JPH01140125A - Indicating body - Google Patents

Indicating body

Info

Publication number
JPH01140125A
JPH01140125A JP29918487A JP29918487A JPH01140125A JP H01140125 A JPH01140125 A JP H01140125A JP 29918487 A JP29918487 A JP 29918487A JP 29918487 A JP29918487 A JP 29918487A JP H01140125 A JPH01140125 A JP H01140125A
Authority
JP
Japan
Prior art keywords
electro
dielectric
electrodes
display
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29918487A
Other languages
Japanese (ja)
Other versions
JP2586528B2 (en
Inventor
Etsuo Okanoe
岡上 悦男
Masaru Egawa
優 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62299184A priority Critical patent/JP2586528B2/en
Publication of JPH01140125A publication Critical patent/JPH01140125A/en
Application granted granted Critical
Publication of JP2586528B2 publication Critical patent/JP2586528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To enable formation of an indicating body on not only a plane but also a curved surface and to enable cutting of the indicating body by constituting an indicating part of the indicating body of a membrane consisting of a dielectric as a medium, and separating an electro-optical material contained in the dielectric to minute regions. CONSTITUTION:A material 2 contg. electro-optical effect as an essential component separated to minute regions, and a ferroelectric material 3 are distributed with an optional density in a dielectric 4 constituting a medium in a region interposed between electrodes 1. Said electrodes comprise transparent SnO2, ZnO, etc. If the indicating body is a reflection type one, one of the electrodes may be Ag, Al, etc. Then, a material contg. an electro-optical material as an essential component separated to minute regions and a ferroelectric material are fixed with a dielectric material. In this case, an indicating part is constituted of a membrane consisting of a dielectric as a medium, thus an indicating body having an optional shape fitting not only to a plane surface but also to a curved surface is obtd. Moreover, cutting of the indicating body is possible because an electro-optical material is separated into minute regions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は物質の電気光学効果を利用して構成した透過型
、反射型の表示体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a transmissive type or reflective type display body constructed by utilizing the electro-optical effect of a substance.

〔従来の技術〕[Conventional technology]

従来から電気光学効果を利用した表示体として液晶表示
体が知られており、産業上の利用価値も高く、デイスプ
レィ、光シヤツター、などに副広く使用されている。
BACKGROUND ART Liquid crystal displays have long been known as display bodies that utilize electro-optic effects, and have high industrial value and are widely used in displays, optical shutters, and the like.

従来の液晶表示体の基本構成は、電極を有する基板を相
対させて、スペーサーで保持し、いわゆる液晶セルを形
成していた。また、電圧印加前のセル内での液晶配向制
御は、液晶の接するI&板表面を物理的または化学的修
飾することによってなされていた。物理的または化学的
修飾には、基板表面に配向膜を形成したのち、その表面
をラビングする方法、あるいは斜方蒸着法、グレーティ
ング法などがよく知られ、水平配向、垂直配向、プレテ
ィルト角の制御に用いられている。
The basic structure of a conventional liquid crystal display is to form a so-called liquid crystal cell by holding substrates having electrodes facing each other with spacers. Furthermore, liquid crystal alignment within the cell before voltage application has been controlled by physically or chemically modifying the I&plate surface in contact with the liquid crystal. For physical or chemical modification, methods such as forming an alignment film on the substrate surface and then rubbing the surface, oblique evaporation method, grating method, etc. are well known methods, and these methods can control horizontal alignment, vertical alignment, and pretilt angle. It is used in

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の液晶表示体はセルを用いている為、基板の形状に
表示部の形状が制限され、曲面あるいは、任意の形状の
表示部を得ることは、技術面、コスト面で難かしかった
。さらに表示部面積を大きくする為にセルを大型化した
場合、基FLrX1が強度的に弱い液晶で満されている
ので、基板に圧力、応力がかかると、電極間距離が変化
し、表示特性に支障が生じるという欠点を存している。
Since conventional liquid crystal displays use cells, the shape of the display section is limited by the shape of the substrate, and it is difficult from a technical and cost standpoint to obtain a display section with a curved surface or an arbitrary shape. Furthermore, when the cell is enlarged to increase the display area, the substrate FLrX1 is filled with weak liquid crystal, so when pressure or stress is applied to the substrate, the distance between the electrodes changes and the display characteristics change. It has the disadvantage of causing problems.

