JPH01138542A - Direct injecting method for light information of pulse modulation optical communication - Google Patents

Direct injecting method for light information of pulse modulation optical communication

Info

Publication number
JPH01138542A
JPH01138542A JP62296066A JP29606687A JPH01138542A JP H01138542 A JPH01138542 A JP H01138542A JP 62296066 A JP62296066 A JP 62296066A JP 29606687 A JP29606687 A JP 29606687A JP H01138542 A JPH01138542 A JP H01138542A
Authority
JP
Japan
Prior art keywords
signal
optical
acousto
acoustooptic
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62296066A
Other languages
Japanese (ja)
Inventor
Takao Sasano
笹野 隆生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP62296066A priority Critical patent/JPH01138542A/en
Publication of JPH01138542A publication Critical patent/JPH01138542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To improve the reliability of a communicating function by interposing an optical separator and an acoustooptic effect element in the middle of a pulse modulation optical communication path, applying an ultrasonic wave to the acoustooptic effect element in synchronism with the synchronizing signal of a light signal extracted by the optical separator, deflecting the pulse modulation optical signal and injecting new information. CONSTITUTION:The optical separator 9 and acoustooptic effect element 7 are interposed in the middle of the pulse modulation optical communication path, and the ultrasonic wave 5 is applied to the acoustooptic effect element 7 in synchronism with the synchronizing signal of the light signal extracted by the optical separator 9. The acoustooptic element 7 functions to deflect light, so a compressional standing wave is generated in the acoustooptic element 7 and incident light is diffracted primarily in a reflection angle direction like mirror surface reflection, so that a pulse-modulated light signal is absent only while the signal 5 is inputted to the acoustooptic element 7. Namely, part of the pulse-modulated light signal in the process of transmission is made absent to discard an unnecessary signal or vary the light signal, thereby sending the signal as a new signal. Consequently, the reliability of the communicating function is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パルス変調光通信通路途中において情報の一
部を抽出あるいは新たな情報を注入しない場合に有効な
情報中継・処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an information relay/processing method that is effective when a part of information is not extracted or new information is not injected in the middle of a pulse modulated optical communication path.

(従来の技術) 光電子技術の進歩及び低損失光ファイバーの実用化など
によって長距離大容量の情報伝送に、あるいは伝送路途
中の電磁場の影響を受けないことから強電磁場中の情報
伝送に光通信方式が多く利用されるようになってきてい
る9例えば、高圧変圧器が設置されている場所、鉄道線
路の沿線、電力線に沿った場所等において光フアイバー
伝送路が布設され、必要に応じて途中でも中継が行なわ
れている。
(Prior technology) With the advancement of optoelectronic technology and the practical use of low-loss optical fibers, optical communication methods have become popular for long-distance, large-capacity information transmission, and for information transmission in strong electromagnetic fields because they are not affected by electromagnetic fields in the middle of the transmission path. 9 For example, optical fiber transmission lines are installed in places where high-voltage transformers are installed, along railway lines, along power lines, etc. A relay is being carried out.

このような光通信において、通信通路途中で情報の一部
を抽出したり、新たな情報を注入したい場合、従来は、
第4図に示すごとく、−旦すべての光情報を光電気変換
器102で電気量に変換した後、復調器103で必要な
情報104を抽出するとともに、注入したい信号105
を混合器106 ・変刺器107で混合・変調し、あら
ためて電気光変換器108で光情報に変換して送出する
ようにしている。
In such optical communications, if you want to extract some information or inject new information midway through the communication path, conventionally,
As shown in FIG. 4, first, all optical information is converted into electrical quantities by a photoelectric converter 102, and then necessary information 104 is extracted by a demodulator 103, and a signal 105 to be injected is extracted by a demodulator 103.
The signals are mixed and modulated by a mixer 106 and a transducer 107, and then converted into optical information by an electro-optical converter 108 and sent out.

