JPH01139806A - Fiber material for molding - Google Patents

Fiber material for molding

Info

Publication number
JPH01139806A
JPH01139806A JP62296629A JP29662987A JPH01139806A JP H01139806 A JPH01139806 A JP H01139806A JP 62296629 A JP62296629 A JP 62296629A JP 29662987 A JP29662987 A JP 29662987A JP H01139806 A JPH01139806 A JP H01139806A
Authority
JP
Japan
Prior art keywords
fiber
fibers
molding
ptfe
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62296629A
Other languages
Japanese (ja)
Inventor
Hirotaka Nishiyama
西山 弘隆
Yoshio Kagiya
鍵矢 良男
Haruo Sasamori
笹森 晴雄
Hironao Nakasuga
中須賀 宥直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Kogyo KK
Original Assignee
Showa Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Kogyo KK filed Critical Showa Kogyo KK
Priority to JP62296629A priority Critical patent/JPH01139806A/en
Publication of JPH01139806A publication Critical patent/JPH01139806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Abstract

PURPOSE:To obtain a fiber material for molding, consisting of a polytetrafluoroethylene based fiber composed mainly of tetrafluoroethylene, having a specific elongation and excellent moldability and capable of providing molded products with improved releasability, slipperiness, triboelectrostatic electricity and strain resistance, etc. CONSTITUTION:For example, a mixed liquid of viscose and a polytetrafluoroethylene dispersion is discharged into a coagulation bath and coagulated, washed with water, scoured, alkali-treated and then calcined. A polytetrafluoroethylene based fiber, containing >=90mol%, preferably >=95mol% tetrafluoroethylene, having >=100%, preferably >=200% elongation is obtained. This fiber preferably has >=50 counts per sec small angle X-ray scattering intensity, >=100Angstrom crystallite size perpendicular to (110) plane and <=3 denier single yarn size.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリテトラフロロエチレン系繊維からなる成
形性にすぐれた成形用繊維素材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a moldable fiber material made of polytetrafluoroethylene fiber and having excellent moldability.

[従来の技術] ポリテトラフロロエチレン(以下単にPTFEという)
系繊維は産業用素材を始めとして広範囲の分野に重宝さ
れている。
[Prior art] Polytetrafluoroethylene (hereinafter simply referred to as PTFE)
These fibers are useful in a wide range of fields including industrial materials.

しかし、PTFE系繊維からなる成形用繊維素材、たと
えばスタンパブルシートなどはその例を見ない。
However, no such example has been found for molding fiber materials made of PTFE fibers, such as stampable sheets.

[発明が解決しようとする問題点] 本発明は、かかるPTFE系重合体からなる繊維が意外
にも大きな伸びを有する素材であることを究明して本発
明に到達したものである。
[Problems to be Solved by the Invention] The present invention was achieved by discovering that fibers made of such a PTFE polymer are a material with unexpectedly large elongation.

すなわち、PTFE系繊維は焼成後の段階で900%も
の切断伸度を有し、この性質は酸化熟成処理後も保持さ
れる事実を究明し、初めて成形用繊維素材としての用途
開発を達成したものである。
In other words, we discovered that PTFE fiber has a breaking elongation of 900% after firing, and that this property is maintained even after oxidative aging treatment, and for the first time, we have achieved the development of its use as a fiber material for molding. It is.

本発明により、すぐれた成形性の下に離型性ならびに易
滑性のすぐれた成形品を提供でき、さらに本発明により
、耐摩擦静電圧性、防汚性などの特性にも優れた成形品
を提供し得たものである。
According to the present invention, it is possible to provide a molded product with excellent moldability, mold releasability, and ease of sliding.Furthermore, the present invention can provide a molded product with excellent characteristics such as frictional electrostatic voltage resistance and stain resistance. This is what we were able to provide.

これにより樹脂成形・品の用途設計上の自由度を格段に
拡大せしめ得たものである。
This greatly expands the degree of freedom in designing the use of resin moldings and products.