また、電圧を印加する前の配向制御も、配向方向を自由
に選択して得ることが難しく、工程上も配向制御が含ま
れ、生産性に問題があった。
Moreover, it is difficult to freely select the orientation direction and obtain orientation control before applying a voltage, and the process also involves orientation control, which poses a problem in productivity.

本発明は上記に示した欠点を克服するもので電気光学効
果を利用した表示体の形状及び、電気光学効果を育する
物質の電圧印加前の配向方向を自由に選択でき、かつ、
強度、生産性に優れた表示体を提供することを目的とす
る。
The present invention overcomes the above-mentioned drawbacks, and allows the shape of a display using the electro-optic effect and the orientation direction of the substance that develops the electro-optic effect to be freely selected before voltage application, and
The purpose is to provide a display body with excellent strength and productivity.

C問題点を解決するための手段〕 本発明は電圧印加により駆動する表示体において、相対
する電極間に存在する表示部が、微小領域に分割された
電気光学効果を育する物質を必須成分として含む材料と
、強誘電体とそれらをとり囲む誘電体からなることを特
徴とする。
Means for Solving Problem C] The present invention provides a display body driven by voltage application, in which a display part existing between opposing electrodes contains a substance that fosters an electro-optic effect divided into minute regions as an essential component. It is characterized by consisting of a material containing a ferroelectric material, and a dielectric material surrounding the ferroelectric material.

本発明による表示体の基本構造を第1図に1例として示
す。電極1にはさまれた領域に微小領域に分割された電
気光学効果を育する物質を必須成分として含む材料2と
強誘電体3が任意の密度で媒質である誘電体4に分布し
ている。
The basic structure of a display according to the present invention is shown in FIG. 1 as an example. A material 2 containing a substance that fosters an electro-optic effect as an essential component and a ferroelectric material 3 are divided into minute regions in the region sandwiched between the electrodes 1, and are distributed in a dielectric material 4, which is a medium, at an arbitrary density. .

電極は透明電極であるS now 、  I n* O
s *Z n O,Cd O,単体、あるいはSbなど
トーハントを加えたものなどが使用でき、反射型の表示
体の場合Ag、Aρ、Au等の電極を一方に用いる事も
可能である。これらの*tiは、スパッタ法、真空蒸着
法、CVD法などを用いて曲面に形成することも可能で
ある。
The electrodes are transparent electrodes S now , I n * O
s * Z n O, Cd 2 O, a single substance, or one to which a torhant such as Sb is added can be used, and in the case of a reflective display, it is also possible to use an electrode of Ag, Aρ, Au, etc. on one side. These *ti can also be formed into a curved surface using a sputtering method, a vacuum evaporation method, a CVD method, or the like.

次に、電気光学効果を有する物質を、必須成分として含
む材料を微小領域に分割するには、マイクロカプセル化
技術を応用できる。一液晶のマイクロカプセル化はすで
に行なわれており、コアサルベーション法、界面重合法
、などを主に用いている。カプセル粒径は着色濃度、#
X質への分散性、カプセル内での構成分子が自由に運動
できる大きさを考慮し、任意に決めることができる。
Next, microencapsulation technology can be applied to divide a material containing a substance having an electro-optic effect as an essential component into micro regions. Microencapsulation of liquid crystals has already been carried out, mainly using cosalvation methods, interfacial polymerization methods, etc. Capsule particle size is color density, #
It can be arbitrarily determined by taking into consideration the dispersibility in the X substance and the size that allows the constituent molecules to move freely within the capsule.

強誘電体としては、表示体の使用温度範囲で、強誘電相
を示すものが望ましく、使用温度により自由に材料を選
択することが可能である。さらに自発分極の大きさも、
電気光学効果を有する物質の配向を十分・制御できるだ
けの局所電場を生みだす大きさを選択する。また、自発
分極の生じた結晶はドメイン構造を育している為、作動
な局所電場を得る様、モノドメイン構造を有する程度ま
で微粉末とすることが望ましい。強誘電体としてはB 
a T f Os 、K N b Os 、などのべa
ブスカイト構造を宵するもの、N a N Osなど強
誘電相が使用温度範囲をカバーしているものを選ぶ。
The ferroelectric material is preferably one that exhibits a ferroelectric phase within the operating temperature range of the display, and the material can be freely selected depending on the operating temperature. Furthermore, the magnitude of spontaneous polarization is
The magnitude is selected to produce a local electric field that is sufficient to control the orientation of the substance that has the electro-optic effect. In addition, since the spontaneously polarized crystal has grown a domain structure, it is desirable to make it into a fine powder to the extent that it has a monodomain structure in order to obtain an active local electric field. B as a ferroelectric material
a T f Os , K N b Os , etc.
Choose one that has a buskyte structure or one that has a ferroelectric phase that covers the operating temperature range, such as NaNOs.

