JPH01141224A - Magnetic bearing - Google Patents

Magnetic bearing

Info

Publication number
JPH01141224A
JPH01141224A JP29653187A JP29653187A JPH01141224A JP H01141224 A JPH01141224 A JP H01141224A JP 29653187 A JP29653187 A JP 29653187A JP 29653187 A JP29653187 A JP 29653187A JP H01141224 A JPH01141224 A JP H01141224A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic
fixed
peripheral surface
end surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29653187A
Other languages
Japanese (ja)
Inventor
Hiroto Inoue
裕人 井ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29653187A priority Critical patent/JPH01141224A/en
Publication of JPH01141224A publication Critical patent/JPH01141224A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Abstract

PURPOSE:To reduce the position change due to the external turbulence through the noncontact operation by installing a magnetic circuit means in which magnetic paths are short-circuited between the opposed both edge surfaces in the cavity part of a fixed member having a U-shaped section and forming a prescribed gap between the fixed member and a superconductive member fixed onto the shaft. CONSTITUTION:A fixed member 2 is arranged for a superconductive member 1 fixed onto a shaft 4 so that each cavity having a U-shaped section becomes a prescribed value, and a coil 3 made of conductive or superconductive material is arranged on the inner peripheral surface of the fixed member 2 opposed to the outer peripheral surface of the superconductive member 1. Therefore, each cavity distance is set to a desired value by the Meissner effect generated on the both edge surfaces of the superconductive member 1 and the outer peripheral surface, and an arbitrary hearing rigidity is generated, and the position change due to the external turbulence can be reduced through the noncontact operation.

Description

【発明の詳細な説明】 産業上の利用分野 □ 本発明は、超電導現象のマイスナー効果を利用して
、回転体をラジアルおよびスラスト方向に支持する反発
形の磁気軸受に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application □ The present invention relates to a repulsion type magnetic bearing that supports a rotating body in the radial and thrust directions by utilizing the Meissner effect of superconducting phenomenon.

従来の技術 近年、超電導材料を利用した反発形磁気軸受が利用され
つつある。
BACKGROUND OF THE INVENTION In recent years, repulsive magnetic bearings using superconducting materials have come into use.

以下、図面を参照しながら従来の磁気軸受の一例につい
て説明する。
An example of a conventional magnetic bearing will be described below with reference to the drawings.

第4図は従来の磁気軸受の半断面図を示している0回転
軸4には回転軸4と同心状でかつ円柱状の超電導部材1
が固定されており、回転部10を形成している。また、
回転軸4は2つの固定されたラジアル軸受6との固体接
触によって、ラジアル方向への運動を規制されている。
FIG. 4 shows a half-sectional view of a conventional magnetic bearing.The rotating shaft 4 has a cylindrical superconducting member 1 concentric with the rotating shaft 4.
is fixed and forms the rotating part 10. Also,
Movement of the rotating shaft 4 in the radial direction is restricted by solid contact with two fixed radial bearings 6.

さらに、超電導部材lの一方の端面ば、鉄や鋼等の磁性
材料よりなる固定部材2の一面と対向しており、また、
超電導部材1と対向する固定部材2の面には回転軸4に
対して同心状にコイル3が配設されている。
Furthermore, one end surface of the superconducting member l faces one surface of the fixing member 2 made of a magnetic material such as iron or steel, and
A coil 3 is disposed concentrically with respect to the rotation shaft 4 on the surface of the fixed member 2 facing the superconducting member 1 .

ここで、コイル3に所定の電流を流すと、磁路Cを形成
するが、超電導部材10特育の効果であるマイスナー効
果によって超電導部材1と固定部材2の間には磁気反発
力が働き、その反発力によって、超電導部材1は固定部
材2より所定の浮上量dだけの空隙を持つこととなり、
非接触によるスラスト軸受の機能を持つことができる。
Here, when a predetermined current is passed through the coil 3, a magnetic path C is formed, but a magnetic repulsion force acts between the superconducting member 1 and the fixed member 2 due to the Meissner effect, which is a special effect of the superconducting member 10. Due to the repulsive force, the superconducting member 1 has a gap of a predetermined floating height d from the fixed member 2,
It can function as a non-contact thrust bearing.