[問題点を解決するための手段] 本発明はかかる目的を達成するために次のような構成を
有する。すなわち、 <1)90モル%以上がテトラフロロエチレンであるポ
リテトラフロロエチレン系繊維であって、該繊維の伸度
が100%以上であることを特徴とする成形用繊維素材
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. That is, <1) A fiber material for molding, characterized in that it is a polytetrafluoroethylene fiber containing 90 mol% or more of tetrafluoroethylene, and the elongation of the fiber is 100% or more.

(2)  ポリテトラフロロエチレン系繊維が、編織物
または不織布を構成している特許請求の範囲第(1)項
記載の成形用繊維素材。
(2) The fiber material for molding according to claim (1), wherein the polytetrafluoroethylene fiber constitutes a knitted fabric or a nonwoven fabric.

(3)  ポリテトラフロロエチレン系繊維が、他の繊
維と混用されている特許請求の範囲第(1)項記載の成
形用繊維素材である。
(3) A fiber material for molding according to claim (1), in which polytetrafluoroethylene fibers are mixed with other fibers.

本発明においてPTFE系重合体とは、テトラフロロエ
チレンのホモポリマーまたは全体の90モル%以上、好
ましくは95モル%以上がテトラフロロエチレンである
コポリマーを意味するものである。
In the present invention, the PTFE polymer refers to a homopolymer of tetrafluoroethylene or a copolymer in which 90 mol% or more, preferably 95 mol% or more of the total amount is tetrafluoroethylene.

テトラフロロエチレンに共重合可能な単量体としては、
トリフロロエチレン、トリフロロクロロエチレン、テト
ラフロロプロピレン、ヘキサフロロプロピレンなどのフ
ッ化ビニル化合物やさらにプロピレン、エチレン、イソ
ブチレン、スチレン、アクリロニトリルなどのビニル化
合物があげられるが、これらに限定する必要はない。
Monomers that can be copolymerized with tetrafluoroethylene include:
Examples include vinyl fluoride compounds such as trifluoroethylene, trifluorochloroethylene, tetrafluoropropylene, and hexafluoropropylene, and vinyl compounds such as propylene, ethylene, isobutylene, styrene, and acrylonitrile, but there is no need to limit them to these.

かかるモノマーの中でも、フッ化ビニル系化合物、それ
も、弗素含有量の多い化合物であることが繊維特性の上
から好ましい。
Among such monomers, vinyl fluoride compounds, especially compounds with a high fluorine content, are preferred from the viewpoint of fiber properties.

かかるポリマーからなるPTFE系繊維は少なくとも′
100%の伸度を有するものであり、要するに未延伸繊
維であればある程伸度は・高く最高では切断伸度が90
0%に達するものがある。しかし、伸度が高いと延伸が
されていないということであり、それだけ強度が低下す
る。
PTFE fibers made of such polymers have at least
It has an elongation of 100%, and in short, if it is an undrawn fiber, the elongation is high to a certain extent, and the maximum elongation at break is 90.
Some reach 0%. However, if the degree of elongation is high, it means that it has not been stretched, and the strength decreases accordingly.

また、本発明においてPTFE系繊維は細ければ細い程
、それだけ応用範囲が拡大するし、繊維密度を高くする
ことができるので、その効果は高く好ましい。
Furthermore, in the present invention, the thinner the PTFE fibers are, the wider the range of application and the higher the fiber density, which is preferable.

かかる細デニールのPTFE系繊維は、小角X線散乱法
により2θ=1°の小角X線散乱強度を測定した時の値
が100CpS以下、好ましくは8Qcps以下、特に
好ましくは50C1)S以下であるという特徴を有する
。100CpSを越えると、それだけ繊維が脆くなるが
、易滑性の点から用途展開に問題はない。すなわち、上
記小角X線散乱強度が小さいPTFE系繊維はこれを構
成するポリマーの結晶におけるミクロボイドの濃度が小
さく緻密であることを意味する。
Such fine denier PTFE fibers have a small-angle X-ray scattering intensity of 100CpS or less, preferably 8Qcps or less, particularly preferably 50C1)S or less when measured by a small-angle X-ray scattering method at 2θ = 1°. Has characteristics. If it exceeds 100 CpS, the fiber becomes brittle, but there is no problem in expanding its uses from the viewpoint of slipperiness. That is, the above-mentioned PTFE fiber having a low small-angle X-ray scattering intensity means that the concentration of microvoids in the polymer crystals constituting the fiber is small and dense.

