JPH01138202A - Preparation of cyclodextrin having high solubility - Google Patents

Preparation of cyclodextrin having high solubility

Info

Publication number
JPH01138202A
JPH01138202A JP29529887A JP29529887A JPH01138202A JP H01138202 A JPH01138202 A JP H01138202A JP 29529887 A JP29529887 A JP 29529887A JP 29529887 A JP29529887 A JP 29529887A JP H01138202 A JPH01138202 A JP H01138202A
Authority
JP
Japan
Prior art keywords
acid
cyclodextrin
mixture
starch
decomposition product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29529887A
Other languages
Japanese (ja)
Other versions
JP2571199B2 (en
Inventor
Takashi Okemoto
桶本 尚
Kozo Hara
耕三 原
Hiroshi Ishigami
石神 博
Katsuhiko Mikuni
克彦 三国
Takeshi Osawa
大沢 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENSUIKOU SEITO KK
Ensuiko Sugar Refining Co Ltd
Original Assignee
ENSUIKOU SEITO KK
Ensuiko Sugar Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENSUIKOU SEITO KK, Ensuiko Sugar Refining Co Ltd filed Critical ENSUIKOU SEITO KK
Priority to JP62295298A priority Critical patent/JP2571199B2/en
Publication of JPH01138202A publication Critical patent/JPH01138202A/en
Application granted granted Critical
Publication of JP2571199B2 publication Critical patent/JP2571199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain cyclodextrin having high solubility with a simple treatment and efficiently, by mixing cyclodextrin with a decomposition product of starch and carrying out an acid treatment. CONSTITUTION:Cyclodextrin is mixed with a decomposition product of starch. As the decomposition product of starch, glucose, maltose, maltotriose, dextrin, etc., can be suitably used. Then, an acid is added to the mixture and cyclodextrin having high solubility is obtd. by carrying out an acid treatment of the mixture. As the acid, acetic acid, fumaric acid, hydrochloric acid, phosphoric acid, etc., are used. As the conditions of the acid treatment, it is ordinarily suitable to carry out the acid treatment at 135-300 deg.C under a reduced pressure of about 20-755mmHg. The obtd. cyclodextrin is suitably used for solubilization, etc., in various application fields such as medical supplies, cosmetics, perfumes, or food.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶解性の高いサイクロデキストリンの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing highly soluble cyclodextrin.

〔従来の技術〕[Conventional technology]

サイクロデキストリン(以下、rcDJと略記する。)
はグルコースが6個以上環状にα−1,4結合したオリ
ゴ糖であり、6個のグルコース単位からなるα−CD、
7個のグルコース単位からなるβ−CD、81IIのグ
ルコース単位からなるr−CDが主として知られている
Cyclodextrin (hereinafter abbreviated as rcDJ)
is an oligosaccharide in which 6 or more glucose units are cyclically α-1,4-linked, and α-CD consists of 6 glucose units,
β-CD consisting of 7 glucose units and r-CD consisting of 81II glucose units are mainly known.

CDには、その構造上、分子に空洞があり、しかもこの
空洞が疎水性であるため、各種油性物質を取り込む性質
がある。
Due to its structure, CD has a cavity in its molecule, and since this cavity is hydrophobic, it has the property of taking in various oily substances.

CDはこのような性質を有しているために、幅広い用途
があり、製薬工業、化粧品工業、香料工業9食品工業な
との分野において応用研究が活発に進められている。
Because CD has such properties, it has a wide range of uses, and applied research is being actively carried out in fields such as the pharmaceutical industry, cosmetics industry, fragrance industry, and food industry.

しかし、CDの溶解度は低く、α−CD’″14、β−
CDで2.7−− CDで23程度である。特にβ−C
Dの溶解度は低く、実用化の場合には不利な性質である
However, the solubility of CD is low, α-CD′″14, β-
CD is about 2.7--CD is about 23. Especially β-C
The solubility of D is low, which is a disadvantageous property for practical use.