ここで、コイル3に所定の電流を流したときの浮上量d
と反発力である負荷容量Fとの間には、第5図に示すよ
うに浮上量dが増大するにつれ、負荷容量Fは低下する
特性があり、また、浮上量dと軸受剛性にとの間には第
6図に示すようにたとえば所定の浮上量doで最大の軸
受剛性Koとなるような性質がある。たとえば、木香 
亘、岡野 真「超電導反発形磁気軸受」、日本機械学会
論文1)(Cm> 521)481号(昭61−9)2
540〜2546ページ。
Here, the flying height d when a predetermined current is passed through the coil 3
As shown in Fig. 5, as the flying height d increases, the load capacity F decreases, and there is also a relationship between the flying height d and the bearing rigidity. As shown in FIG. 6, there is a property in between that, for example, the bearing stiffness Ko is maximum at a predetermined flying height do. For example, Kika
Wataru, Makoto Okano "Superconducting repulsion type magnetic bearing", Japan Society of Mechanical Engineers paper 1) (Cm> 521) No. 481 (Sho 61-9) 2
Pages 540-2546.

発明が解決しようとする問題点 しかしながら、上記のような構成においては、コイル3
に所定の電流を流したときの浮上i1dは、図4に示す
ように負荷容量Fと回転部lOの自重が釣り合うところ
で一義的に決定されるため、最良の軸受剛性を任意に選
択することはできなかった。たとえば、回転部lOの自
重が軽すぎたり、重すぎたりすると、第4図および第5
図かられかるように、軸受剛性には共に小さくなり、こ
の状態で回転軸4のスラスト軸方向に外乱fsが加わる
と、回転部lOはスラスト方向に大きく変動するという
問題点があった。また、回転軸4のラジアル方向への規
制は固体接触のため、摩擦による負荷が発生するという
問題点があった。
Problems to be Solved by the Invention However, in the above configuration, the coil 3
The levitation i1d when a predetermined current is applied to is uniquely determined at the point where the load capacity F and the weight of the rotating part lO are balanced, as shown in Fig. 4, so it is not possible to arbitrarily select the best bearing rigidity. could not. For example, if the weight of the rotating part 1O is too light or too heavy, the
As can be seen from the figure, there is a problem in that the bearing rigidity is both small, and if a disturbance fs is applied in the thrust axis direction of the rotating shaft 4 in this state, the rotating part 10 will fluctuate greatly in the thrust direction. Further, since the rotation shaft 4 is restricted in the radial direction by solid contact, there is a problem in that a load due to friction is generated.

問題点を解決するための手段 上記問題点を解決するために本発明の磁気軸受は、回転
軸と、前記回転軸に同心状に固定された円筒あるいは円
柱状の超電導部材と、磁性材料よりなり、断面形状がコ
の字型で空隙部を有する軸対称構造の固定部材と、前記
固定部材の空隙部の相対向する両端面間に磁路が短絡す
るようにした磁気回路手段と、前記超電導部材は、前記
固定部材の空隙部に位置し、かつ、前記超電導部材の両
端面および外周面と固定部材間には、所定の隙間を備え
たものである。
Means for Solving the Problems In order to solve the above problems, the magnetic bearing of the present invention comprises a rotating shaft, a cylindrical or cylindrical superconducting member concentrically fixed to the rotating shaft, and a magnetic material. , a fixing member having an axially symmetrical structure having a U-shaped cross section and a gap, a magnetic circuit means in which a magnetic path is short-circuited between opposite end faces of the gap of the fixing member, and the superconductor. The member is located in the gap of the fixing member, and a predetermined gap is provided between both end surfaces and the outer peripheral surface of the superconducting member and the fixing member.

作用 本発明は上記した構成によって、超電導部材の両端面の
双方および外周面の全周にそれぞれ相対向して負荷容量
を与えることにより、任意で最良の軸受剛性を超電導部
材に与えることができる。
Effect of the Invention With the above-described configuration, the present invention can provide the superconducting member with optionally the best bearing rigidity by providing opposing load capacities to both end faces and the entire circumference of the outer peripheral surface of the superconducting member.

実施例 以下本発明の一実施例の磁気軸受について、図面を参照
しながら説明する。
EXAMPLE Hereinafter, a magnetic bearing according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の磁気軸受の半断面図を
示している。
FIG. 1 shows a half-sectional view of a magnetic bearing according to a first embodiment of the present invention.

