JPH01138429A - Thermopile - Google Patents

Thermopile

Info

Publication number
JPH01138429A
JPH01138429A JP62185112A JP18511287A JPH01138429A JP H01138429 A JPH01138429 A JP H01138429A JP 62185112 A JP62185112 A JP 62185112A JP 18511287 A JP18511287 A JP 18511287A JP H01138429 A JPH01138429 A JP H01138429A
Authority
JP
Japan
Prior art keywords
thermopile
air gap
substrate
contact part
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62185112A
Other languages
Japanese (ja)
Inventor
Michiro Kozutsumi
三千郎 小堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP62185112A priority Critical patent/JPH01138429A/en
Publication of JPH01138429A publication Critical patent/JPH01138429A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To increase the mechanical strength of the hot contact part of a device and to shorten the interval between the hot contact part and cold contact part by racking the part of a couple of thermocouple wires of each thermocouple which includes the hot contact part on an air gap formed with a substrate. CONSTITUTION:After an Si oxide film 11 is formed on an Si substrate 10, photoresist or resin is applied in a trapezoid shape and then one surface is covered with an insulating film 12 including the photoresist or resin so as to form the air gap 13. Then, one thermocouple wire 15a and a black body part 14 are formed and then the other thermocouple wire 15b is formed. Lastly, the photoresist or resin is removed to form the air gap 13 and thus a radiation thermometer is completed. Consequently, the electromotive forces of the thermocouples 15a and 15b decrease by as much as the interval between the hot contact part 15c and cold contact part 15d is shortened, but that is compensated by an increase in the number of mounted thermocouples, the sensitivity is, therefore, improved effectively.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、放射温度計としてのサーモパイルに関し、特
に、温接点部にエアブリッジ構造を持たせたサーモパイ
ルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thermopile as a radiation thermometer, and particularly to a thermopile having an air bridge structure at a hot junction.

[従来の技術] 従来、この種のサーモパイルとしては、第4図に示すよ
うに、穴1aを有するSi基板l上に形成された絶縁膜
2と、その穴領域S上に形成された全黒などの受光部と
しての黒体部3と、この周囲に放射状に直列接続された
複数の熱電対4とからなり、熱電対線4a、4bの温接
点部4Cは黒体部3に近接配置され、その冷接点部4d
は黒体部3から遠ざけた位置に形成されている。
[Prior Art] Conventionally, as shown in FIG. 4, this type of thermopile consists of an insulating film 2 formed on a Si substrate l having a hole 1a, and a completely black insulating film formed over the hole area S. It consists of a black body part 3 as a light receiving part, and a plurality of thermocouples 4 connected in series radially around the black body part 3, and the hot junction part 4C of the thermocouple wires 4a and 4b is arranged close to the black body part 3. , its cold contact part 4d
is formed at a position away from the black body portion 3.

[解決すべき問題点] しかしながら、上記サーモパイルにあっては、次の問題
がある。
[Problems to be Solved] However, the above thermopile has the following problems.

■温接点部4Cが穴領域S上の薄い絶縁膜2(約67t
m程度)上に形成されているため1機械的強度に乏しく
1歩留り、信頼性が低い。
■The hot junction part 4C is the thin insulating film 2 (approximately 67t) on the hole area S.
1), the mechanical strength is poor, the yield is low, and the reliability is low.

■穴領域Sの形成は、一般に200gm程度の厚さのS
i基板l上にまず絶縁1lI2を形成した後、その絶縁
膜?下のSi基板部分をそっくりエツチング除去して穴
1aを形成するものであるが、一般的なエツチング液(
弗酸、硝酸、酢酸)ではそのエツチング速度にバラツキ
(不均一性)があり、結果的に穴領域Sの面積1位置、
形状等に精度が出ない、かかる点から温接点部4Cと冷
接点部4dとの間隔を短くできないので、冷接点部4d
をヒートシンクとしてのSi基板1上に確−実におくべ
く、予めその間隔を長くとる必要がある。したがってチ
ップの小屋化ないし熱電対の高集積化が困難である。
■The hole area S is generally formed with a thickness of about 200 gm.
After first forming an insulator 1lI2 on the i-substrate l, the insulating film ? The hole 1a is formed by etching and removing the entire lower Si substrate part, but using a general etching solution (
Hydrofluoric acid, nitric acid, and acetic acid) have variations (heterogeneity) in their etching speed, and as a result, the area of the hole region S at one position,
Due to this, the distance between the hot junction part 4C and the cold junction part 4d cannot be shortened, so the cold junction part 4d
In order to reliably place these on the Si substrate 1 serving as a heat sink, it is necessary to make the interval long in advance. Therefore, it is difficult to reduce the size of the chip or achieve high integration of thermocouples.