かかる繊維の特徴は、上記小角X線散乱強度が小さい上
に、広角X線回折法(カウンター法)による( 110
)面の結晶サイズが80以上、好ましくは95Å以上、
特に好ましくは100大以上の厚さを有するところにも
ある。すなわち、該結晶サイズが大きいことは結晶がそ
れだけ厚く成長して高強度化するものである。
The characteristics of such fibers include the low small-angle X-ray scattering intensity mentioned above, and the ability of the fibers to be measured by wide-angle X-ray diffraction (counter method) (110
) plane crystal size is 80 or more, preferably 95 Å or more,
Particularly preferably, the thickness is 100 mm or more. That is, the larger the crystal size, the thicker the crystal grows and the higher the strength.

すなわち、上記小角X線散乱強度と(110)面の結晶
サイズとの相乗効果として細い繊維にもかかわらず、結
晶が充分に成長しており、それだけ強力や寸法安定性に
優れた!!維を提供するものである。
In other words, as a result of the synergistic effect of the small-angle X-ray scattering intensity and the crystal size of the (110) plane, the crystals have grown sufficiently despite the thin fibers, and the fibers have excellent strength and dimensional stability! ! It is intended to provide security.

小角X線散乱強度は次のようにして測定される。Small-angle X-ray scattering intensity is measured as follows.

試料繊維を繊維軸方向にならべ、長さ4cmに切断し、
重さ60m(lを秤口して、これを深さ1mm、幅2m
mの金型に装填し、コロジオン溶液を用いて固化して角
柱を作り、試料とする。
Line up the sample fibers in the fiber axis direction and cut them into 4 cm lengths.
Weighing 60m (weigh 1 liter and measuring it to a depth of 1mm and a width of 2m)
m mold and solidified using a collodion solution to form a prism, which is used as a sample.

試料をX線ビームに対して垂直になるように装着し、方
向角O〜3°の小角をスキャンした際の、2θ−1°の
散乱強度を次の条件で測定する。
The sample is mounted so as to be perpendicular to the X-ray beam, and the scattering intensity at 2θ-1° is measured under the following conditions when a small angle of direction angle O to 3° is scanned.

測定方法:小角X線散乱法(小角X線回折法〉X線発生
装置;理学電機社製のRU−200B(回転対陰極型) X線源二CuKα (平板グラファイト単結晶インシデ ントモノクロメータ使用) 出力 : 40 kV  200 mA光学系装置:理
学電磯社製りラツキイーカメラUスリット:幅 70μ
m 1高さ1 omm受光側:受光スリット0.14m
m 縦制限スリット15mm 散乱防止スリット0.3mm 縦散乱防止スリット6mm 検出器:シンチレーションカウンター このカウンターから得られるデータを計数記録装置にか
けてチャートを書かせる。
Measurement method: Small-angle X-ray scattering method (small-angle X-ray diffraction method) X-ray generator: Rigaku Denki RU-200B (rotating anode cathode type) : 40 kV 200 mA Optical system device: Rigaku-Ei camera manufactured by Rigakudeniso Co., Ltd. U slit: width 70μ
m 1 height 1 omm light receiving side: light receiving slit 0.14m
m Vertical restriction slit 15 mm Anti-scattering slit 0.3 mm Vertical anti-scattering slit 6 mm Detector: Scintillation counter The data obtained from this counter is applied to a counting and recording device to draw a chart.

本発明でいう(110)面の結晶サイズは次のようにし
て測定される。
The crystal size of the (110) plane as used in the present invention is measured as follows.

試料繊維を繊維軸方向にならべ、長さ4cmに切断し、
重ざ20mgを秤量して、これを深さ1mm、幅1mm
の金型に装填して、コロジオン溶液を用いて固化して角
柱を作り、試料とする。
Line up the sample fibers in the fiber axis direction and cut them into 4 cm lengths.
Weigh out 20mg and divide it into 1mm deep and 1mm wide.
The sample is loaded into a mold and solidified using a collodion solution to form a prism.

