accuracy by connecting a spectral part and a sample part by using a multi-mode optical fiber so that the sample part can be detached physically from other part, in an optical type measuring instrument. CONSTITUTION:White color light which has been generated by a white color light generating part 16 is made incident on a spectral part 19, and a light beam whose spectral width is narrow is extracted, while sweeping its wavelength. This light beam from the spectral part 19 is made incident on a sample part 23 through a connecting part 20 whose main element is a multi-mode optical fiber 22. In this sample part 23, the light beam is radiated to a sample 12 in which a minute groove has been formed. Subsequently, its reflected light is detected by photodetectors 13, 27 and by inputting its detecting signal to a signal processing 28, the depth of the minute groove of the sample 12 is measured. In such a way, the spectral part 19 and the sample part 23 can be detached physically, although they are coupled, therefore, a transfer of vibration, etc., can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば、VLSI(大規模半導体集積回路)
において、半導体基板上に形成されたキャパシタ用の微
小溝や微小穴(以下微小溝と称する)の深さを簡便に、
かつ精度よく測定する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to, for example, VLSI (large-scale semiconductor integrated circuit)
, the depth of a microgroove or microhole (hereinafter referred to as a microgroove) for a capacitor formed on a semiconductor substrate can be easily determined.
The present invention also relates to a device that measures with high accuracy.

〔従来の技術〕[Conventional technology]

第2図は、従来の音響光学フィルタを用いた波長掃引型
の微小溝深さ測定装置の概略を示す構成図である(特願
昭61−98087号の高田他による[微小溝深さ測定
方法および装置」参照)。
FIG. 2 is a block diagram schematically showing a wavelength-sweeping microgroove depth measuring device using a conventional acousto-optic filter ([Microgroove depth measurement method] by Takada et al. in Japanese Patent Application No. 61-98087). and equipment).

1は白色光源、2は対物レンズ、3はスリット、4は対
物レンズ、16は1〜4により構成される白色光発生部
、5は偏光子、6は音響光学フィルタ、9はスリット、
10は検光子、7は高周波増幅器、8は周波数掃引発振
器、19は5.6,9.10.7.8により構成される
分光部、11はビームスプリッタ、12は深さを測定す
べき微小溝が形成された被測定用試料、13は光検出器
1 is a white light source, 2 is an objective lens, 3 is a slit, 4 is an objective lens, 16 is a white light generation section constituted by 1 to 4, 5 is a polarizer, 6 is an acousto-optic filter, 9 is a slit,
10 is an analyzer, 7 is a high-frequency amplifier, 8 is a frequency sweep oscillator, 19 is a spectroscopic unit composed of 5.6, 9.10.7.8, 11 is a beam splitter, and 12 is a micrometer whose depth is to be measured. A sample to be measured has grooves formed therein, and 13 is a photodetector.

23は11.12.13.および図示しない試料ホルダ
により構成される試料部、14はADコンバータ、15
はコンピュータ、28は14.15により構成される信
号処理部である。
23 is 11.12.13. and a sample section consisting of a sample holder (not shown), 14 is an AD converter, 15
28 is a signal processing section composed of a computer and 14.15.

白色光源1からの出射光は、対物レンズ2と4、および
スリット3により平行ビームとなり、偏光子5、音響フ
ィルタ6、スリット9、および検光子10により波長4
00〜800nmまでの波長域を300m5ecの周期
で掃引する光を形成する。音響光学フィルタ6の駆動用
の周波数掃引発振器8は、90〜40 M Hzまでの
高周波領域を300m5ecの周期で掃引し、この高周
波出力を高周波増幅器7により増幅した後、これを音響
光学フィルタ6に印加している。この波長掃引光は、ビ
ームスプリッタ11を透過し、試料12に照射される。
The light emitted from the white light source 1 becomes a parallel beam by objective lenses 2 and 4 and a slit 3, and is converted into a parallel beam by a polarizer 5, an acoustic filter 6, a slit 9, and an analyzer 10, which converts the light into a parallel beam with a wavelength of 4.
Light is generated that sweeps a wavelength range from 00 to 800 nm at a period of 300 m5ec. A frequency sweep oscillator 8 for driving the acousto-optic filter 6 sweeps a high frequency region from 90 to 40 MHz at a period of 300 m5ec, and after amplifying this high frequency output with a high frequency amplifier 7, it is sent to the acousto-optic filter 6. is being applied. This wavelength swept light passes through the beam splitter 11 and is irradiated onto the sample 12.