本発明では、以上に示した微小領域に分割された電気光
学効果を育する物質を必須成分として含む材料と、a!
誘電体とを誘電体によって固定する。ここで使用する誘
電体は熱、光、化学反応などによって液相から固相へ硬
化するものを用いる。誘電体が液相の伏目で、たとえば
マイクロカプセル化した液晶と強誘電体を液相中に分散
し、任意の配向方向に電圧を印加しながら(いわゆるポ
ーリング)液相から固相へ硬化させる。このとき強誘電
体は配向方向へポーリングされたまま誘電体中に固定さ
れることが必要である。この場合、誘電体の液相中で強
誘電体が自由に回転することが必要で、液相の粘度等を
考慮し、強誘電体の粉末粒径を選択することが必要であ
る。印加する電圧は、粉末粒子がドメイン構造を残して
いる可能性も考慮し、使用する強誘電体の抗電場以上印
加することが望ましい。
In the present invention, a material containing as an essential component the substance that fosters the electro-optic effect divided into the micro regions shown above, and a!
The dielectric is fixed by the dielectric. The dielectric used here is one that hardens from a liquid phase to a solid phase by heat, light, chemical reaction, or the like. For example, microencapsulated liquid crystal and ferroelectric material are dispersed in the liquid phase while the dielectric material is in the liquid phase, and the liquid phase is cured from the liquid phase to the solid phase while applying a voltage in an arbitrary alignment direction (so-called poling). At this time, it is necessary that the ferroelectric material be fixed in the dielectric material while being poled in the alignment direction. In this case, it is necessary for the ferroelectric substance to rotate freely in the liquid phase of the dielectric substance, and it is necessary to select the powder particle size of the ferroelectric substance in consideration of the viscosity of the liquid phase and the like. It is desirable that the applied voltage be equal to or higher than the coercive electric field of the ferroelectric material used, taking into account the possibility that the powder particles may leave a domain structure.

誘電体の形成方法としては、熱硬化性あるいは光硬化性
樹脂を用いる方法、モノマーから、ポリマーを重合して
得る方法などが考えられる。もちろん誘電体として強誘
電体を用いても差しつかえない。
Possible methods for forming the dielectric include a method using a thermosetting or photocurable resin, and a method in which a polymer is polymerized from a monomer. Of course, a ferroelectric material may be used as the dielectric material.

誘電体中での、電気光学効果を有する物質を必須成分と
して含む材料と強誘電体のQ度及び比率は、それぞれ使
用する材料の誘電率、自発分極の大きさ、配向に必要な
電場の強さを考慮して最適の値を選ぶ。
The Q degree and ratio of the material containing a substance with an electro-optic effect as an essential component and the ferroelectric in the dielectric are determined by the dielectric constant of the material used, the magnitude of spontaneous polarization, and the strength of the electric field required for orientation. Select the optimal value by considering the

上記に示した方法で表示部を形成すれば、硬化前の液を
DiP法、スピンナー法等で空売することが可能であり
、平面だけでなく曲面に対しても表示部を形成できる。
If the display section is formed by the method described above, the liquid before hardening can be sold short by the DiP method, the spinner method, etc., and the display section can be formed not only on flat surfaces but also on curved surfaces.

相対する電極にはさまれた表示部は、偏光板、反射板、
174波長板などと組み合わせることが可能であり、今
まで使用されてきたセル方式と全く同様に使用できる。
The display section sandwiched between opposing electrodes is made up of a polarizing plate, a reflecting plate,
It can be combined with a 174 wavelength plate, etc., and can be used in exactly the same way as the cell system used up until now.

外界と接する電極を保護する意味で保護膜を形成しても
よいし、電極を支持する基板を薄くすれば今まで考えら
れなかった類N型の表示体も可能である。
A protective film may be formed to protect the electrodes in contact with the outside world, and if the substrate supporting the electrodes is made thinner, a type-N type display body, which has not been thought of until now, is also possible.