尚、符号101は入力側光ファイバー、109は出力側
光ファイバーである。尚、第5図に第4図の装置の各所
における信号波形の一例を示す、■は入力信号、■は信
号抽出、■は信号抽入、■は出力信号を示す。
Note that 101 is an input optical fiber, and 109 is an output optical fiber. Incidentally, FIG. 5 shows an example of signal waveforms at various parts of the apparatus shown in FIG. 4, where ■ indicates an input signal, ■ indicates signal extraction, ■ indicates signal extraction, and ■ indicates an output signal.

(発明が解決しようとする問題点) しかしながら、従来の信号注入方法によると、すべての
情報は一旦電気量に変換されてから抽出・注入が行なわ
れ、多くの電子回路102,103.・・・。
(Problems to be Solved by the Invention) However, according to the conventional signal injection method, all information is once converted into electrical quantities before extraction and injection, and many electronic circuits 102, 103... ....

108を必要とするため、これらの電子回路の一つが故
障したり、これらの電子回路を駆動する電源回路が故障
すると、すべての通信機能が停止する。
108, if one of these electronic circuits fails or the power supply circuit that drives these electronic circuits fails, all communication functions will stop.

したがって、これら電子回路の高信頼度化のために、こ
れらの回路に複雑な保障回路を付加したり、回路を二重
化しており、装置が大規模でかつ複雑になり、高価格な
ものとなっている。
Therefore, in order to improve the reliability of these electronic circuits, complicated guarantee circuits are added to these circuits or circuits are duplicated, making the equipment large-scale, complex, and expensive. ing.

そこで、本発明は、パルス変調光通信通路途中の任意の
場所で光電気変換を行なわずに情報の抽出、新たな情報
の注入を行なうことができる光情報直接注入方法を提供
することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a direct optical information injection method that can extract information and inject new information without performing photoelectric conversion at any location along a pulse modulated optical communication path. do.

(問題点を解決するための手段) かかる目的を達成するため、本発明の光情報直接注入方
法は、パルス変調光通信通路の途中に光分離器と音響光
学効果素子を挿入し、前記光分離器によって抽出された
光信号の同期信号と同期させて前記音響光学効果素子に
超音波を印加し、パルス変調光信号を偏向させることに
よって主通信情報を光電気変換することなく新たな情報
を注入するようにしている。
(Means for Solving the Problems) In order to achieve the above object, the optical information direct injection method of the present invention inserts an optical separator and an acousto-optic effect element in the middle of a pulse modulated optical communication path, and Inject new information without photoelectrically converting the main communication information by applying ultrasonic waves to the acousto-optic effect element in synchronization with the synchronization signal of the optical signal extracted by the device and deflecting the pulse modulated optical signal. I try to do that.

(作用) 音響光学素子は光を変向させる機能を有し、第3゛図に
示すごとく、音響光学素子7にある定まった角度で光を
入射させ、この音響光学素子の材質、寸法で決る周波数
の電気信号5を電極8を介して印加すれば、音響光学素
子7内に粗密の定存波を生じ、入射光は鏡面反射のごと
く反射角方向に一次回折する。もちろん信号5がない場
合、入射光はそのままの方向に透過する。
(Function) The acousto-optic element has the function of redirecting light, and as shown in Fig. 3, the light is incident on the acousto-optic element 7 at a fixed angle, which is determined by the material and dimensions of the acousto-optic element. When an electrical signal 5 of a certain frequency is applied through the electrode 8, a dense standing wave is generated in the acousto-optic element 7, and the incident light is first-order diffracted in the direction of the reflection angle, like specular reflection. Of course, if there is no signal 5, the incident light will be transmitted in the same direction.

したがって、この音響光学素子に信号5が入力されてい
る時間だけパルス変調光信号が欠損することとなる。つ
まり、伝達途中のパルス変調光信号の一部を欠損させる
ことによって不要な信号を捨であるいは光信号を変化さ
せ、新たな信号として送信することができる。
Therefore, the pulse modulated optical signal is lost only during the time that the signal 5 is input to this acousto-optic element. That is, by dropping a part of the pulse modulated optical signal that is being transmitted, unnecessary signals can be discarded or the optical signal can be changed and transmitted as a new signal.