得られた試料をX線ビームに対して垂直になるように装
着し、透過法により、方位角2θ=O〜90’までスキ
ャンした際の(110)面のピーク帯(約18.3°近
傍)の強度分布の最大値の1/2の位置における全幅(
半値幅)Bおよび方位角2θから、下記5Cher’r
erの式により算出する。
The obtained sample was mounted perpendicular to the X-ray beam, and the peak band of the (110) plane (approximately 18.3° ) at the position of 1/2 of the maximum value of the intensity distribution (
From the half width) B and the azimuth 2θ, the following 5Cher'r
Calculated using the formula er.

L=にλ/ [(B−b)・COSθ]ただし、K= 
1.0゜ b= 0.0105rad。
L=λ/ [(B-b)・COSθ] However, K=
1.0°b=0.0105rad.

λ= 1.5418人である。λ = 1.5418 people.

(110)面のピーク帯は次の方法により測定される。The peak band of the (110) plane is measured by the following method.

測定方法:広角X線回折法(カウンター法)X線発生袋
@:理学電機社製のRU−200B(回転対陰極型) X線源:CtJKα(Niフィルター使用)出力 :3
5kV15mA ゴニオメータ;理学電機社製ゴニオメータスリット系:
2mmφ 1°−1゜ 検出器;シンチレーションカウンター このカウンターから得られるデータを計数記録装置にか
けてチャートを書かせる。
Measurement method: Wide-angle X-ray diffraction method (counter method) X-ray generation bag @: Rigaku Denki RU-200B (rotating anode cathode type)
5kV15mA goniometer; goniometer slit system manufactured by Rigaku Denki Co., Ltd.:
2 mmφ 1°-1° detector; scintillation counter The data obtained from this counter is applied to a counting and recording device to draw a chart.

本発明の上記PTFE系11i1は次のような繊維特性
を有する。
The PTFE system 11i1 of the present invention has the following fiber properties.

本発明のPTFE系繊維成形用繊維素材は如何なる単繊
維繊度でもさしつかえないが、たとえば10d以下、好
ましくは7d以下、さらには3d以下の細いもの程、強
度や表面特性の上から好ましい。
The PTFE fiber material for molding of the present invention may have any single fiber fineness, but from the viewpoint of strength and surface properties, the thinner the fiber is, for example, 10 d or less, preferably 7 d or less, and even 3 d or less, the better.

かかる本発明のPTFE系繊維成形用繊維素材の製造法
の一例を以下に示す。なお、以下本発明でいう%は重量
%を意味する。
An example of the method for manufacturing the PTFE-based fiber material for molding of the present invention is shown below. Hereinafter, % in the present invention means % by weight.

すなわち、本発明でいうPTFE系繊維は紡糸原液から
洗浄、アルカリ処理などの各工程で使用する水や薬剤は
全て純度の高い、不純物(異物)の少ない系が採用され
る。かかる系を採用することによって、初めて単糸切れ
や毛羽立ちを制御し、さらに結晶のよく成長したボイド
の少ない繊維を提供し得たものである。
That is, for the PTFE fiber referred to in the present invention, the water and chemicals used in each step of the spinning dope, washing, alkali treatment, etc. are all highly purified and contain few impurities (foreign substances). By employing such a system, it was possible for the first time to control single filament breakage and fluffing, and to provide fibers with well-grown crystals and fewer voids.

本発明の紡糸原液としてはビスコースとPTFEディス
バージョンとの混合液を用い、これを凝固浴中に吐出し
、凝固した後、水洗精練する。精練後アルカリ水に浸漬
して絞った後、乾燥するか、そのまま焼成して黒色繊維
を得る。これを必要により、さらに延伸する。
A mixed solution of viscose and PTFE dispersion is used as the spinning stock solution of the present invention, which is discharged into a coagulation bath, coagulated, and then washed and refined with water. After scouring, the fibers are soaked in alkaline water, squeezed, and then dried or fired as they are to obtain black fibers. This is further stretched if necessary.