試料12からの反射光は、ビームスプリッタ11で反射
され、光検出器13でこれを受光する。この光検出器1
3の出力は、ADコンバータ14でディジタル変換され
、これをコンピュータ15で処理する。波長λにおける
試料12への入射光のパワーをP(λ)とすれば、反射
光強度I(λ)は、 ■(λ)=η(λ)P(λ)  (1+Kc o s(
4駕d/λ))・・・(1) で表わされる。ここで、dは試料12に形成された微小
溝の深さ、η(λ)は試料12の表面における反射率、
Kは微小溝における光の減衰率である。波長λの掃引に
対して、(1)式のピークをれることが可能となる。
The reflected light from the sample 12 is reflected by the beam splitter 11 and is received by the photodetector 13. This photodetector 1
The output of No. 3 is digitally converted by the AD converter 14 and processed by the computer 15. If the power of the light incident on the sample 12 at the wavelength λ is P(λ), the reflected light intensity I(λ) is: ■(λ)=η(λ)P(λ) (1+Kcos(
4d/λ))...(1) It is expressed as follows. Here, d is the depth of the microgroove formed in the sample 12, η(λ) is the reflectance on the surface of the sample 12,
K is the attenuation rate of light in the microgroove. It becomes possible to eliminate the peak in equation (1) for sweeping the wavelength λ.

(発明が解決しようとする問題点〕 第2図に示した従来の測定装置では、分光部19と試料
部23とが分離不可能で固定されているため、この試料
部23の可搬性に劣り、また、VLSIの溝形成を含む
製造プロセスにおいて、該溝の深さをモニターするため
に、試料部23をプロセス装置内に設置する一方で、そ
の他の各部・16.19.28を、プロセス装置外に該
装置から離して設置するという半導体製造ラインにおけ
る要望を十分かなえるのは難しいという問題がある。す
なわち、当該測定装置の各部16,19.28を製造プ
ロセス装置内に設置すると、Il造中のVLSIにごみ
が混入したり、あるいは、当該測定装置の各部が振動や
ノイズ等の影響を受けて微小溝深さの測定精度が低下す
る問題がある。
(Problems to be Solved by the Invention) In the conventional measuring device shown in FIG. 2, the spectroscopic section 19 and the sample section 23 are fixed and cannot be separated, so the portability of the sample section 23 is poor. In addition, in the manufacturing process including VLSI groove formation, in order to monitor the depth of the groove, the sample section 23 is installed in the process equipment, while the other parts 16.19.28 are installed in the process equipment. There is a problem in that it is difficult to satisfactorily meet the demand in semiconductor manufacturing lines to install the measurement equipment outside and away from the equipment.In other words, if each part 16, 19, 28 of the measurement equipment is installed inside the manufacturing process equipment, There is a problem in that the accuracy of measuring the microgroove depth decreases due to dust getting into the VLSI, or because various parts of the measuring device are affected by vibrations, noise, etc.

本発明の目的は、微小溝深さ測定装置において。The object of the present invention is to provide a micro groove depth measuring device.

物理的には搬送可能に分離して試料部の可搬性を向上し
、試料部以外の各部を試料部から離すことができる装置
を提供することにある。
The object of the present invention is to provide an apparatus in which the sample part can be physically separated to be transportable to improve the portability of the sample part, and each part other than the sample part can be separated from the sample part.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明は、多モード光フ
ァイバを使用して試料部と分光部とを連結し、かつ、多
モード光ファイバへの入出射用の光学系を設置する。
In order to achieve the above object, the present invention uses a multimode optical fiber to connect a sample section and a spectroscopic section, and also installs an optical system for entering and exiting the multimode optical fiber.

すなわち、本発明は、白色光発生部と、該白色光発生部
により出射される白色光からスペクトル幅の狭い光をそ
の波長を掃引しながら抽出する分光部と、前記白色光発
生部から出射される白色光。
That is, the present invention provides a white light generating section, a spectroscopic section that extracts light with a narrow spectrum width from the white light emitted by the white light generating section while sweeping the wavelength thereof, and a spectroscopic section that extracts light with a narrow spectrum width from the white light emitted by the white light generating section; white light.

もしくは該白色光を前記分光部により分光した光を、微
小溝が形成された試料に照射したときの反射光を抽出す
るための試料部と、前記試料からの反射光を受光する光
検出器からの出力を信号処理する信号処理部を含んで成
る微小溝深さ測定装置において、前記分光部と前記試料
部とを光学的に接続するための多モード光ファイバを主
要素とする連結部を備えたことを特徴とする。
Or from a sample section for extracting reflected light when a sample in which microgrooves are formed is irradiated with light obtained by dividing the white light by the spectroscopic section, and a photodetector for receiving the reflected light from the sample. A microgroove depth measuring device comprising a signal processing section for signal processing the output of the microgroove depth measuring device, comprising a connecting section mainly composed of a multimode optical fiber for optically connecting the spectroscopic section and the sample section. It is characterized by:

〔作用〕[Effect]