回転軸4には、この軸と同心状に円柱状の超電導部材l
が固定されており、回転部lOを形成している。固定部
材2は超電導部材1の両端面と所定の空隙をもって対向
関係にある。また、超電導部材1の外周面と対向関係に
ある固定部材2の面上には、回転軸4に対して同心状に
導電性かあるいは超電導性材料よりなるコイル3が配設
されており、コイル3の内周面は超電導部材1の外周面
と所定の空隙をもうて対向している。
The rotating shaft 4 has a cylindrical superconducting member l concentrically with this shaft.
is fixed, forming a rotating part IO. The fixing member 2 is opposed to both end surfaces of the superconducting member 1 with a predetermined gap therebetween. Further, a coil 3 made of a conductive or superconducting material is disposed concentrically with respect to the rotating shaft 4 on the surface of the fixed member 2 that faces the outer peripheral surface of the superconducting member 1. The inner circumferential surface of superconducting member 3 faces the outer circumferential surface of superconducting member 1 with a predetermined gap therebetween.

さて、本実施例においては、コイル3に所定の電流を流
すと、磁路Cが形成され、超電導部材1の両端面および
外周面では、マイスナー効果によって、負荷容量Fが両
端面では双方向、外周面では全周方向に相対向して働く
こととなる。ここで、たとえば、超電導部材lの両端面
と固定部材間の空隙をそれぞれほぼ最大の軸受剛性とな
る距離d2、d3となるようにすれば、スラスト方向へ
の外乱f3が加わったときの回転部10のスラスト方向
への変動を小さくできる。このことは、うシアル方向へ
の外乱frが加わる場合においても、同様の関係が成立
することとなり、外乱に対して位置変動を小さくするこ
とができる。また、云うまでもなく、超電導部材1と固
定部材2はスラストおよびラジアルの方向について、非
接触の軸受となっている。
Now, in this embodiment, when a predetermined current is passed through the coil 3, a magnetic path C is formed, and the load capacity F is bidirectional at both end surfaces and the outer peripheral surface of the superconducting member 1 due to the Meissner effect. On the outer peripheral surface, they work oppositely in the entire circumferential direction. Here, for example, if the gaps between both end faces of the superconducting member l and the fixed member are set to distances d2 and d3, respectively, which provide approximately maximum bearing rigidity, the rotating part when the disturbance f3 in the thrust direction is applied. 10 in the thrust direction can be reduced. This means that even when a disturbance fr in the radial direction is applied, a similar relationship holds true, and the positional fluctuation can be reduced with respect to the disturbance. Needless to say, the superconducting member 1 and the fixing member 2 are non-contact bearings in the thrust and radial directions.

第2図は本発明の第2の実施例の磁気軸受の半断面図を
示している。
FIG. 2 shows a half-sectional view of a magnetic bearing according to a second embodiment of the invention.

回転軸4には、この軸と同心状に円柱状の超電導部材1
が固定されており、回転部10を形成している。固定部
材2は超電導部材1の両端面および外周面と所定の空隙
をもって対向関係にある。
The rotating shaft 4 has a cylindrical superconducting member 1 concentrically therewith.
is fixed and forms the rotating part 10. The fixing member 2 is opposed to both end surfaces and the outer peripheral surface of the superconducting member 1 with a predetermined gap therebetween.

また、超電導部材1の両端面と対向関係にある固定部材
2のそれぞれの面上の一部には、回転軸4に対して同心
状に導電性かあるいは超電導性材料よりなるコイル3a
、3bが配設されている。
Further, on a part of each surface of the fixed member 2 facing both end surfaces of the superconducting member 1, a coil 3a made of a conductive or superconducting material is provided concentrically with respect to the rotating shaft 4.
, 3b are arranged.

さて、本実施例においても、2つのコイル3a。Now, also in this embodiment, there are two coils 3a.

3bに同方向に所定の電流を流すと、磁路Cが形成され
、超電導部材1の両端面および外周面では、マイスナー
効果によって、負荷容量Fが両端面では双方向、外周面
では全周方向に相対向して働くこととなり、第1の実施
例で示したことと同様の機能を有することとなる。
When a predetermined current is passed in the same direction through 3b, a magnetic path C is formed, and due to the Meissner effect, the load capacity F increases in both directions on both end surfaces and on the outer peripheral surface, and in the entire circumferential direction on the outer peripheral surface. The second embodiment works in opposition to the second embodiment, and has the same function as that shown in the first embodiment.

第3図は本発明の第3の実施例の磁気軸受の半断面図を
示している。
FIG. 3 shows a half-sectional view of a magnetic bearing according to a third embodiment of the present invention.