通常、この黒色繊維が本発明の成形用繊維素材として適
用される。この段階の繊維は通常900%程度の切断伸
度を有する。この繊維を延伸することにより、強度を所
望のものに高めることができる。しかし、伸度は延伸倍
率を上げれば、それだけ下がるので、適宜の延伸倍率を
適用するのが好ましい。
Usually, this black fiber is used as the molding fiber material of the present invention. The fiber at this stage usually has a breaking elongation of about 900%. By stretching this fiber, the strength can be increased to a desired level. However, the elongation decreases as the draw ratio increases, so it is preferable to apply an appropriate draw ratio.

かかる黒色繊維は、必要により、さらに白色化処理工程
で、高温雰囲気中で酸化熟成処理する。
Such black fibers are further subjected to oxidative aging treatment in a high temperature atmosphere in a whitening treatment step, if necessary.

この繊維は、必要によりざらに1〜2段延伸される。This fiber is roughly drawn in one or two stages if necessary.

ディスバージョンの大きさは小さい方が好ましくは平均
粒子径を0.6μ以下に調整する。ビスコースは重合度
200〜600の組成物で適度に熟成したものが適用さ
れる。
The smaller the size of the dispersion, the more preferably the average particle diameter is adjusted to 0.6 μm or less. The viscose used is a composition having a degree of polymerization of 200 to 600 and suitably aged.

かかるPTFEディスバージョンとビスコースとを混合
して紡糸原液とするが、この際、紡糸原液の混合ポリマ
ー中のPTFEは60〜98%、好ましくは70〜96
%の範囲の組成に調整されるが、PTFE濃度が高い方
が繊維特性もよくなる。すなわち、紡糸原液中のセルロ
ース濃度は5〜20%程度である。
The PTFE dispersion and viscose are mixed to form a spinning dope. At this time, the PTFE content in the mixed polymer of the spinning dope is 60 to 98%, preferably 70 to 96%.
Although the composition is adjusted within the range of PTFE, the higher the PTFE concentration, the better the fiber properties. That is, the cellulose concentration in the spinning dope is about 5 to 20%.

かかる原液に、粒径が100μ以下の二硫化モリブデン
を0.5〜30%混合すると、分繊性ならびに強力剛性
、耐摩耗性が向上する。
When 0.5 to 30% of molybdenum disulfide having a particle size of 100 μm or less is mixed into such a stock solution, the fiber splitting properties, strong rigidity, and abrasion resistance are improved.

かかる紡糸原液は次に無機鉱酸または/および無機鉱酸
塩で構成される凝固浴水溶液中に紡出される。かかる無
機鉱酸としては、硫酸が好ましいが、硝酸、塩酸、リン
酸なども適用され得る。無機鉱酸の含有量は0.1〜5
0%である。
Such a spinning dope is then spun into an aqueous coagulation bath solution composed of an inorganic mineral acid or/and an inorganic mineral salt. As such an inorganic mineral acid, sulfuric acid is preferable, but nitric acid, hydrochloric acid, phosphoric acid, etc. can also be applied. The content of inorganic mineral acids is 0.1-5
It is 0%.

かかる無機鉱酸塩は30%以下程度添加配合される。Such an inorganic mineral salt is added in an amount of about 30% or less.

かかる凝固浴中に前記紡糸原液が押し出されて、マルチ
フィラメントとして紡出、凝固する。この時の紡出速度
は、たとえば約20〜50m/分、さらにはそれよりも
ゆっくり紡糸する。
The spinning stock solution is extruded into the coagulation bath, and is spun and coagulated as a multifilament. The spinning speed at this time is, for example, about 20 to 50 m/min, or even slower.

この凝固マルチフィラメントはそのまま40〜90℃、
好ましくは80℃近辺の温水下で十分に精練される。こ
の精練温度は空洞の発生にも関連があるので、制御を的
確にすることである。
This coagulated multifilament is heated at 40 to 90℃ as it is.
It is preferably thoroughly refined under warm water at around 80°C. This scouring temperature is also related to the formation of cavities, so it is important to control it accurately.