上記のように1本発明の装置では、多モード光ファイバ
を利用して試料部と分光部とを接続したことにより、該
試料部と分光部とを光学的には結合した上で、試料部の
みの可搬性を大幅に向上させ、試料部以外の各部をVL
SI製造プロセス装置外で該装置から離すことができる
ので、製造中のVLSIへのごみの混入を低減し、かつ
当該測定装置の各部が振動やノイズ等の影響を受けて微
小溝深さの測定精度が低下するのを防止すること・がで
きる。
As described above, in the apparatus of the present invention, the sample section and the spectroscopic section are connected using a multimode optical fiber, so that the sample section and the spectroscopic section are optically coupled, and the sample section and the spectroscopic section are optically coupled. This greatly improves the portability of the
Since it can be placed outside the SI manufacturing process equipment and separated from the equipment, it is possible to reduce the contamination of dust into the VLSI being manufactured, and to measure the depth of microgrooves because each part of the measuring equipment is affected by vibrations, noise, etc. It is possible to prevent the accuracy from decreasing.

〔実施例〕〔Example〕

実施例 1 第1図は、本発明の第1の実施例の装置を示す概略構成
図である。
Embodiment 1 FIG. 1 is a schematic configuration diagram showing an apparatus according to a first embodiment of the present invention.

16は白色光発生部、1は白色光源、2は対物レンズ、
17は多モード光ファバ、18は対物レンズ、19は分
光部、5は偏光子、6は音響光学フィルタ、9はスリッ
ト、10は検光子、7は高周波増幅器、8は周波数掃引
発振器、20は連結部、21は対物レンズ、22は多モ
ード光ファイバ、24は対物レンズ、23は試料部、1
1はビームスプリッタ、12は微小溝が形成された試料
、25は微小溝の形成されていない表面がなめらかな参
照用試料、26は全反射鏡、13.27は光検出器、2
8は信号処理部、14はADコンバータ、15はコンピ
ュータである。なお、白色光発生部16において、多モ
ード光ファバ17を用いているが、第2図の従来装置に
おける白色光発生部16で置き換えてもよい。
16 is a white light generator, 1 is a white light source, 2 is an objective lens,
17 is a multimode optical fiber, 18 is an objective lens, 19 is a spectroscopic unit, 5 is a polarizer, 6 is an acousto-optic filter, 9 is a slit, 10 is an analyzer, 7 is a high frequency amplifier, 8 is a frequency sweep oscillator, and 20 is a 21 is an objective lens, 22 is a multimode optical fiber, 24 is an objective lens, 23 is a sample part, 1
1 is a beam splitter, 12 is a sample in which microgrooves are formed, 25 is a reference sample with a smooth surface without microgrooves, 26 is a total reflection mirror, 13.27 is a photodetector, 2
8 is a signal processing section, 14 is an AD converter, and 15 is a computer. Although the multimode optical fiber 17 is used in the white light generating section 16, it may be replaced with the white light generating section 16 in the conventional device shown in FIG.

白色光源1からの出射光は、対物レンズ2を介して多モ
ード光ファイバ17内に入射する。出射光は、対物レン
ズ18により平行ビームとなる。
Emitted light from the white light source 1 enters into the multimode optical fiber 17 via the objective lens 2. The emitted light is turned into a parallel beam by the objective lens 18.

この平行ビームは偏光子5を通過して、特定の直線偏光
で音響光学フィルタ6に入射し、特定の波長の光に分光
され、検光子10を通過した後に、対物レンズ21を介
して連結部20を構成する多モード光ファイバ22内に
入射する。多モード光ファイバ22からの出射光は、対
物レンズ24により集束され、試料12上で焦点を結ぶ
集束ビームとなる。試料12からの反射光は、ビームス
プリッタ11で反射し、全反射l!126で反射し、光
検出器13内へ入射する。一方、多モード光ファイバ2
2からの出射光のうち、ビームスプリッタ11で反射し
た光は、微小溝の形成されていない参照用試料25の表
面で反射し、ビームスプリッタ11を透過し、全反射鏡
26で全反射した後、光検出器27へ入射する。
This parallel beam passes through a polarizer 5, enters an acousto-optic filter 6 as a specific linearly polarized light, is split into light of a specific wavelength, passes through an analyzer 10, and then passes through an objective lens 21 to a coupling section. 20 into a multimode optical fiber 22 . The light emitted from the multimode optical fiber 22 is focused by the objective lens 24 to become a focused beam that is focused on the sample 12. The reflected light from the sample 12 is reflected by the beam splitter 11 and is totally reflected l! 126 and enters the photodetector 13. On the other hand, multimode optical fiber 2
Of the light emitted from the beam splitter 2, the light reflected by the beam splitter 11 is reflected on the surface of the reference sample 25 in which microgrooves are not formed, passes through the beam splitter 11, and is totally reflected by the total reflection mirror 26. , enters the photodetector 27.

このような構成の測定装置においては、分光部19と試
料部23とが多モード光ファイバ22を。
In the measuring device having such a configuration, the spectroscopic section 19 and the sample section 23 use a multimode optical fiber 22.