回転軸4には、この軸と同心状に円筒状の超電導部材l
が固定されており、回転部lOを形成している。固定部
材2は回転軸4の軸方向に@磁された円筒状の永久磁石
5と、永久磁石5の両端面にそれぞれ接するよう設けら
れ、永久磁石5と同心状の円筒状よりなる継鉄12から
なっている。
The rotating shaft 4 has a cylindrical superconducting member l concentrically with this shaft.
is fixed, forming a rotating part IO. The fixed member 2 includes a cylindrical permanent magnet 5 magnetized in the axial direction of the rotating shaft 4, and a cylindrical yoke 12 that is provided in contact with both end surfaces of the permanent magnet 5 and is concentric with the permanent magnet 5. It consists of

また、超電導部材1の両端面は継鉄12のそれぞれの端
面と、また、超電導部材1の外周面は永久磁石5の内周
面と所定の空隙を有して対向している。
Further, both end faces of the superconducting member 1 face the respective end faces of the yoke 12, and the outer circumferential face of the superconducting member 1 faces the inner circumferential face of the permanent magnet 5 with a predetermined gap therebetween.

さて、本実施例においても、永久磁石5により磁路Cが
形成され、超電導部材1の両端面および外周面では、マ
イスナー効果によって、負荷容量Fが両端面では双方向
、外周面では全周方向に対向して働くこととなり、第1
の実施例で示したことと同様の機能を有することがわか
る。
Now, also in this embodiment, a magnetic path C is formed by the permanent magnet 5, and the load capacity F is bidirectional on both end surfaces and in the entire circumferential direction on the outer peripheral surface due to the Meissner effect on both end surfaces and the outer peripheral surface of the superconducting member 1. I was assigned to work opposite the
It can be seen that this embodiment has the same function as that shown in the embodiment.

なお、上記実施例中の超電導部材は、たとえば、いわゆ
る常温超電導体を用いるか、または、超電導臨界温度が
室温と液体窒素の沸点の間の材料を用いて液体窒素で冷
却するか(図示せず)、もしくは超電導臨界温度が液体
窒素の沸点以下の材料を用いて液体ヘリウムで冷却する
かく図示せず)をすればよい、常温超電導体の一例とて
しは、組成としてストロンチウム(Sr)、バリウム(
Ba)、イツトリウム(Y)および!R(Cu)を夫々
1:1:1:3の比率で含有するセラミック酸化物があ
る。その製造方法の一例としては、出発材料として5r
COBa003% Y20. 、CuOの夫夫の粉体を
所定量混合し、粉砕し、空気中において920℃で5時
間焼成する。この焼成・粉砕を3回繰り返し、均質性を
高める。このようにして処理した混合粉体を冷間圧縮成
型した後、空気中において1000℃で5時間焼成し、
徐冷することにより製造する。
The superconducting member in the above embodiments may be, for example, a so-called room-temperature superconductor, or a material whose superconducting critical temperature is between room temperature and the boiling point of liquid nitrogen and cooled with liquid nitrogen (not shown). ), or cooling with liquid helium using a material whose superconducting critical temperature is below the boiling point of liquid nitrogen (not shown).An example of a room-temperature superconductor is a composition of strontium (Sr) and barium. (
Ba), yttrium (Y) and! There are ceramic oxides containing R(Cu) in a ratio of 1:1:1:3, respectively. An example of its manufacturing method is to use 5r as the starting material.
COBa003% Y20. A predetermined amount of CuO powder was mixed, pulverized, and fired in air at 920° C. for 5 hours. This firing and crushing process is repeated three times to improve homogeneity. After cold compression molding the mixed powder treated in this way, it was calcined in air at 1000°C for 5 hours,
Manufactured by slow cooling.