(実施例) 以下、本発明の構成を図面に示す実施例に基づいて詳細
に説明する。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings.

第1図に本発明方法を実施するパルス変調光情報直接注
入装置の一例を示す。鎖国において、1は入力側光ファ
イバー、2は光電気変換器、3は復調器、4は抽出信号
、5は注入信号、6は出力側光ファイバー、7は音響光
学素子、8は電極、9は光分離器、10は透明な光学媒
体である。
FIG. 1 shows an example of a pulse modulated optical information direct injection device for implementing the method of the present invention. In the isolation system, 1 is an input optical fiber, 2 is a photoelectric converter, 3 is a demodulator, 4 is an extraction signal, 5 is an injection signal, 6 is an output optical fiber, 7 is an acousto-optic element, 8 is an electrode, and 9 is an optical fiber. Separator 10 is a transparent optical medium.

光分離器9は、レンズ機能とハーフミラ−機能を有し、
パルス変調光情報の一部例えば約10%程度を抽出する
ものである。光電気変換器(0/E)2及び復調器(D
M)3は光分離器9によって抽出された信号を電気信号
に変換してから元の信号波を取出すものである。これに
よって、同期信号とそこで必要な信号を抽出する。
The optical separator 9 has a lens function and a half mirror function,
A part of the pulse modulated light information, for example about 10%, is extracted. Optoelectrical converter (0/E) 2 and demodulator (D
M) 3 converts the signal extracted by the optical separator 9 into an electrical signal and then extracts the original signal wave. This extracts the synchronization signal and the necessary signals.

音響光学素子7は、超音波の伝搬に起因する光弾性効果
によって屈折率変化が超音波の波長に対応して生じ、そ
こを横切る光を回折させる現象即ち音響光学効果を有す
るものである。この音響光学材料としては、一般にTe
O2、Te、AsySe55Ge33、Ag3 Ss 
、Ag3 Sea、非晶質Se等のガラスが公知である
が、これらに限定されるものではなく、音響光学効果を
有するものの全てを含む0通常、TeO2が可視光用の
媒体として好適である。尚、光源として赤外レーザビー
ムを使用する場合には、As−8e−Ge系ガラス、G
e、Te、GaAsの光偏向器用媒体が適している。尚
、音響光学素子7のくし歯状の!@8に信号5を印加す
ることによって超音波は発生する。
The acousto-optic element 7 has an acousto-optic effect in which a refractive index change occurs in accordance with the wavelength of the ultrasound due to the photoelastic effect caused by the propagation of the ultrasound, and light that crosses the change is diffracted, that is, an acousto-optic effect. This acousto-optic material is generally Te
O2, Te, AsySe55Ge33, Ag3 Ss
Glasses such as , Ag3 Sea, and amorphous Se are known, but are not limited to these and include all those having an acousto-optic effect.TeO2 is usually suitable as a medium for visible light. In addition, when using an infrared laser beam as a light source, As-8e-Ge glass, G
Optical deflector media of E, Te, and GaAs are suitable. In addition, the comb-like shape of the acousto-optic element 7! Ultrasonic waves are generated by applying signal 5 to @8.

透明な光学媒体10は、音響光学素子7を通過した透過
光と一次回折光の混信を防ぐためのもので、音響光学効
果素子7と出力側光ファイバー6との間に一定の隔りを
与えかつ光学的に透明なものであればどのようなもので
も良い0例えば、石英ガラスのようなものの採用が一般
的であるが、これに代えて空気層を用いることも可能で
ある。
The transparent optical medium 10 is used to prevent interference between the transmitted light that has passed through the acousto-optic element 7 and the first-order diffracted light, and provides a certain distance between the acousto-optic element 7 and the output optical fiber 6. Any material may be used as long as it is optically transparent.For example, a material such as quartz glass is generally used, but an air layer may be used instead.