また、その間隔が長いことから、抵抗が比較的大きく、
感度向上の障害となり、更に、熱容量も大きいので、熱
応答性が劣る。
Also, because the interval is long, the resistance is relatively large,
This becomes an obstacle to improving sensitivity, and furthermore, since the heat capacity is large, the thermal response is inferior.

[発明の目的] 本発明は、上記問題点を解決するためのものであり、そ
の目的は、温接点部の機械的強度が高く、温接点部と冷
接点部との間隔を短くし得るサーモパイルを提供するこ
とにある。
[Object of the Invention] The present invention is intended to solve the above problems, and its purpose is to provide a thermopile whose hot junction has high mechanical strength and can shorten the distance between the hot junction and the cold junction. Our goal is to provide the following.

[問題点の解決手段] 上記目的を達成するため、本発明に係るサーモパイルに
おいては、各熱電対の一対の熱電対線のうち温接点部を
含む部分は基板との間に形成されたエアギャップ上に架
設されているものである。
[Means for Solving Problems] In order to achieve the above object, in the thermopile according to the present invention, the portion of each thermocouple wire including the hot junction portion is connected to the air gap formed between the pair of thermocouple wires and the substrate. It is built above.

[作用] かかる構成のサーモパイルによれば、基板を貫通する穴
を開ける必要がなく、温接点部がエアギャップ上に架設
されているので、温接点部の機械的強度が向上すると共
に、集積回路製造の技術を利用することによって、各熱
電対のサイズをより微細化できるので、温接点部と冷接
点部の平面距離を従来に比して短くでき、熱電対搭載個
数の増大又はチップ面積の小型化等を図ることができる
[Function] According to the thermopile having such a configuration, there is no need to make a hole through the substrate, and the hot junction part is built over the air gap, so the mechanical strength of the hot junction part is improved, and the integrated circuit By using manufacturing technology, the size of each thermocouple can be further miniaturized, so the plane distance between the hot junction and cold junction can be shortened compared to the conventional method, increasing the number of thermocouples mounted or reducing the chip area. It is possible to achieve downsizing, etc.

[実施例] 次に本発明の実施例を図面に基づいて説明する。[Example] Next, embodiments of the present invention will be described based on the drawings.

第1図(A)は、本発明に係るサーモパイルの第1実施
例を示す拡大平面図であり、第1図(B)は、同図(A
)中IB−IB線に沿って切断した状態を示す切断矢視
図である。
FIG. 1(A) is an enlarged plan view showing the first embodiment of the thermopile according to the present invention, and FIG.
) is a cross-sectional view showing a state cut along the middle line IB-IB.

図中、 10は平坦なSi基板で、この表面にはSi酸
化膜11が一面に形成されている。このSi酸化膜11
上にはエアギャップ13を設け、これに架設されたブリ
ッジ部12aを有する絶縁膜12が形成されている。ブ
リッジ部12aの中央には全黒などの黒体部14が形成
されており、その近傍部には熱電対線15a、+5bの
重ね合わせ部として形成された温接点部15cが位置し
ている。ブリッジ部12a以外の平坦面上には熱電対線
15a 、 15bの重ね合わせ部として形成された冷
接点部15dが位置している。したがって、各熱電対線
15a 、 15bはブリッジ部12aに乗り上げる段
差部15e  、 15fを有しており、冷接点部15
dはブリッジ12a上の温接点部15cより低いSi基
板10寄りに位置する。
In the figure, 10 is a flat Si substrate, and a Si oxide film 11 is formed all over the surface of this substrate. This Si oxide film 11
An air gap 13 is provided thereon, and an insulating film 12 having a bridge portion 12a built over the air gap 13 is formed. A black body part 14, such as a completely black body part 14, is formed in the center of the bridge part 12a, and a hot junction part 15c formed as an overlapping part of thermocouple wires 15a and +5b is located near the black body part 14. A cold contact portion 15d formed as an overlapping portion of thermocouple wires 15a and 15b is located on the flat surface other than the bridge portion 12a. Therefore, each thermocouple wire 15a, 15b has a stepped portion 15e, 15f that rides on the bridge portion 12a, and the cold junction portion 15
d is located closer to the Si substrate 10 and lower than the hot junction portion 15c on the bridge 12a.