主要素とする連結部22により連結されているので、両
者を分離し、試料部23を任意の場所へ搬送することが
でき、一方、白色光発生部16と分光部19はVLSI
製造プロセス装置外の所定の場所に該装置から離して固
定しておくことができる。
Since they are connected by the connecting part 22 which is the main element, the two can be separated and the sample part 23 can be transported to any location.On the other hand, the white light generating part 16 and the spectroscopic part 19 are
It can be fixed at a predetermined location outside the manufacturing process equipment and away from the equipment.

なお、参照用試料25を設置し、該参照用試料25から
の反射光を独立に光検出器27で受光する理由は、白色
光源の出力は変動するので、その変動による測定誤差を
避けるためである。すなわち、前記従来技術のところで
説明したように、光検出器13からの出力は、(1)式
よりη(λ)P(λ)(1+Kcos (4gd/λ)
)に比例し、一方、光検出器27からの出力は、η(λ
)P(λ)に比例する。そこで、光検出器27からの出
力が、波長λの掃引と共に、一定、すなわち。
Note that the reason why the reference sample 25 is installed and the light reflected from the reference sample 25 is independently received by the photodetector 27 is to avoid measurement errors due to the fluctuations in the output of the white light source. be. That is, as explained in the section of the prior art, the output from the photodetector 13 is expressed as η(λ)P(λ)(1+Kcos (4gd/λ) from equation (1).
), while the output from the photodetector 27 is proportional to η(λ
) P(λ). Therefore, the output from the photodetector 27 is constant as the wavelength λ is swept.

η(λ)P(λ)=P0が一定となるように、周波数掃
引発振器8へ振幅変調を印加し、音響光学フィルタ6の
分光特性を時間的に変化させている。
Amplitude modulation is applied to the frequency sweep oscillator 8 to temporally change the spectral characteristics of the acousto-optic filter 6 so that η(λ)P(λ)=P0 is constant.

このとき、光検出器13からの出力は、Po(1+Kc
os (4πd/λ))で、直流成分はPo、交流成分
はP、Kcos(4πd/λ)となるので、交流成分の
みをバイパスフィルタで抽出することにより、P、Kc
os(4πd/λ)を抽出できる。このため、Kが十分
小さい場合でも、該交流成分を増幅し、時間平均を行な
うことにより、微小溝からの反射光が十分少ない場合で
も精度よく微小溝深さが測定できる。なお、光検出器2
7からの出力を一定ではなく、特定の変化をするように
、周波数掃引発振器8へ振幅変調を印加し、音響光学フ
ィルタ6の分光特性を時間的に変化させてもよい。
At this time, the output from the photodetector 13 is Po(1+Kc
os (4πd/λ)), the DC component is Po, and the AC component is P, Kcos (4πd/λ), so by extracting only the AC component with a bypass filter, P, Kc
os(4πd/λ) can be extracted. Therefore, even when K is sufficiently small, by amplifying the alternating current component and performing time averaging, the microgroove depth can be measured with high accuracy even when the amount of reflected light from the microgrooves is sufficiently small. Note that the photodetector 2
Amplitude modulation may be applied to the frequency sweep oscillator 8 so that the output from the acousto-optic filter 7 changes in a specific manner instead of being constant, thereby changing the spectral characteristics of the acousto-optic filter 6 over time.

実施例 2 第3図は、本発明の第2の実施例を示す概略構成図であ
る。各構成要素は第1図に示した第1の実施例と同様で
あるので、説明を省略する。
Embodiment 2 FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention. Each component is the same as that of the first embodiment shown in FIG. 1, so a description thereof will be omitted.

第1の実施例との差違は、第1の実施例の装置では、白
色光発生部16、分光部19.連結部20、試料部23
の順に構成されているのに対して、本実施例の装置では
、第3図に示すごとく、白色光源部16、試料部23、
連結部20、分光部19の順に構成されている点である
。第1の実施例では1分光部19で分光した光を、連結
部20の多モード光ファイバ22へ対物レンズ21を介
して入射させており、各波長ごとに音響光学フィルタ6
の回折光の角度がわずかに変化するために、多モード光
ファイバ22への回折光の結合効率は、各波長ごとに変
化する。一方、本実施例では、第3図に示すように、音
響光学フィルタ6の回折光は、光検出器13へ入射する
ため、光検出器13の受光径がある程度大きければ、回
折角の波長による変化の影響は問題でなくなるという利
点がある。なお、本実施例では、試料部23のみをVL
SIの製造プロセス装置内に設置するために、ある程度
の長さを有する多モード光ファイバ17が有効となる。
The difference from the first embodiment is that the apparatus of the first embodiment has a white light generating section 16, a spectroscopic section 19. Connecting part 20, sample part 23
In contrast, in the apparatus of this embodiment, as shown in FIG. 3, a white light source section 16, a sample section 23,
The point is that the connecting section 20 and the spectroscopic section 19 are configured in this order. In the first embodiment, the light separated by the 1-split section 19 is made to enter the multimode optical fiber 22 of the coupling section 20 via the objective lens 21, and an acousto-optic filter 6 is provided for each wavelength.
Since the angle of the diffracted light changes slightly, the coupling efficiency of the diffracted light to the multimode optical fiber 22 changes for each wavelength. On the other hand, in this embodiment, as shown in FIG. 3, since the diffracted light from the acousto-optic filter 6 is incident on the photodetector 13, if the receiving diameter of the photodetector 13 is large to some extent, the wavelength of the diffraction angle will depend on the wavelength of the diffraction angle. The advantage is that the effects of change no longer matter. Note that in this embodiment, only the sample portion 23 is set to VL.
A multimode optical fiber 17 having a certain length is effective for installation in the SI manufacturing process equipment.