最近、小林らによって分岐CDの研究が進められ、その
性質が明らかにされたく小林ら、澱粉科学、30.23
1〜239 (1983) )。たとえば溶解度につい
ては、分岐CDの溶解度は元のCDの10倍にも達する
Recently, research on branched CD has been carried out by Kobayashi et al., and their properties have been clarified.Kobayashi et al., Starch Science, 30.23
1-239 (1983)). For example, in terms of solubility, the solubility of branched CDs is up to 10 times that of the original CD.

分岐CDは澱粉から製造する方法とCDとオリゴ糖を混
合し、その混合物にプルラナーゼを作用させ、逆反応を
利用して製造する方法が知られている。前者の方法は澱
粉分子の核部分を巻き込んで環上反応を行なわせるもの
であり、酵素反応を二回以上行なわせるなと、煩雑な操
作を必要とする。また、1身者は大量の酵素を必要とし
、高濃度基質を用い、反応時間が長いなど、コスト低減
化に不利な面が多い。
Branched CDs are known to be produced from starch, and by mixing CDs and oligosaccharides, applying pullulanase to the mixture, and using a reverse reaction. The former method involves involving the core part of the starch molecule to carry out a ring reaction, and requires complicated operations such as not allowing the enzymatic reaction to be carried out more than once. In addition, single-body methods require a large amount of enzyme, use highly concentrated substrates, and take a long reaction time, which are disadvantageous to cost reduction.

しかし、これまで酵素による枝付は以外の方法でCDに
枝をはけ、CDの物性を改良した列は知られていない。
However, until now, no method other than enzymatic branching has been known to improve the physical properties of CDs by branching them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の酵素を用いた分岐CDの製造と製品の高溶解性は
、各方面から注目されているが、本発明では、可及的低
コストで安全性の高い製品の開発を目的として1に来と
は全く異なった観点から、CDと澱粉分解物を混合し、
主として食品添加物として認められている酸を触媒とし
て用い、CDの物性改良を試みた。
The production of branched CD using conventional enzymes and the high solubility of the product have been attracting attention from various quarters, but in the present invention, we have focused on the production of branched CDs using conventional enzymes with the aim of developing products with high safety at the lowest possible cost. From a completely different perspective, mixing CD and starch decomposition products,
We attempted to improve the physical properties of CD by using acids, which are mainly recognized as food additives, as catalysts.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明者らはCDと澱粉分解物の酸縮合反応を鋭
意検討し、高温、減圧下で、フマル酸なとのa品用有機
酸をCDと澱粉分解物の混合物中に加えて処理すること
により、各f!の技がCD環に付き、製品の溶解性が高
まることを見出し、実用性の高いCDの物性改良法を完
成したのである。
Therefore, the present inventors intensively investigated the acid condensation reaction between CD and starch decomposition products, and treated the mixture by adding a grade organic acid such as fumaric acid to the mixture of CD and starch decomposition products at high temperature and under reduced pressure. By doing so, each f! By applying this technique to CD rings, he discovered that the solubility of the product increased, and completed a highly practical method for improving the physical properties of CD.

本発明は、CDと澱粉分解物を混合し、酸処理を1〒な
うことを特徴とする溶解性の高いCDの製造方法を提供
するものである。
The present invention provides a method for producing CD with high solubility, which is characterized by mixing CD and starch decomposition product and subjecting the mixture to acid treatment once.

澱粉分解物としてはグルコースのほかマル)−ス、マル
l−)リオース、マルトテトラオース、マルトペンタオ
ース、マルトヘキサオースなとのマルトオリゴ糖、デキ
ストリンなどがあり、これらを単独または混合物の状態
で用いることが出来る。
In addition to glucose, starch decomposition products include maltooligosaccharides such as mal)-s, mall-)liose, maltotetraose, maltopentaose, and maltohexaose, and dextrin, which are used alone or in a mixture. I can do it.