即ち、音響光学素子7と出力側光ファイバー6とを一定
間隔をあけて設置しても良い、この場合、接続損失を抑
えるため、光ファイバー6の入射端面と音響光学素子や
の端面とが平行となるように設置することが必要である
That is, the acousto-optic element 7 and the output optical fiber 6 may be installed at a certain interval. In this case, in order to suppress connection loss, the input end face of the optical fiber 6 and the end face of the acousto-optic element are parallel to each other. It is necessary to install it as follows.

尚、音響光学素子7に対する最適な入射角(θi)、信
号周波数(fs)などは音響光学素子7の材質、寸法お
よび入射光の波長(λ)によって決り、入射光としてH
e−Neガスレーザ光(λ=632.8nl)を用いる
場合、通常の音響光学素子では入射角は数nrad程度
、信号周波数は数108H7程度になる。また、透過光
と一次回折光の混信を防ぐために、透過光の観測点例え
ば出力側ファイバー6の取付は点を音響光学素子7がら
10■程度離すことによって、1ONb程度のパルス変
調光情報の注入が可能である。そこで、透明な光学媒体
10の厚みは10am程度とすることが好ましい。
The optimum incident angle (θi), signal frequency (fs), etc. for the acousto-optic element 7 are determined by the material and dimensions of the acousto-optic element 7, and the wavelength (λ) of the incident light.
When using e-Ne gas laser light (λ=632.8 nl), in a normal acousto-optic element, the incident angle is about several nrad and the signal frequency is about several 108H7. In addition, in order to prevent interference between the transmitted light and the first-order diffracted light, the observation point of the transmitted light, for example, the attachment point of the output side fiber 6, is separated by about 10 cm from the acousto-optic element 7, and pulse modulated light information of about 1 ONb is injected. is possible. Therefore, the thickness of the transparent optical medium 10 is preferably about 10 am.

以上のように構成された装置によると、光通信通路途中
任意の場所で情報の抽出、新たな情報の注入を行うこと
ができる。
According to the device configured as described above, information can be extracted and new information can be injected at any location along the optical communication path.

例えば、第2図■に示すようなPCM変調光信号が入力
側光フアイバー1内を伝送されているとき、集光レンズ
と半透明板を兼ねた光分離器9をその出口に設置して信
号の一部(約10%程度)を抽出し、光・電気変換器2
と復調器3により一1同期信号とそこで必要な信号[第
2図■]を抽出する。一方、大半の信号(残りの約90
%)は音響光学素子7に入射される。ここでは先の同期
信号から所定の時間だけ遅らせて、ここで注入したい信
号5[第2図■]を電極5を介して音響光学素子7に印
加する。すると、音響光学素子7の屈折率が変わって一
次回折を起し、そこを通過する電気信号を光通信通路か
ら脱落させる。即ち、不要な信号・情報のみを抽出させ
る。また、偏向しない光は透明な光学媒体10を介して
、その透過光を出力側光ファイバー6に入れる。このよ
うにすること、によって、出力光ファイバー6内の信号
は、第2図■に示すように、伝送PCM光信号が本来の
信号とは異なるデジタル信号として、即ち入力信号に注
入信号が追加された状態の新たな情報として送信される
For example, when a PCM modulated optical signal as shown in FIG. A part (approximately 10%) of the
Then, the demodulator 3 extracts the 11 synchronization signal and the necessary signals [Fig. 2 (■)]. On the other hand, most of the signals (the remaining approximately 90
%) is incident on the acousto-optic element 7. Here, the signal 5 to be injected (■ in FIG. 2) is applied to the acousto-optic element 7 via the electrode 5 after a predetermined time delay from the previous synchronization signal. Then, the refractive index of the acousto-optic element 7 changes to cause first-order diffraction, causing the electrical signal passing through it to drop out of the optical communication path. That is, only unnecessary signals and information are extracted. Further, the unpolarized light passes through the transparent optical medium 10 and enters the transmitted light into the output optical fiber 6. By doing this, the signal in the output optical fiber 6 is converted into a digital signal different from the original signal, that is, an injection signal is added to the input signal, as shown in FIG. Sent as new status information.