アルガリ処理後のマルチフィラメント束はその状態で3
00〜450℃、好ましくは320〜400℃で焼成す
る。この場合、焼成と延伸を別々にしてもよい、同時に
延伸してもよい。延伸は少なくとも5〜10倍に延伸す
る。この時の焼成はセルロース炭化物が3.0重ω%以
下になるまで炭化する条件を選択するのが好ましい。得
られる繊維はセルロース炭化物を含有しているために、
褐色ないしは黒色を呈している。
The multifilament bundle after Argali treatment is 3
It is fired at a temperature of 00 to 450°C, preferably 320 to 400°C. In this case, firing and stretching may be performed separately or simultaneously. Stretching is performed at least 5 to 10 times. In this firing, it is preferable to select conditions that will carbonize the cellulose carbide to 3.0% by weight or less. Because the obtained fiber contains cellulose carbide,
It is brown or black in color.

かくして1qられるPTFE系繊維は、ざらに300℃
以上、好ましくは310〜340℃で、少なくとも50
時間、好ましくは60時間以上空気酸化するとともに熟
成することによつ白色化される。
In this way, 1q of PTFE fiber is heated to roughly 300°C.
above, preferably at 310-340°C, at least 50°C
Whitening is achieved by air oxidation and aging for a period of time, preferably 60 hours or more.

かかる繊維、すなわち、黒色繊維または白色繊維は未延
伸、延伸のいずれでもさしつかえないが、要するに少な
くとも伸度100%、好ましくは200%以上残存させ
ることが重要である。
Such fibers, ie, black fibers or white fibers, may be undrawn or drawn, but it is important that the elongation remains at least 100%, preferably 200% or more.

かかる成形用繊維素材はそれのみ100%で成形用素材
として用いても勿論さしつかえないが、ざらに他の繊維
を本発明の性能を阻害しない範囲内に  ′おいて併用
することによって、これらの繊維の機能をプラスした成
形品を提供することができる。
It is of course possible to use 100% of such a fiber material for molding as a material for molding, but it is possible to improve the quality of these fibers by using them in combination with other fibers within a range that does not impede the performance of the present invention. We can provide molded products with additional functions.

たとえば、通常のポリアミド系繊維やポリエステル系繊
維、ざらには初期弾性率、繊維強力の高い繊維、たとえ
ば全芳香族ポリアミド繊維、ポリスルフィド繊維や高延
伸合成繊維、たとえばポリエチレン、ポリビニルアルコ
ール、ポリアクリロニトリルなどを少なくとも8倍延伸
した高強力繊維が好ましく適用される。
For example, ordinary polyamide fibers and polyester fibers, fibers with high initial elastic modulus and fiber strength such as fully aromatic polyamide fibers, polysulfide fibers, and highly oriented synthetic fibers such as polyethylene, polyvinyl alcohol, polyacrylonitrile, etc. High strength fibers drawn at least 8 times are preferably applied.

また、反対に弾性エラストマーからなる繊維、たとえば
ポリウレタン系繊維などは切断伸度が800%と本発明
で適用されるPTFE系繊維に類似するところから好ま
しく適用される。
On the other hand, fibers made of elastic elastomers, such as polyurethane fibers, are preferably used because they have a breaking elongation of 800%, which is similar to the PTFE fibers used in the present invention.

かかるPTFE系繊維ならびに伯種繊維との混用繊維は
、そのまままたは適宜の編織組織または不織布状に成形
されて、成形用素材とされる。
Such PTFE fibers and mixed fibers with black seed fibers are used as molding materials as they are or by being molded into a suitable knitted or woven structure or nonwoven fabric.

かかる成形用fiAl素材は必要により、プラズマ処理
などの接着性改善処理を施すことができる。
Such a fiAl material for molding can be subjected to adhesion improving treatment such as plasma treatment, if necessary.