実施例 3 第4図は1本発明の第3の実施例の装置の白色光発生部
および試料部を示す概−構成図である。
Embodiment 3 FIG. 4 is a schematic diagram showing a white light generating section and a sample section of an apparatus according to a third embodiment of the present invention.

図において、29は光の合分波を行なう多モード光ファ
イバカプラである。他の各構成要素は、第3図に示した
第2の実施例と同様であるので、説明を省略する。
In the figure, 29 is a multimode optical fiber coupler that performs multiplexing and demultiplexing of light. The other constituent elements are the same as those in the second embodiment shown in FIG. 3, so their explanation will be omitted.

白色光源1からの出射光は、対物レンズ2により集束さ
れて多モード光ファイバカプラ29の第1の端部C1か
ら入射した後、2分され、第2の端部C2と第3の端部
C1から出射する。第2の端部C2から出射した光は、
被測定用試料12に照射され、該試料12からの反射光
は、第2の端部C2から入射し、多モード光ファイバカ
プラ29を通り1分光部19へと接続される。このよう
な構成により、本実施例では、■第2の実施例における
多モード光ファイバ17および入射用の光学系(対物レ
ンズ18)が不用なこと、および■バルク型のビームス
プリッタ11の代わりに、ファイバ型のカプラ29を使
用したために、光の合分波を安定して行なうことができ
、光学的軸ずれの問題がない、という利点がある。
The emitted light from the white light source 1 is focused by the objective lens 2, enters the multimode optical fiber coupler 29 from the first end C1, and is divided into two parts, the second end C2 and the third end. It emits from C1. The light emitted from the second end C2 is
The light irradiated onto the sample 12 to be measured and reflected from the sample 12 enters from the second end C2, passes through the multimode optical fiber coupler 29, and is connected to the 1-split section 19. With such a configuration, in this embodiment, (1) the multimode optical fiber 17 and the input optical system (objective lens 18) in the second embodiment are unnecessary, and (2) the bulk type beam splitter 11 is replaced by Since the fiber-type coupler 29 is used, there is an advantage that the optical multiplexing and demultiplexing can be performed stably and there is no problem of optical axis misalignment.

実施例 4 第5図は、本発明の第4の実施例の装置におけ・る白色
光発生部と試料部を示す概略構成図である。
Embodiment 4 FIG. 5 is a schematic configuration diagram showing a white light generating section and a sample section in an apparatus according to a fourth embodiment of the present invention.

図において、30.31は対物レンズであり、他の構成
要素は第3図、第4図と同様であるので。
In the figure, 30 and 31 are objective lenses, and the other components are the same as in FIGS. 3 and 4.

説明を省略する。The explanation will be omitted.

白色光源1からの出射光は、対物レンズ2により集束さ
れて、多モード光ファイバカプラ29の第1の端部D1
から入射した後、2分され、第2の端部D2と第3の端
部D3から出射する。第2の端部D2からの出射光は、
対物レンズ30により平行ビームとなり、被測定用試料
12の表面を照射する。該試料12からの反射光のうち
、該試料12の表面に形成された微小溝によって生じた
高次の回折光は、2つの端部D2とり、のうち、D。
The emitted light from the white light source 1 is focused by the objective lens 2, and is directed to the first end D1 of the multimode optical fiber coupler 29.
The light enters the field, is divided into two parts, and exits from the second end D2 and the third end D3. The light emitted from the second end D2 is
A parallel beam is formed by the objective lens 30 and irradiates the surface of the sample 12 to be measured. Of the reflected light from the sample 12, high-order diffracted light generated by the microgrooves formed on the surface of the sample 12 is transmitted to two ends D2.

に対物レンズ31を介して多モード光ファイバカプラ2
9へ入射され、分光部19へと導かれる。
A multimode optical fiber coupler 2 is connected to the optical fiber via an objective lens 31.
9 and guided to the spectroscopic section 19 .