かかるサーモパイルは次のようにして製造される。先ず
、Si基板10上にSi酸化膜11を形成した後、エア
ギャップ13を形成すべく断面台形状にホトレジスト又
は樹脂を塗布し、しかる後、そのホトレジスト又は樹脂
を含めて一面を絶縁膜12で覆う0次に、一方の熱電対
線15aと黒体部14を形成した後、他方の熱電対線1
5bを形成する。最後にホトレジスト又は樹脂を除去し
てエアギャップ13を形成し、サーモパイルが製造され
る。
Such a thermopile is manufactured as follows. First, after forming the Si oxide film 11 on the Si substrate 10, a photoresist or resin is coated with a trapezoidal cross section to form an air gap 13, and then the entire surface including the photoresist or resin is covered with an insulating film 12. Next, after forming one thermocouple wire 15a and the black body part 14, the other thermocouple wire 1
Form 5b. Finally, the photoresist or resin is removed to form an air gap 13 and the thermopile is manufactured.

第1実施例に係るサーモパイルは、その構造から、従来
に比して機械的強度が高いことは勿論、Si基板自体に
対するエツチング工程を用いずに作成されるので、作成
精度が増し、冷接点部15dは必ずSi基板10上に位
置するので、温接点部15cと冷接点部15dとの間隔
を50終■程度にすることが可能である。これにより熱
電対の微細化パターンを形成し易<、lチップ上の熱電
対搭載数(集積度)の増大を図れる。温接点部15cと
冷接点部15dとの間隔が従来に比して短くなる分、各
熱電対の起電力は低下するが、熱電対搭載数の増大がこ
れを補い余りあるので、結果的に感度の向上が実現され
る。また、各熱電対線の長さを短縮できることにより、
合計の抵抗即ちサーモパイルの出力抵抗の値を下げるこ
とが可能で、熱応答性の向とも図れる。
Due to its structure, the thermopile according to the first embodiment not only has higher mechanical strength than conventional ones, but also because it is created without using an etching process on the Si substrate itself, which increases the precision of creation and improves the cold junction area. 15d is always located on the Si substrate 10, it is possible to set the distance between the hot contact portion 15c and the cold contact portion 15d to about 50 cm. This makes it easier to form finer patterns of thermocouples and increases the number of thermocouples mounted on a chip (integration degree). Although the electromotive force of each thermocouple decreases because the distance between the hot junction part 15c and the cold junction part 15d becomes shorter than before, the increase in the number of thermocouples mounted more than compensates for this, so as a result, An improvement in sensitivity is achieved. Additionally, by being able to shorten the length of each thermocouple wire,
It is possible to lower the value of the total resistance, that is, the output resistance of the thermopile, and it is also possible to improve the thermal response.

第2図(A)は、本発明に係るサーモパイルの第2実施
例を示す拡大平面図であり、第2図CB)は、同図(A
)中118−IIS線に沿って切断した状態を示す切断
矢視図である。
FIG. 2(A) is an enlarged plan view showing a second embodiment of the thermopile according to the present invention, and FIG.
) is a cutaway view showing a state cut along the middle 118-IIS line.

20は平坦なSi基板で、この上には帯状の絶縁膜21
が形成されている。絶縁膜21はエアギャップ23を画
成すべきブリッジ部21aを有している。一対の熱電対
線24a 、 24bの温接点部24cはブリッジ部2
1a上に形成されぞおり、冷接点部24dは谷部に形成
されている。各温接点部24c上には金黒などの黒体部
25が設けられている。
20 is a flat Si substrate, on which a strip-shaped insulating film 21 is formed.
is formed. The insulating film 21 has a bridge portion 21 a that defines an air gap 23 . The hot junction portion 24c of the pair of thermocouple wires 24a and 24b is connected to the bridge portion 2.
1a, and the cold contact portion 24d is formed in the valley. A black body portion 25 of gold black or the like is provided on each hot junction portion 24c.