光学的には、表示部に存在する物質量の屈折率を近づけ
ることにより、微小領域による光散乱を防ぐことができ
、透過特性の良好な表示体が得られる。
Optically, by bringing the refractive indexes of the amounts of substances present in the display portion close to each other, it is possible to prevent light scattering by minute regions, and a display body with good transmission characteristics can be obtained.

また、表示部をある一方向に電圧を印加して形成した後
、2層目の表示部を別方向に電圧を印加して形成するこ
とにより、配向方向の異なる2層を持つ表示体の形成、
さら−には多層構造も容易に実現できる。
In addition, after forming a display part by applying a voltage in one direction, a second layer display part is formed by applying a voltage in a different direction, thereby forming a display body having two layers with different orientation directions. ,
Furthermore, a multilayer structure can be easily realized.

〔作用〕[Effect]

表示部中の強誘電体は、液相から固相へと硬化した誘電
体により強制的に任意の配向方向に自発分極を配向され
、固定されている。この強誘電体が生む局所電場に従っ
て、電気光学効果を有する物質は配向している@ 次に、電極間に電圧を印加すると、電極間に電場が発生
し、それに従って電気光学効果を有する一物質は配向す
る。この時の配向に要する電圧は、電場として強誘電体
の抗電場より小さく、電気光学効果を育する物質の配向
に要する電場より大きな電場を生みだすように選択すれ
ば効率的である。再度、電圧を解除すれば電気光学効果
を有する物質は、強誘電体の形成する局所電場に従って
配向する。
The ferroelectric material in the display section has its spontaneous polarization forcibly oriented and fixed in an arbitrary orientation direction by the dielectric material that has hardened from a liquid phase to a solid phase. A substance that has an electro-optic effect is oriented according to the local electric field generated by this ferroelectric.@ Next, when a voltage is applied between the electrodes, an electric field is generated between the electrodes, and a substance that has an electro-optic effect follows this. is oriented. The voltage required for orientation at this time is efficient if selected to produce an electric field smaller than the coercive electric field of the ferroelectric material and larger than the electric field required for orientation of the substance that fosters the electro-optic effect. When the voltage is removed again, the substance having the electro-optic effect will be oriented according to the local electric field formed by the ferroelectric material.

第2図(a)に電圧印加時、* 2層図(b)に解除時
の電気光学効果を宵する物質の配向の様子を拡大して示
す。電気光学効果を有する物質の配向方向萎破線の矢印
1、強誘電体の自発分極方向を実線の矢印2で示した。
FIG. 2(a) shows an enlarged view of the orientation of the material exhibiting the electro-optic effect when a voltage is applied, and the two-layer diagram (b) shows an electro-optical effect when the voltage is applied. The orientation direction of a substance having an electro-optic effect is shown by a dashed arrow 1, and the direction of spontaneous polarization of a ferroelectric substance is shown by a solid arrow 2.

第2図では、電圧印加前の強制配向方向を電極に平行と
している。
In FIG. 2, the forced orientation direction before voltage application is parallel to the electrodes.

このよう゛にして、電気光学効果を有する物質の配向制
御を表示部内部の強誘電体による電場と、電極間に印加
する外部電圧によって制御することにより、電気信号に
応じて自由な制御が可能である。
In this way, by controlling the orientation of substances with electro-optical effects using the electric field created by the ferroelectric material inside the display section and the external voltage applied between the electrodes, it is possible to freely control the orientation according to electrical signals. It is.

以下、本発明の表示体について実施例・を挙げて説明す
るが、本発明はこれらに限定されるものではない。
Hereinafter, the display body of the present invention will be described with reference to Examples, but the present invention is not limited thereto.

〔実施例〕〔Example〕

電気光学効果を有する物質としてメルク社製の液晶ZL
I−3200,20%、ZLI−2806,80%のミ
クスチャーを使用し、コンプレックス、コアセルベージ
コノを利用して、液晶をマイクロカプセル化した。マイ
クロカプセルの粒径は10g程度であった。次に粉末強
誘電体として粒径Q、04um 〜Q、06tLmのB
 aT i O。
Liquid crystal ZL manufactured by Merck & Co., Ltd. is a substance with electro-optic effect.
Using a mixture of I-3200, 20% and ZLI-2806, 80%, liquid crystal was microencapsulated using a complex and a coacervage container. The particle size of the microcapsules was about 10 g. Next, as a powder ferroelectric material, B with a particle size of Q, 04 um to Q, 06 tLm is used.
aT i O.