高次回折光を利用する理由は、高次回折光の方が、O次
回折光(すなわち、試料12の表面から垂直に反射する
光)に比べると、試料12の表面からの反射光の影響が
著しく少なく、このため。
The reason for using higher-order diffracted light is that higher-order diffracted light is significantly less affected by light reflected from the surface of sample 12 than O-order diffracted light (that is, light reflected perpendicularly from the surface of sample 12). ,For this reason.

試料12の表面に形成された微小溝からの反射光と試料
12の表面反射光との干渉の効果がきわだっためである
(第46回応用物理学会学術講演会講演予稿集 198
5年秋期2P−H−13参照)、すなわち、従来の技術
の説明における(1)式中、直流成分η(λ)P(λ)
が著しく小さくなるためである。
This is because the effect of interference between the light reflected from the microgrooves formed on the surface of sample 12 and the light reflected from the surface of sample 12 is significant (Proceedings of the 46th Japan Society of Applied Physics Academic Conference 198
(see Fall 2015 2P-H-13), that is, in equation (1) in the description of the conventional technology, the DC component η(λ)P(λ)
This is because it becomes significantly smaller.

以上本発明の実施例について説明したが、本発明は、前
記の各実施例に限定されることなく1本発明の特許請求
の範囲内で種々の変形、改良があり得ることは言うまで
もない。
Although the embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to the above-mentioned embodiments, and that various modifications and improvements can be made within the scope of the claims of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、試料部と分光部
とを光学的には結合したままで試料部を可動可能とし、
試料部のみをVLSIの製造プロセス装置内に設置し、
他の各部を製造プロセス装置外に離して設置することが
できるので、製造中のVLSIへのごみの混入が低減で
き、かつ当該測定装置の各部が振動やノイズ等の影響を
受けることにより微小溝深さの測定精度が低下するのを
防止することができる。
As explained above, according to the present invention, the sample section can be moved while the sample section and the spectroscopic section are optically coupled,
Only the sample part is installed in the VLSI manufacturing process equipment,
Since other parts can be installed separately outside the manufacturing process equipment, it is possible to reduce the amount of dust entering the VLSI during manufacturing, and also prevent micro-grooves from entering the VLSI because each part of the measuring equipment is affected by vibrations, noise, etc. Deterioration of depth measurement accuracy can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例の微小溝測定装置の概
略構成図、第2図は、従来の装置の概略構成図、第3図
は、本発明の第2の実施例の装置の概略構成図、第4図
は、本発明の第3の実施例の装置の概略構成図、第5図
は、本発明の第4の実施例の装置の概略構成図である。 1・・・白色光源 2.4.18.21.24.30.31・・・対物レン
ズ 3.9・・・スリット 5・・・偏光子 6・・・音響光学フィルタ 7・・・高周波増幅器 8・・・周波数掃引発振器 10・・・検光子 11・・・ビームスプリッタ 12・・・微小溝が形成された被測定用試料13.27
・・・光検出器 14・・・ADコンバータ 15・・・コンピュータ 16・・・白色光発生部 17・・・多モード光ファバ 19・・・分光部 20・・・連結部 22・・・多モード光ファイバ 23・・・試料部 25・・・微小溝が形成されていない参照用試料26・
・・全反射鏡 28・・・信号処理部 29・・・多モード光ファバカプラ 特許出願人 日本電信電話株式会社
FIG. 1 is a schematic diagram of a microgroove measuring device according to a first embodiment of the present invention, FIG. 2 is a schematic diagram of a conventional device, and FIG. 3 is a diagram of a microgroove measuring device according to a second embodiment of the present invention. FIG. 4 is a schematic diagram of the apparatus according to the third embodiment of the present invention, and FIG. 5 is a schematic diagram of the apparatus according to the fourth embodiment of the present invention. 1... White light source 2.4.18.21.24.30.31... Objective lens 3.9... Slit 5... Polarizer 6... Acousto-optic filter 7... High frequency amplifier 8... Frequency sweep oscillator 10... Analyzer 11... Beam splitter 12... Sample to be measured with micro grooves formed 13.27
... Photodetector 14 ... AD converter 15 ... Computer 16 ... White light generation section 17 ... Multimode optical fiber 19 ... Spectrometer 20 ... Connection section 22 ... Multi Mode optical fiber 23...sample part 25...reference sample 26 in which microgrooves are not formed
... Total reflection mirror 28 ... Signal processing unit 29 ... Multimode optical fiber coupler Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1、白色光発生部と、該白色光発生部により出射される
白色光からスペクトル幅の狭い光をその波長を掃引しな
がら抽出する分光部と、前記白色光発生部から出射され
る白色光、もしくは該白色光を前記分光部により分光し
た光を、微小溝が形成された試料に照射したときの反射
光を抽出するための試料部と、前記試料からの反射光を
受光する光検出器からの出力を信号処理する信号処理部
を含んで成る微小溝深さ測定装置において、前記分光部
と前記試料部とを光学的に接続するための多モード光フ
ァイバを主要素とする連結部を備えたことを特徴とする
微小溝深さ測定装置。 2、前記分光部が音響光学フィルタおよび該音響光学フ
ィルタ駆動用の周波数掃引発振器を備えていることを特
徴とする特許請求の範囲第1項記載の微小溝深さ測定装
置。 3、前記分光部が音響光学フィルタおよび該音響光学フ
ィルタ駆動用の周波数掃引発振器を備え、前記試料部が
前記試料からの反射光を受光する第1の光検出器と、前
記試料の他に該試料と同種の試料で微小溝が形成されて
いない試料および該試料からの反射光を受光する第2の
光検出器を備え、かつ、該第2の光検出器の出力が波長
の掃引と共に一定となるように、もしくは該出力が波長
の掃引と共に特定の変化をするように前記音響光学フィ
ルタの前記周波数掃引発振器ヘ振幅変調を加えるための
フィードバック系を前記信号処理部に備えたことを特徴
とする特許請求の範囲第1項記載の微小溝深さ測定装置
。 4、前記各部が、前記白色光発生部、前記分光部、前記
連結部、前記試料部、および前記信号処理部の順に接続
されていることを特徴とする特許請求の範囲第1項記載
の微小溝深さ測定装置。 5、前記各部が、前記白色光源発生部、前記試料部、前
記連結部、前記分光部、および前記信号処理部の順に接
続されていることを特徴とする特許請求の範囲第1項記
載の微小溝深さ測定装置。 6、前記各部が、前記白色光源発生部、前記試料部、前
記連結部、前記分光部、および前記信号処理部の順に接
続され、前記連結部の主要素が多モード光ファイバカプ
ラで構成され、かつ、該多モード光ファイバカプラは、
前記白色光発生部からの白色光を前記試料に照射し、該
試料からの反射光を入射し、かつ、該反射光を前記分光
部へ導くようになっていることを特徴とする特許請求の
範囲第1項記載の微小溝深さ測定装置。 7、前記多モード光ファイバカプラの第1の端部から前
記白色光を入射させ、該多モード光ファイバの第2の端
部から前記試料に照射させ、該第2の端部から前記試料
からの反射光を前記多モード光ファイバカプラ内に入射