(発明の効果) 以上の説明より明らかなように19本発明は、パルス変
調光通信通路の途中に光分離器と音響光学効果素子を挿
入し、前記光分離器によって抽出された光信号の同期信
号と同期させて前記音響光学効果素子に超音波を印加し
、パルス変調光信号のを偏向させることによって新たな
情報を注入するようにしたので、パルス変調光信号を電
気信号に変換することなくそのままの状態で伝送してい
る途中の任意の場所で情報の抽出あるいは新たな情報の
注入を実施できる。しかも、従来の装置に比べて、能動
的な電子回路数が少なく、主光信号通路は一体化された
受動的な光学素子で構成されている。
(Effects of the Invention) As is clear from the above explanation, the present invention provides a method for inserting an optical separator and an acousto-optic effect element in the middle of a pulse modulated optical communication path, and synchronizing optical signals extracted by the optical separator. Ultrasonic waves are applied to the acousto-optic effect element in synchronization with the signal, and new information is injected by deflecting the pulse modulated optical signal, without converting the pulse modulated optical signal into an electrical signal. Information can be extracted or new information can be injected at any point during transmission without change. Moreover, compared to conventional devices, the number of active electronic circuits is reduced, and the main optical signal path is comprised of integrated passive optical elements.

したがって、その信頼度は高く、かつ万一電子回路およ
びそれを駆動する電源回路に故障が生じても、その個所
での信号の抽出あるいは注入ができなくなるだけで、主
光通信信号には何等の影響も与えない。つまり、光通信
システム全体の信頼度は格段に向上すると考えられ、装
置の小形化、単純化、低価格化が期待できる。
Therefore, its reliability is high, and even if a failure occurs in the electronic circuit or the power supply circuit that drives it, it will simply become impossible to extract or inject the signal at that point, and the main optical communication signal will not be affected in any way. It has no effect. In other words, it is thought that the reliability of the entire optical communication system will be significantly improved, and devices can be expected to be smaller, simpler, and lower in price.

なお、音響光学素子内の光伝搬損失は約10%程度であ
るので、光通信通路途中に本装置を一個挿入する毎に約
20%の損失があるものとすると、最初の射出光量に対
して、各光電気変換器、復調器の感度がその1%まであ
るものとした場合、本装置を直列に10個まで挿入する
ことができる。
Note that the optical propagation loss within an acousto-optic element is about 10%, so assuming that there is a loss of about 20% each time this device is inserted in the middle of the optical communication path, the amount of light emitted from the initial Assuming that the sensitivity of each photoelectric converter and demodulator is up to 1% of that, up to 10 of this device can be inserted in series.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる光情報抽出・注入装置の説明図
、第2図は同装置の各所における信号波形の例である。 第3図は音響光学素子による光間光機能を説明する図面
である。第4図は従来の光通信中継・処理方式のブロッ
ク図、第5図はそれぞれの装置での信号波形の例である
。 1・・・入力側光ファイバー、2・・・光電気変換器、
3・・・復調器、4・・・抽出信号、5・・・注入信号
、6・・・出力側光ファイバー、7・・・音響光学素子
、9・・・光分離器。 第1WI 第2図 第5図 ■                   入力信号期 信 号 i畜
FIG. 1 is an explanatory diagram of an optical information extraction/injection device according to the present invention, and FIG. 2 is an example of signal waveforms at various locations in the device. FIG. 3 is a diagram illustrating the optical function of the acousto-optic device. FIG. 4 is a block diagram of a conventional optical communication relay/processing system, and FIG. 5 is an example of signal waveforms in each device. 1... Input side optical fiber, 2... Photoelectric converter,
3... Demodulator, 4... Extraction signal, 5... Injection signal, 6... Output side optical fiber, 7... Acousto-optic element, 9... Optical separator. 1WI Figure 2 Figure 5 ■ Input signal period signal i