粉末を用意し、エタノールに分散させた。(エタノール
に対し固形分として30wt%とした。)このB aT
 i O,分散液400g1γ−グリシドキシプロピル
トリメトキシシランの部分加水−分解物300 g、フ
ローコントロール剤0.2g(日本ユニカー(株)製”
L−7804″)及び0゜05N酢酸水溶液86gを、
エタノール200gに加え、さらにマイクロカプセル化
した液晶を30g加えて、室温で2時間撹拌を行なった
A powder was prepared and dispersed in ethanol. (The solid content was 30 wt% based on ethanol.) This BaT
i O, 400 g of dispersion, 300 g of partially hydrolyzed γ-glycidoxypropyltrimethoxysilane, 0.2 g of flow control agent (manufactured by Nippon Unicar Co., Ltd.)
L-7804″) and 86 g of 0°05N acetic acid aqueous solution,
In addition to 200 g of ethanol, 30 g of microencapsulated liquid crystal was added, and the mixture was stirred at room temperature for 2 hours.

上記に示した液をコート液とし、コート液の粘度が80
cpsになるまで予備縮合させた。
The liquid shown above is used as a coating liquid, and the viscosity of the coating liquid is 80.
It was precondensed until it became cps.

予めITO膜と引き出し電極を取り付けた透明ガラス基
板上に上記で用意したコート液をディッピング法により
引き上げ速度20cm/minで塗布した。次に熱風乾
燥炉中で基板と平行方向に直流機Q 10 K V /
 c mを印加しながら80°C30分間、130°C
で2時間加熱硬化させた。
The coating solution prepared above was applied by dipping at a pulling speed of 20 cm/min onto a transparent glass substrate to which an ITO film and extraction electrodes had been attached in advance. Next, in a hot air drying oven, a direct current machine Q 10 K V /
130°C for 30 minutes at 80°C while applying cm
It was heated and cured for 2 hours.

その後、硬化したコート膜上に透明電極として■TO@
をスバリタリング法で形成し、引き出し電極を取り付け
て表示体サンプルとした。
After that, ■TO@ as a transparent electrode on the cured coating film.
was formed by the sparitaring method, and an extraction electrode was attached to form a display sample.

表示体サンプルをEiOHz  IOVのスタティック
駆動で作動させたところ、透過率が電圧OFF時で42
%、ON時で9.7%となった。
When the display sample was operated with EiOHz IOV static drive, the transmittance was 42 when the voltage was OFF.
%, it was 9.7% when ON.

〔発明の効果〕〔Effect of the invention〕

表示体の表示部をセル方式から誘電体を媒質とする膜と
したことにより、形状が任意に選択でき、平面だけでな
く曲面に対しても表示体の形成が可能となった。さらに
、電気光学効果を冑する物質を微小領域に分割したこと
により、表示体形成後、表示体の切断が可能であり、セ
ルを設計することなく生産が旬能である。
By changing the display portion of the display body from a cell type to a film using a dielectric medium, the shape can be arbitrarily selected, and the display body can be formed not only on a flat surface but also on a curved surface. Furthermore, by dividing the substance that enhances the electro-optic effect into minute regions, the display body can be cut after forming the display body, and production can be performed quickly without designing cells.

また、配向制御に強誘電体を用いて配向方向の自由度を
持たせたことにより、従来のラビング法などと比較して
、簡単に希望の配向方向を得ることが可能となった。さ
らには、電極間に存在する誘電体に強度を持たせれば、
大面積であってもスペーサーを使用するセル状の表示体
とくらべ、表示部の強度に分布がない−様な強度を持っ
た表示体が形成可能である。
In addition, by using a ferroelectric substance for orientation control and providing flexibility in the orientation direction, it has become possible to obtain a desired orientation direction more easily than with conventional rubbing methods. Furthermore, if the dielectric material between the electrodes is made stronger,
Even if the display area is large, it is possible to form a display body with such strength that there is no distribution in the strength of the display area, compared to a cell-shaped display body that uses spacers.