第2実施例にあっては、温接点部24cがエアギャップ
23上に両端の熱電対線24a、24bによって支持さ
れているので、第1実施例に比し、支持構造が堅固であ
る。かかる点から温接点部24c上に黒体部25の直接
搭載が可能なものとなり、高い感度のサーモパイルを得
ることができる。また、各温接点部24cは夫々固有の
エアギャップ23上に形成されているので、第1実施例
の如く、1つの長いエアギャップを共用させる場合に比
し、製造が容易となる。
In the second embodiment, the hot junction portion 24c is supported on the air gap 23 by the thermocouple wires 24a and 24b at both ends, so the support structure is more solid than in the first embodiment. From this point of view, it becomes possible to directly mount the black body portion 25 on the hot junction portion 24c, and a thermopile with high sensitivity can be obtained. Further, since each hot junction portion 24c is formed on its own air gap 23, manufacturing is easier than in the case where one long air gap is shared as in the first embodiment.

第3図(A)は、本発明に係るサーモパイルの第3実施
例を示す拡大平面図であり、第3図(B)は、同図(A
)中III B−ItI B線に沿って切断した状態を
示す切断矢視図である。
FIG. 3(A) is an enlarged plan view showing a third embodiment of the thermopile according to the present invention, and FIG. 3(B) is an enlarged plan view showing the third embodiment of the thermopile according to the present invention.
) is a cross-sectional view showing a state cut along line IIIB-ItIB.

30は平坦なSi基板で、この上にはSi酸化膜31が
一面に形成されている。一対の熱電対線32a、32b
はエアギャップ33上に温接点部32cを有しており、
この温接点部32c上に金黒などの黒体部34が設けら
れている。冷接点部32dは温接点部32cより低所の
Sim化膜31上に形成されている。熱電対群は第3図
(A)に示すようにジグザグ状に配列されており、各温
接点部32cは各エアギャップ33上に形成されている
30 is a flat Si substrate, on which a Si oxide film 31 is formed over the entire surface. A pair of thermocouple wires 32a, 32b
has a hot junction part 32c on the air gap 33,
A black body portion 34 made of gold and black is provided on the hot junction portion 32c. The cold contact portion 32d is formed on the Sim film 31 at a lower location than the hot contact portion 32c. The thermocouple groups are arranged in a zigzag pattern as shown in FIG. 3(A), and each hot junction 32c is formed above each air gap 33.

このサーモパイルの製造方法は、まず、Si基板30上
にSi酸化膜31を形成した後、エアギャップ33を形
成すべく断面台形状にホトレジスト又は樹脂を塗布する
0次に、この上に絶縁膜を形成せずに、断面台形状にホ
トレジスト又は樹脂の上に重ね合わせ部として自立的な
温接点部32cを作成すべく熱電対線32a 、 32
bを順次積層し11作成された温接点部32c上に金黒
などの黒体部34を設ける。最後にホトレジスト又は樹
脂を除去してエアギャップ33を形成し、サーモパイル
が製造される。
The method for manufacturing this thermopile is to first form a Si oxide film 31 on a Si substrate 30, and then apply a photoresist or resin in a trapezoidal cross section to form an air gap 33. Next, an insulating film is formed on this. Thermocouple wires 32a, 32 are formed in order to create a self-supporting hot junction part 32c as an overlapping part on photoresist or resin with a trapezoidal cross section without forming the thermocouple wires 32a, 32.
A black body portion 34 made of gold black or the like is provided on the hot contact portion 32c created by sequentially laminating layers 11 and 11. Finally, the photoresist or resin is removed to form an air gap 33 and the thermopile is manufactured.

この第3実施例においては、温接点部32cの裏面に絶
縁膜がないため、第2実施例に比し、熱容量が軽減され
、熱応答時間の向上が図れる。
In the third embodiment, since there is no insulating film on the back surface of the hot junction portion 32c, the heat capacity is reduced and the thermal response time can be improved compared to the second embodiment.

[発明の効果] 以上説明したように、本発明に係るサーモパイルは、温
接点部を基板から離しこれをエアギャップ上に位置させ
である点に特徴を有するものであるから、次の効果を奏
する。
[Effects of the Invention] As explained above, the thermopile according to the present invention is characterized in that the hot junction part is separated from the substrate and is positioned on the air gap, and therefore has the following effects. .