させ、該反射光を第3の端部から前記分光部へ導くよう
になっていることを特徴とする特許請求の範囲第6項記
載の微小溝深さ測定装置。 8、前記多モード光ファイバカプラの第1の端部から前
記白色光を入射させ、該多モード光ファイバの第2の端
部から前記試料に照射させ、第3の端部から前記試料か
らの回折光および反射光のうち少なくとも回折光を前記
多モード光ファイバカプラ内に入射させ、該入射した光
を第4の端部から前記分光部へ導くようになっているこ
とを特徴とする特許請求の範囲第6項記載の微小溝深さ
測定装置。
[Scope of Claims] 1. A white light generating section, a spectroscopic section that extracts light with a narrow spectrum width from the white light emitted by the white light generating section while sweeping the wavelength thereof, and a spectroscopic section that extracts light with a narrow spectrum width from the white light emitted by the white light generating section; a sample section for extracting reflected light when a sample in which microgrooves are formed is irradiated with emitted white light or light separated by the white light by the spectrometer; and a sample section for extracting reflected light from the sample. A microgroove depth measuring device comprising a signal processing section that processes the output from a photodetector that receives light, the main element of which is a multimode optical fiber for optically connecting the spectroscopic section and the sample section. A microgroove depth measuring device characterized by comprising a connecting portion. 2. The microgroove depth measuring device according to claim 1, wherein the spectroscopic section includes an acousto-optic filter and a frequency sweep oscillator for driving the acousto-optic filter. 3. The spectroscopic unit includes an acousto-optic filter and a frequency sweep oscillator for driving the acousto-optic filter, and the sample unit includes a first photodetector that receives reflected light from the sample, and A sample including a sample of the same type as the sample in which microgrooves are not formed and a second photodetector that receives reflected light from the sample, and the output of the second photodetector is constant as the wavelength is swept. The signal processing section is characterized by comprising a feedback system for applying amplitude modulation to the frequency sweep oscillator of the acousto-optic filter so that the frequency sweep oscillator of the acousto-optic filter has a specific change in the frequency sweep oscillator so that the output changes in a specific manner as the wavelength sweeps. A micro groove depth measuring device according to claim 1. 4. The microscopic device according to claim 1, wherein each of the parts is connected in the order of the white light generating part, the spectroscopic part, the connecting part, the sample part, and the signal processing part. Groove depth measuring device. 5. The microscopic device according to claim 1, wherein each of the parts is connected in the order of the white light source generating part, the sample part, the connecting part, the spectroscopic part, and the signal processing part. Groove depth measuring device. 6. The respective parts are connected in the order of the white light source generation part, the sample part, the connection part, the spectroscopy part, and the signal processing part, and the main element of the connection part is composed of a multimode optical fiber coupler, And, the multimode optical fiber coupler is
The method of claim 1 is characterized in that the sample is irradiated with white light from the white light generating section, the reflected light from the sample is incident, and the reflected light is guided to the spectroscopic section. The micro groove depth measuring device according to scope 1. 7. Inject the white light from the first end of the multimode optical fiber coupler, irradiate the sample from the second end of the multimode optical fiber, and emit the white light from the sample from the second end. The reflected light of the multimode optical fiber coupler is made to enter the multimode optical fiber coupler, and the reflected light is guided from the third end to the spectroscopic section. Groove depth measuring device. 8. The white light is incident from the first end of the multimode optical fiber coupler, the sample is irradiated from the second end of the multimode optical fiber, and the white light is emitted from the sample from the third end. A patent claim characterized in that at least the diffracted light of the diffracted light and the reflected light is made to enter the multimode optical fiber coupler, and the entered light is guided from the fourth end to the spectroscopic section. The micro groove depth measuring device according to item 6.
JP29774987A 1987-11-27 1987-11-27 Measuring instrument for depth of minute groove Pending JPH01141305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29774987A JPH01141305A (en) 1987-11-27 1987-11-27 Measuring instrument for depth of minute groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29774987A JPH01141305A (en) 1987-11-27 1987-11-27 Measuring instrument for depth of minute groove