応用分野としては、通常の表示パネル、光シヤツター、
等今までセル方式によって応用された分野はもちろん、
光学レンズ表面など曲面に形成可能なことから、電子サ
ングラスなど全く新しい応用の道が開ける。
Application fields include regular display panels, optical shutters,
Of course, there are fields where cell systems have been applied until now, such as
Since it can be formed into curved surfaces such as the surfaces of optical lenses, it opens up completely new applications such as electronic sunglasses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による表示体の断面図。 1・・・電極 2・・・微小領域に分割された電気光学効果を有する物
質を必須成分として含む材料 3・・・強誘電体 4・・・誘電体 第2図(a)は本発明による表示体に電場を印加してい
ない状態を示す図。 第2図(b)は本発明による表示体に電場を印加した状
態を示す図。 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 最 上  務−他1名、−ノ
FIG. 1 is a sectional view of a display according to the present invention. 1... Electrode 2... Material containing as an essential component a substance having an electro-optic effect divided into minute regions 3... Ferroelectric material 4... Dielectric material Figure 2 (a) is according to the present invention FIG. 3 is a diagram showing a state in which no electric field is applied to the display body. FIG. 2(b) is a diagram showing a state in which an electric field is applied to the display according to the present invention. Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Tsutomu Mogami - 1 other person -

Claims (1)

【特許請求の範囲】[Claims] 電圧印加により駆動する表示体において、相対する電極
間に存在する表示部が、微小領域に分割された電気光学
効果を有する物質を必須成分として含む材料と、強誘電
体と、それらをとり囲む誘電体からなることを特徴とす
る表示体。
In a display body driven by voltage application, the display part existing between opposing electrodes is made of a material containing as an essential component a substance having an electro-optic effect divided into minute regions, a ferroelectric material, and a dielectric material surrounding them. A display body characterized by consisting of a body.
JP62299184A 1987-11-27 1987-11-27 Display body Expired - Lifetime JP2586528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299184A JP2586528B2 (en) 1987-11-27 1987-11-27 Display body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299184A JP2586528B2 (en) 1987-11-27 1987-11-27 Display body

Publications (2)

Publication Number Publication Date
JPH01140125A true JPH01140125A (en) 1989-06-01
JP2586528B2 JP2586528B2 (en) 1997-03-05

Family

ID=17869231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299184A Expired - Lifetime JP2586528B2 (en) 1987-11-27 1987-11-27 Display body

Country Status (1)

Country Link
JP (1) JP2586528B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264721A (en) * 1987-04-22 1988-11-01 Matsushita Electric Ind Co Ltd Liquid crystal color panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264721A (en) * 1987-04-22 1988-11-01 Matsushita Electric Ind Co Ltd Liquid crystal color panel

Also Published As

Publication number Publication date
JP2586528B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
JPH04220620A (en) Manufacture of liquid crystal electro-optical device
JP2586529B2 (en) Liquid crystal display
KR960002689B1 (en) Liquid crystal electro-optic device
JP3271693B2 (en) Manufacturing method of liquid crystal display element
JPH01140125A (en) Indicating body
JPH01145635A (en) Production of liquid crystal display body
JP2862588B2 (en) Method for producing liquid crystal resin composite and liquid crystal optical element using the same
JPH0194318A (en) Liquid crystal display element
JPH01147424A (en) Electronic sunglasses
JP4223107B2 (en) Liquid crystal light modulator
JPH01145636A (en) Production of liquid crystal display body
Koduru et al. Electro-optics of PDLC films doped with WO3 nanoparticles
JPH01147423A (en) Electronic sunglasses
JPH06222343A (en) Liquid crystal display element and production of this element
JPH07120732A (en) Liquid crystal/polymer composite type optical element
JP2827325B2 (en) Method for producing liquid crystal resin composite and liquid crystal optical element using the same
JPH05341268A (en) Liquid crystal electrooptical device and its production
JP3322501B2 (en) Liquid crystal display medium and driving method thereof
JP2827324B2 (en) Method for producing liquid crystal resin composite and liquid crystal optical element using the same
JPH0331821A (en) Liquid crystal electrooptical device
JPS6398632A (en) Liquid crystal electrooptical device
JPH01161222A (en) Optical modulation element
JPH06308465A (en) Polymer liquid crystal composite film, its production and liquid crystal optical element using the same
JPH06294978A (en) Light scattering type liquid crystal device and its production
JPH05323293A (en) Liquid crystal display element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term