Claims (1)

【特許請求の範囲】[Claims] パルス変調光通信通路の途中に光分離器と音響光学効果
素子を挿入し、前記光分離器によって抽出された光信号
の同期信号と同期させて前記音響光学効果素子に超音波
を印加し、パルス変調光信号を偏向させることによって
主通信情報を光電気変換することなく新たな情報を注入
することを特徴とするパルス変調光通信における光情報
直接注入方法。
An optical separator and an acousto-optic effect element are inserted in the middle of a pulse-modulated optical communication path, and an ultrasonic wave is applied to the acousto-optic effect element in synchronization with a synchronization signal of the optical signal extracted by the optical separator. A method for directly injecting optical information in pulse modulation optical communication, characterized by injecting new information by deflecting a modulated optical signal without photoelectrically converting main communication information.
JP62296066A 1987-11-26 1987-11-26 Direct injecting method for light information of pulse modulation optical communication Pending JPH01138542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296066A JPH01138542A (en) 1987-11-26 1987-11-26 Direct injecting method for light information of pulse modulation optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296066A JPH01138542A (en) 1987-11-26 1987-11-26 Direct injecting method for light information of pulse modulation optical communication

Publications (1)

Publication Number Publication Date
JPH01138542A true JPH01138542A (en) 1989-05-31

Family

ID=17828665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296066A Pending JPH01138542A (en) 1987-11-26 1987-11-26 Direct injecting method for light information of pulse modulation optical communication

Country Status (1)

Country Link
JP (1) JPH01138542A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652719A (en) * 1979-10-05 1981-05-12 Nec Corp Acousto-optic element
JPS59114516A (en) * 1982-12-21 1984-07-02 Fujitsu Ltd Optical switch
JPS62186623A (en) * 1986-02-12 1987-08-15 Fujitsu Ltd Optical loop transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652719A (en) * 1979-10-05 1981-05-12 Nec Corp Acousto-optic element
JPS59114516A (en) * 1982-12-21 1984-07-02 Fujitsu Ltd Optical switch
JPS62186623A (en) * 1986-02-12 1987-08-15 Fujitsu Ltd Optical loop transmission system

Similar Documents

Publication Publication Date Title
US4076375A (en) Directional optical waveguide coupler and power tap arrangement
EP0139387B1 (en) High speed pulse train generator
JPH07193541A (en) Device that modulates or insulates optical signal
US4314740A (en) Optical fiber beam splitter coupler
KR850005087A (en) Optical fiber polarizer system and its polarization method
US4761833A (en) Optical fibre network
JP2701608B2 (en) Optical clock extraction circuit
NO961471L (en) Acousto-optic waveguide device for wavelength selection
KR880013357A (en) Fiber optic communication systems
CN109581584A (en) A kind of heterogeneous integrated scanning chip of silicon-lithium niobate and preparation method thereof, application
US3871742A (en) Composite thin film optical device
CA2107778A1 (en) Wavelength-flattened 2x2 splitter for single-mode optical waveguides
US4768848A (en) Fiber optic repeater
US4455643A (en) High speed optical switch and time division optical demultiplexer using a control beam at a linear/nonlinear interface
CA1257336A (en) Data rate limiter for optical transmission system
JPH01138542A (en) Direct injecting method for light information of pulse modulation optical communication
JPH0458736B2 (en)
JPH07264129A (en) Optical mixer
EP0231629A2 (en) Optical switching
US5809186A (en) Delivering multiple optical signals using light that does not carry the data
CN104426604B (en) Single-fiber three-way multiplexer for optical network unit and monolithic integrated reflector
Yoshimura et al. Self-organization of optical waveguides between misaligned devices induced by write-beam reflection
US5861971A (en) Inline modulator device for an optical transmission system
US5333220A (en) Quantum non-demolition optical tapping
JPS6076722A (en) Matrix optical switch