かかる繊維成形用繊維素材と併用する樹脂としては、た
とえば、天然ゴム、合成ゴム(合成樹脂エラストマーを
含む)、ポリアミド系樹脂、ポリエステル系樹脂、ポリ
アクリル系樹脂、ポリオレフィン系樹脂などがあげられ
るが、合成ゴムあるいは硬質樹脂成形品では高剪断応力
を有する、たとえばポリアミド系樹脂が好ましく選択さ
れる。
Examples of resins used in combination with such fiber materials for fiber molding include natural rubber, synthetic rubber (including synthetic resin elastomers), polyamide resins, polyester resins, polyacrylic resins, polyolefin resins, etc. For synthetic rubber or hard resin molded articles, resins having high shear stress, such as polyamide resins, are preferably selected.

次に、実施例で本発明をざらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

[実施例] 実施例1 分散剤としてアルキルアリルポリエーテルアルコールを
用いてイオン交換水に分散されたPTFE系樹脂を60
%含有するデイスパージョンを114部と、ビスコース
(セルロース8.9%と苛性ソーダ5.4%、二硫化炭
素29%/セルロース量、残りイオン交換水>100部
とを8°Cの真空ミキサーに装填し、真空度10 To
rrで21時間混合・脱泡して、紡糸原液を作った。
[Example] Example 1 PTFE resin dispersed in ion-exchanged water using alkylaryl polyether alcohol as a dispersant
% dispersion and viscose (8.9% cellulose and 5.4% caustic soda, 29% carbon disulfide/cellulose amount, remaining ion exchange water > 100 parts) in a vacuum mixer at 8 °C. and vacuum level 10 To
The mixture was mixed and defoamed at rr for 21 hours to prepare a spinning stock solution.

この紡糸原液を、0.12mmφのホールを240個有
する口金に430部分で導き、23m/分の速度で23
°Cに制御された凝固浴中に吐出させた。凝固浴は硫酸
7%、硫酸ソーダ20%をイオン交換水に溶解してなる
水溶液を用いた。
This spinning dope was introduced in 430 portions into a nozzle having 240 holes of 0.12 mmφ, and 23
It was discharged into a coagulation bath controlled at °C. The coagulation bath used was an aqueous solution prepared by dissolving 7% sulfuric acid and 20% sodium sulfate in ion-exchanged water.

この凝固繊維は80°Cのイオン交換水槽に導かれ、約
29m/分の速度でゆっくりと十分に洗浄され、マング
ルで絞られた後、苛性ソーダ濃度が0.05 mol 
/ tであるイオン交換水溶液に浸漬し、苛性ソーダを
繊維重量に対して0.32%含有せしめた。
The coagulated fibers were introduced into an ion exchange water tank at 80°C, washed slowly and thoroughly at a speed of about 29 m/min, and squeezed with a mangle to reduce the concentration of caustic soda to 0.05 mol.
/t in an ion-exchange aqueous solution containing 0.32% caustic soda based on the weight of the fiber.

このアルカリ含有繊維を次に380℃に加熱されたロー
ルに接触させて焼成した。
This alkali-containing fiber was then brought into contact with a roll heated to 380°C and fired.

この焼成繊維を、平織組織で布帛を形成した。This fired fiber was used to form a fabric with a plain weave structure.

この平織物を窒素雰囲気下でプラズマ処理した。This plain woven fabric was subjected to plasma treatment in a nitrogen atmosphere.

この処理織物をABS系樹脂製ポット受け(習動板にエ
ポキシ系接着剤を介してプレス接着した。
This treated fabric was press-bonded to an ABS-based resin pot holder (push plate) via an epoxy adhesive.

この開動板は接着性良好で、しかも快適な1習動性を有
していた。
This opening plate had good adhesion and comfortable movement.

(発明の効果) 本発明は、すぐれた成形性のもとに各種成形品を容易に
製造することができる成形用繊維素材を提供するもので
あり、本発明によるスタンパブルシートは易滑性、制電
性、防汚性などの特徴を兼ね備えた優れた樹脂成形品を
提供することができる。かかる成形用繊維素材によって
、従来用途展開できなかった樹脂成形品分野にも充分に
適用可能なものを提供し得たものである。
(Effects of the Invention) The present invention provides a molding fiber material that can easily produce various molded products based on excellent moldability, and the stampable sheet according to the present invention has excellent moldability. It is possible to provide an excellent resin molded product that has features such as antistatic properties and antifouling properties. By using such a fiber material for molding, we have been able to provide a product that can be fully applied to the field of resin molded products, which has not been used in the past.