発明の効果 以上のように本発明は、回転軸と、前記回転軸に同心状
に固定された円筒あるいは円柱状の超電導部材と、磁性
材料よりなり、断面形状がコの字型で空隙部を有する軸
対称構造の固定部材と、前記固定部材の空隙部の相対向
する両端面間に磁路が短絡するようにした磁気回路手段
と、前記超電導部材は、前記固定部材の空隙部に位置し
、かつ、前記超電導部材の両端面および外周面と固定部
材間には、所定の隙間を設けることによって、超電導部
材の両端面および外周面で発生するマイスナー効果によ
る磁気反発力を双方向あるいは全周方向より相対向して
加えることによって、任意の軸受剛性Kを超電導部材と
固定部材間、および超電導部材と磁束を発生する手段と
なるコイルや永久磁石間の空隙距離によって与えること
ができるため、外乱に対して位置変動が少なく、また、
非接触の磁気軸受を提供できる。
Effects of the Invention As described above, the present invention consists of a rotating shaft, a cylindrical or cylindrical superconducting member fixed concentrically to the rotating shaft, and a magnetic material, and has a U-shaped cross-section and a cavity. a fixing member having an axially symmetrical structure, a magnetic circuit means in which a magnetic path is short-circuited between opposing end surfaces of a gap in the fixing member, and the superconducting member located in the gap in the fixing member. , and by providing a predetermined gap between both end surfaces and the outer circumferential surface of the superconducting member and the fixed member, magnetic repulsion due to the Meissner effect generated at both end surfaces and the outer circumferential surface of the superconducting member can be suppressed in both directions or around the entire circumference. By applying the bearings in opposite directions, an arbitrary bearing stiffness K can be given by the air gap distance between the superconducting member and the fixed member, and between the superconducting member and the coil or permanent magnet that is the means for generating magnetic flux. There is little variation in position relative to
Can provide non-contact magnetic bearings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の磁気軸受の半断面図、
第2図は本発明の第2の実施例の磁気軸受の半断面図、
第3図は本発明の第3の実施例の磁気軸受の半断面図、
第4図は従来の磁気軸受の半断面図、第5図は浮上量と
負荷容量との関係図、第6図は浮上量と軸受剛性との関
係図である。 1・・・・・・超電風部材、2・・・・・・固定部材、
3・・・・・・コイル、4・・・・・・回転軸、5・・
・・・・永久磁石、6・・・・・・ラジアル軸受、10
・・・・・・回転部、12・・・・・・継鉄。 代理人の氏名 弁理士 中尾敏男 ほか1名2− 固定
部材 第2図 第3図 第4図    /−趙#7:#F舒H 2−固定舒巷 3−一一ゴ4ル fs4−@転軸 第5図 第6図 d。 存り重d
FIG. 1 is a half-sectional view of a magnetic bearing according to a first embodiment of the present invention;
FIG. 2 is a half-sectional view of a magnetic bearing according to a second embodiment of the present invention;
FIG. 3 is a half-sectional view of a magnetic bearing according to a third embodiment of the present invention;
FIG. 4 is a half-sectional view of a conventional magnetic bearing, FIG. 5 is a diagram showing the relationship between the flying height and load capacity, and FIG. 6 is a diagram showing the relationship between the flying height and bearing rigidity. 1...Super electric wind member, 2...Fixing member,
3... Coil, 4... Rotating shaft, 5...
... Permanent magnet, 6 ... Radial bearing, 10
...Rotating part, 12...Yoke. Name of agent Patent attorney Toshio Nakao and 1 other person 2- Fixed members Figure 2 Figure 3 Figure 4 /- Zhao #7: #F Shu H 2- Fixed Shu Lane 3-11 Go 4 Le fs4-@Ten Axis Fig. 5 Fig. 6 d. I'm grateful

Claims (4)