■従来の如く、穴を有する基板上に形成された絶縁膜の
上に温接点部を設けたサーモパイルに比べて、機械的強
度が高く1歩留り及び信頼性が向上する。
(2) Compared to a conventional thermopile in which a hot junction is provided on an insulating film formed on a substrate with holes, mechanical strength is higher, and yield and reliability are improved.

■エアギャップの作成においては基板自体へのエツチン
グなどが起こらず、温接点部はエアギャップ上に位置し
、冷接点部は必ず基板上に位置するので、熱電対の微細
化パターンによって、1チツプ上の熱電対搭載数の増大
を図ることができる。かかる熱電対の高集積化によって
、結果的に感度の向上、サーモパイルの出力抵抗値の低
減化及び熱応答性の改善を図ることができる。
■When creating an air gap, etching of the board itself does not occur, and the hot junction is located on the air gap, and the cold junction is always located on the board. The number of thermocouples mounted above can be increased. By increasing the integration of such thermocouples, it is possible to improve the sensitivity, reduce the output resistance value of the thermopile, and improve the thermal response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は、本発明に係るサーモパイルの第1実施
例を示す拡大平面図であり、第1図CB)は、同図(A
)中lS−1−B線に沿って切断した状態を示す切断矢
視図である。 第2図(A)は1本発明に係るサーモパイルの第ν 2実施例を示す拡大平面図であり、第3図(B)は、同
図(A)中IIB−FIB線に沿って切断した状態を示
す切断矢視図である。 第3図(A)は、本発明に係るサーモパイルの第3実施
例を示す拡大平面図であり、第3図(B)は同図(A)
中m B−m B線に沿って切断した状態を示す切断矢
視図である。 第4図(A)は、従来のサーモパイルの一例を示す平面
図であり、第4図(B)は、同図(A)中IVB−IV
B線に沿って切断した状態を示す切断矢視図である。 10.20,30・・・Si基板、11 、31会・拳
Sii化膜、12,21・・・絶縁膜、12a ・・・
ブリッジ部、15a 、 15b 、24a 、24b
 、32a 、32b 豊・・熱電対線、 15c 、
24c 、32c ・・拳温接点部、15d 、 24
d 、 32d ・・・冷接点部、+3,33・・・エ
アギャップ、 ’14.25.34φe・黒体部。 第3図 (A) (B) 第4図   (Aツ マ (B〕 手続補正書(方式) %式% ■、水件の表示 昭和62年特許願第185112号 2、発明の名称 サーモパイル 3、補正をする者 事件との関係    特許出願人 住所     東京都港区虎ノ門−丁目22番14号氏
名(名称) 新日本無線株式会社 代表者    星 野   宏 4、代理人 5、補正命令の日付(発進口)  昭和63年12月2
0日6、補正の対象    「明細書の図面の簡単な説
明jの欄7、補正の内容 明細書第10頁第3行目に「第3図(B)」とある記載
を、「第2図(B)」 と、補正します。 以上
FIG. 1(A) is an enlarged plan view showing the first embodiment of the thermopile according to the present invention, and FIG.
) is a cross-sectional view showing a state cut along the middle line 1S-1-B. FIG. 2(A) is an enlarged plan view showing the second embodiment of the thermopile according to the present invention, and FIG. 3(B) is a plan view taken along the line IIB-FIB in FIG. 3(A). It is a cutaway view showing the state. FIG. 3(A) is an enlarged plan view showing a third embodiment of the thermopile according to the present invention, and FIG. 3(B) is an enlarged plan view of the third embodiment of the thermopile according to the present invention.
FIG. 3 is a cross-sectional view showing a state cut along the middle line mB-mB. FIG. 4(A) is a plan view showing an example of a conventional thermopile, and FIG. 4(B) is a plan view of IVB-IV in FIG. 4(A).
FIG. 3 is a cross-sectional view showing a state cut along line B; 10. 20, 30... Si substrate, 11, 31 Kai/Fist Sii film, 12, 21... Insulating film, 12a...
Bridge part, 15a, 15b, 24a, 24b
, 32a, 32b Yutaka... thermocouple wire, 15c,
24c, 32c...Fist temperature contact part, 15d, 24
d, 32d...Cold junction part, +3, 33...Air gap, '14.25.34φe・Black body part. Figure 3 (A) (B) Figure 4 (A Tsuma (B) Procedural amendment (method) % formula % ■, Indication of water matter Patent Application No. 185112 of 1985 2, Title of invention Thermopile 3, Amendment Relationship with the case of a person who does December 2, 1986
0th day 6, Subject of amendment ``Brief explanation of drawings in the specification, Column 7, Contents of amendment, page 10, line 3 of the specification, ``Figure 3 (B)'' was changed to ``Figure 2 (B)'' Figure (B)” is corrected. that's all