Claims (3)

【特許請求の範囲】[Claims] (1)90モル%以上がテトラフロロエチレンであるポ
リテトラフロロエチレン系繊維であって、該繊維の伸度
が100%以上であることを特徴とする成形用繊維素材
(1) A fiber material for molding, characterized in that it is a polytetrafluoroethylene fiber containing 90 mol% or more of tetrafluoroethylene, and the elongation of the fiber is 100% or more.
(2)ポリテトラフロロエチレン系繊維が、編織物また
は不織布を構成している特許請求の範囲第(1)項記載
の成形用繊維素材。
(2) The fiber material for molding according to claim (1), wherein the polytetrafluoroethylene fiber constitutes a knitted fabric or a nonwoven fabric.
(3)ポリテトラフロロエチレン系繊維が、他の繊維と
混用されている特許請求の範囲第(1)項記載の成形用
繊維素材。
(3) The fiber material for molding according to claim (1), wherein the polytetrafluoroethylene fiber is mixed with other fibers.
JP62296629A 1987-11-25 1987-11-25 Fiber material for molding Pending JPH01139806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296629A JPH01139806A (en) 1987-11-25 1987-11-25 Fiber material for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296629A JPH01139806A (en) 1987-11-25 1987-11-25 Fiber material for molding

Publications (1)

Publication Number Publication Date
JPH01139806A true JPH01139806A (en) 1989-06-01

Family

ID=17836017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296629A Pending JPH01139806A (en) 1987-11-25 1987-11-25 Fiber material for molding

Country Status (1)

Country Link
JP (1) JPH01139806A (en)

Similar Documents

Publication Publication Date Title
JP5594937B2 (en) Method for forming melt spun multifilament polyolefin yarn and yarn formed by this method
JP4945684B2 (en) Acrylonitrile swelling yarn for carbon fiber, precursor fiber bundle, flame-resistant fiber bundle, carbon fiber bundle, and methods for producing them
US4745142A (en) Stainproof polyester fiber
JPWO2020004638A1 (en) Fiber reinforced resin prepreg, molded article, fiber reinforced thermoplastic resin prepreg
RU2316622C1 (en) Fully aromatic polyamide fibers and method for producing the same
JP5388448B2 (en) Polymer material containing inorganic solid and method for producing the same
KR920008997B1 (en) Highly opened reticulated poly propylene fiber dope for production of the fiber and production process
JPH01139806A (en) Fiber material for molding
JP4005278B2 (en) Polyester monofilament, method for producing the same, and industrial fabric
HU228482B1 (en) Acrylonitrile-based fiber bundle for carbon fiber precursor and method for preparation thereof
JPH01139833A (en) Fiber materials excellent in flexibility
JPS63219615A (en) Polytetrafluoroethylene fiber
Bajaj et al. Modification of acrylic fibres for specific end uses
EP3514269B1 (en) Vinylidene fluoride resin fibers and sheet-like structure
JP2021014645A (en) Method of producing liquid crystal polyester fiber
JPH01139834A (en) Bulky processed yarn and production thereof
Wu et al. Preparation of high performance PET fiber by solution spinning technique
JP2838206B2 (en) Mixed spun yarn consisting of polytetrafluoroethylene fiber
JPH01138268A (en) Filler
Suntamit et al. Effect of ZnO Nanoparticles on Hydrophobicity, Biological and Mechanical Properties of Side-by-Side Bicomponent PP Fibers
JPH089198Y2 (en) Electret made from polytetrafluoroethylene-based fired fiber
KR840001173B1 (en) Compound fiber
JPH01139835A (en) Core-sheath structural yarn
JP3753654B2 (en) Pile fiber products
JPH02216214A (en) Production of ultrafine polyphenylene sulfide fiber