【特許請求の範囲】[Claims] (1)回転軸と、前記回転軸に同心状に固定された円筒
あるいは円柱状の超電導部材と、磁性材料よりなり、断
面形状がコの字型で空隙部を有する軸対称構造の固定部
材と、前記固定部材の空隙部の相対向する両端面間に磁
路が短絡するようにした磁気回路手段と、前記超電導部
材は、前記固定部材の空隙部に位置し、かつ、前記超電
導部材の両端面および外周面と固定部材間には、所定の
隙間を備えたことを特徴とする磁気軸受。
(1) A rotating shaft, a cylindrical or cylindrical superconducting member concentrically fixed to the rotating shaft, and a fixing member made of a magnetic material and having an axially symmetrical structure with a U-shaped cross section and a gap. , a magnetic circuit means configured to short-circuit a magnetic path between opposing end surfaces of the gap portion of the fixing member; and the superconducting member is located in the gap portion of the fixing member, and the superconducting member is located at both ends of the superconducting member. A magnetic bearing characterized in that a predetermined gap is provided between a surface, an outer peripheral surface, and a fixing member.
(2)磁気回路手段は、超電導部材の外周面と対向する
固定部材の内周面間に同心状に固定して配設された導電
性かあるいは超電導性材料よりなるコイルであることを
特徴とする特許請求の範囲第(1)項記載の磁気軸受。
(2) The magnetic circuit means is a coil made of conductive or superconducting material fixed concentrically between the outer peripheral surface of the superconducting member and the inner peripheral surface of the opposing fixed member. A magnetic bearing according to claim (1).
(3)磁気回路手段は、超電導部材の両端面と対向する
固定部材の両端面にそれぞれ同心状に配設された導電性
かあるいは超電導性材料よりなるコイルであることを特
徴とする特許請求の範囲第(1)項記載の磁気軸受。
(3) The magnetic circuit means is a coil made of conductive material or a superconducting material, which is arranged concentrically on both end surfaces of the fixed member opposite to both end surfaces of the superconducting member. A magnetic bearing as described in scope (1).
(4)固定部材は、回転軸方向に着磁された円筒状の永
久磁石と、前記永久磁石の両端面にそれぞれ接するよう
設けられた円筒状の継鉄からなり、前記永久磁石を磁気
回路手段としたことを特徴とする特許請求の範囲第(1
)項記載の磁気軸受。
(4) The fixed member consists of a cylindrical permanent magnet magnetized in the direction of the rotation axis, and a cylindrical yoke provided in contact with both end surfaces of the permanent magnet, and the permanent magnet is connected to the magnetic circuit means. Claim No. 1 (1) characterized in that
Magnetic bearings listed in ).
JP29653187A 1987-11-25 1987-11-25 Magnetic bearing Pending JPH01141224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29653187A JPH01141224A (en) 1987-11-25 1987-11-25 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29653187A JPH01141224A (en) 1987-11-25 1987-11-25 Magnetic bearing

Publications (1)

Publication Number Publication Date
JPH01141224A true JPH01141224A (en) 1989-06-02

Family

ID=17834734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29653187A Pending JPH01141224A (en) 1987-11-25 1987-11-25 Magnetic bearing

Country Status (1)

Country Link
JP (1) JPH01141224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152803A1 (en) * 2008-06-18 2009-12-23 Schaeffler Kg Magnetic bearing with high-temperature superconductor elements
CN108087425A (en) * 2018-01-20 2018-05-29 营口万意达智能装备科技有限公司 A kind of servomotor magnetic thrust bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152803A1 (en) * 2008-06-18 2009-12-23 Schaeffler Kg Magnetic bearing with high-temperature superconductor elements
US8618707B2 (en) 2008-06-18 2013-12-31 Schaeffler Technologies AG & Co. KG Magnetic bearing with high-temperature superconductor elements
CN108087425A (en) * 2018-01-20 2018-05-29 营口万意达智能装备科技有限公司 A kind of servomotor magnetic thrust bearing

Similar Documents

Publication Publication Date Title
US6111332A (en) Combined passive bearing element/generator motor
EP0559839B1 (en) High temperature superconducting magnetic bearings
US5710469A (en) Magnetic bearing element for a rotor shaft using high-TC superconducting materials
US5196748A (en) Laminated magnetic structure for superconducting bearings
US3026151A (en) Bearing construction
US5256638A (en) Magnetically leviated superconducting bearing
JPH06510165A (en) High thrust and high stability magnet-superconductor system
US20030057784A1 (en) Magnetically levitated motor and magnetic bearing apparatus
US5763971A (en) Superconducting bearing device
US6175175B1 (en) Levitation pressure and friction losses in superconducting bearings
US5270601A (en) Superconducting composite magnetic bearings
EP0829655B1 (en) Superconducting bearing device
CN110848253A (en) Three-degree-of-freedom radial-axial integrated hybrid magnetic bearing
Fang et al. A new flywheel energy storage system using hybrid superconducting magnetic bearings
JPH01141224A (en) Magnetic bearing
JPH10136609A (en) Motor and storage apparatus using the wire
JPH01141226A (en) Magnetic bearing
JP3554054B2 (en) Superconducting bearing device
JPH01141225A (en) Magnetic bearing
JPH0681845A (en) Supercondctive bearing device
US3383141A (en) Magnetic servosystem
JP2799802B2 (en) Superconducting levitation type rotating device
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
CN109578435B (en) Axial magnetic bearing for precision tracking support
JP3385771B2 (en) Superconducting magnetic bearing device