Claims (1)

【特許請求の範囲】[Claims]  基板上に多数の熱電対を直列接続してなるサーモパイ
ルであって、各熱電対の一対の熱電対線のうち温接点部
を含む部分は該基板との間に形成されたエアギャップ上
に架設されていることを特徴とするサーモパイル。
A thermopile consisting of a large number of thermocouples connected in series on a substrate, in which the portion of each thermocouple's pair of thermocouple wires, including the hot junction, is installed over the air gap formed between the thermopile and the substrate. A thermopile characterized by:
JP62185112A 1987-07-24 1987-07-24 Thermopile Pending JPH01138429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62185112A JPH01138429A (en) 1987-07-24 1987-07-24 Thermopile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62185112A JPH01138429A (en) 1987-07-24 1987-07-24 Thermopile

Publications (1)

Publication Number Publication Date
JPH01138429A true JPH01138429A (en) 1989-05-31

Family

ID=16165069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62185112A Pending JPH01138429A (en) 1987-07-24 1987-07-24 Thermopile

Country Status (1)

Country Link
JP (1) JPH01138429A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664745A1 (en) * 1990-07-12 1992-01-17 Landis & Gyr Betriebs Ag Thermoelectric converter and method for manufacturing it
JPH0566529U (en) * 1992-02-18 1993-09-03 シチズン時計株式会社 Thermopile
JP2004207391A (en) * 2002-12-24 2004-07-22 Ritsumeikan Thermoelectric transfer device and its manufacturing method
JP2018537848A (en) * 2015-10-23 2018-12-20 コンソルツィオ デルタ ティ リサーチ Thermoelectric generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798824A (en) * 1980-12-12 1982-06-19 Mitsuteru Kimura Infrared ray detector
JPS57100325A (en) * 1980-12-13 1982-06-22 Matsushita Electric Works Ltd Infrared ray sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798824A (en) * 1980-12-12 1982-06-19 Mitsuteru Kimura Infrared ray detector
JPS57100325A (en) * 1980-12-13 1982-06-22 Matsushita Electric Works Ltd Infrared ray sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664745A1 (en) * 1990-07-12 1992-01-17 Landis & Gyr Betriebs Ag Thermoelectric converter and method for manufacturing it
JPH0566529U (en) * 1992-02-18 1993-09-03 シチズン時計株式会社 Thermopile
JP2004207391A (en) * 2002-12-24 2004-07-22 Ritsumeikan Thermoelectric transfer device and its manufacturing method
JP2018537848A (en) * 2015-10-23 2018-12-20 コンソルツィオ デルタ ティ リサーチ Thermoelectric generator

Similar Documents

Publication Publication Date Title
US4111717A (en) Small-size high-performance radiation thermopile
US5220189A (en) Micromechanical thermoelectric sensor element
JPH1064901A (en) Semiconductor chip package element
JPH01138429A (en) Thermopile
JPH11148861A (en) Microbidge structure
USH1267H (en) Integrated circuit and lead frame assembly
JPS61287133A (en) Manufacture of semiconductor device
JP2000131147A (en) Infrared sensor
JPS61283573A (en) Manufacture of heat ray radiating head
JPH11258055A (en) Thermopile type temperature sensor
JP2000299303A (en) Semiconductor device
JP3160940B2 (en) Thermopile
JPS63221635A (en) Manufacture of semiconductor device
CN210040257U (en) Thermopile sensor chip
JPH07106523A (en) Semiconductor element and its manufacturing method
JPH02206733A (en) Infrared ray sensor
JP2000277686A (en) Semiconductor integrated circuit
JPH01191434A (en) Tab mounting method
JP2001203399A (en) Infrared ray sensor
JPS60186723A (en) Radiation meter
JPS6380543A (en) Integrated circuit device
JPH01199481A (en) Thermopile
CA2133830C (en) Micromechanical thermoelectric sensor element
JPH01154532A (en) Semiconductor device
JPS605061B2 (en) Manufacturing method of integrated capacitive element