Publications (1)

Publication Number Publication Date
JPH01141305A true JPH01141305A (en) 1989-06-02

Family

ID=17850679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29774987A Pending JPH01141305A (en) 1987-11-27 1987-11-27 Measuring instrument for depth of minute groove

Country Status (1)

Country Link
JP (1) JPH01141305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072098A (en) * 2000-07-10 2002-03-12 Leica Microsystems Heidelberg Gmbh Optical assembly md device for coupling light of at least one wavelength to confocal scanning microscope
CN104713492A (en) * 2015-02-03 2015-06-17 中国电建集团华东勘测设计研究院有限公司 Method for measuring depth of loose ring of deeply-buried columnar jointed rock tunnel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072098A (en) * 2000-07-10 2002-03-12 Leica Microsystems Heidelberg Gmbh Optical assembly md device for coupling light of at least one wavelength to confocal scanning microscope
CN104713492A (en) * 2015-02-03 2015-06-17 中国电建集团华东勘测设计研究院有限公司 Method for measuring depth of loose ring of deeply-buried columnar jointed rock tunnel

Similar Documents

Publication Publication Date Title
US5619326A (en) Method of sample valuation based on the measurement of photothermal displacement
CA2007190C (en) Laser optical ultrasound detection
US5268741A (en) Method and apparatus for calibrating a polarization independent optical coherence domain reflectometer
US7426038B2 (en) Detection device, optical path length measurement device, measurement instrument, optical member evaluation method, and temperature change detection method
CN110207733B (en) Optical fiber interferometer arm length difference measuring device and method based on sweep frequency laser
US7046366B2 (en) Apparatus, method, and program for measuring optical characteristic using quantum interference, and recording medium for recording the program
CN104931126A (en) A laser interference vibration detection apparatus based on supersonic wave external modulation
JP2744742B2 (en) Gas concentration measuring method and its measuring device
JP4853255B2 (en) Gas analyzer
WO2002077680A1 (en) Apparatus and method for measuring polarization-dependent loss using repeated high speed polarization scrambling
JPH01141305A (en) Measuring instrument for depth of minute groove
Yoshioka et al. A method for measuring the frequency response of photodetector modules using twice-modulated light
JPWO2014208349A1 (en) Optical measuring apparatus and optical measuring method
US6690454B2 (en) Method, apparatus and system for testing one or more waveguides of an optical device
CN213842395U (en) Dynamic and static combined measurement distributed optical fiber sensing system
CN204730935U (en) Based on the laser interference vibration detection device of ultrasound wave external modulation
JP3496878B2 (en) Chromatic dispersion and loss wavelength dependence measuring device
US20240241309A1 (en) Optical wafer-scale photodiode bandwidth measurement system
JPH0363008B2 (en)
JP2783843B2 (en) Optical branching ratio measuring method and apparatus
KR20020050831A (en) Industrial laser speed measurement apparatus and method using optical fiber
KR100381007B1 (en) Method for Detecting Light And Optical Spectrometer Using Acoustic Wave
JPS60224044A (en) Surface inspecting device by light heterodyne interference method
JP2746488B2 (en) Optical waveguide loss measurement method
JP3194824B2 (en) Measurement method of propagation constant difference of optical waveguide