CDとしては非分岐CD、分岐CDいずれても良いが、
経済的には通常のα−CD、β−CD、γ−CDのいず
れか、またはこれら二種以上の混合物、さらには市販さ
れているCD製品、例えばCDを50%含むCD扮アメ
なども用いることができる。
The CD may be either a non-branched CD or a branched CD, but
Economically, any one of ordinary α-CD, β-CD, and γ-CD, or a mixture of two or more of these, or a commercially available CD product, such as a CD disguise candy containing 50% CD, may be used. be able to.

酸としては、酢酸、シュウ酸、プロピオン酸。Acids include acetic acid, oxalic acid, and propionic acid.

乳酸、マレイン酸、フマル酸、コハク酸、リンゴ酸、酒
石酸、クエン酸およびグルコン酸なとの有機酸の他、塩
酸、@酸、リン酸などの無機酸も利用できる。有機酸に
はこの他、ギ酸、酪酸も吏用可能てあり、条件によって
はアミノ酸も利用できる。@を選択する場合、不快臭、
安定性なとの面から目的に適合した酸を選択すべきであ
る。
In addition to organic acids such as lactic acid, maleic acid, fumaric acid, succinic acid, malic acid, tartaric acid, citric acid, and gluconic acid, inorganic acids such as hydrochloric acid, @acid, and phosphoric acid can also be used. In addition to these organic acids, formic acid and butyric acid can also be used, and depending on the conditions, amino acids can also be used. If you select @, unpleasant odor,
An acid suitable for the purpose should be selected in terms of stability.

CDと澱粉分解物の混合割合については適宜決定すれば
よいが、通常はCD 100重量部に対し澱粉分解物1
0〜100瓜員部の割合とすればよい。
The mixing ratio of CD and starch decomposition product may be determined as appropriate, but usually 1 part of starch decomposition product is mixed with 100 parts by weight of CD.
The ratio may be 0 to 100 melon parts.

澱粉分解物用の原料澱粉としては、馬鈴薯、甘藷、トウ
モロコシ、モチトウモロコシ、大麦、小麦、クビオカな
との1壬童の原料から得られる物を使用することができ
る。しかし、これらの澱粉から1与られる分解物はマル
トオリゴ糖より巨大な分子てあっても、酵素反応と異な
り、酸縮合反応であるため効率よく縮合がiテなわれる
。しかし、マルトオリゴ糖より巨大な分子では、得られ
る反応物の溶解度はあまり上昇しないので、高溶解性製
品生産用にはマルトオリゴ糖が好ましい。
As the raw material starch for the starch decomposition product, those obtained from raw materials such as potato, sweet potato, corn, waxy corn, barley, wheat, and Kubioka can be used. However, even though the decomposition products obtained from these starches have larger molecules than maltooligosaccharides, unlike enzymatic reactions, they are acid condensation reactions, so condensation is carried out efficiently. However, molecules larger than maltooligosaccharides do not significantly increase the solubility of the resulting reactants, so maltooligosaccharides are preferred for producing highly soluble products.

次に、酸としては食品添加物として認められている有機
酸が好ましいが、いずれの酸も1史用することができる
。また、酸を過剰に加えると、縮合反応が進みすぎ巨大
分子となるので、溶解度を上昇させることが困難となる
。酸の添加量は反応温度と時間により異なるが、通常C
Dと澱粉分解物の総重量に対し5〜30%、好ましくは
10〜20%が適当である。
Next, as the acid, organic acids that are recognized as food additives are preferred, but any acid can be used. Furthermore, if too much acid is added, the condensation reaction will proceed too much and form a macromolecule, making it difficult to increase the solubility. The amount of acid added varies depending on the reaction temperature and time, but is usually C
An appropriate amount is 5 to 30%, preferably 10 to 20%, based on the total weight of D and the starch decomposition product.

反応温度は用いる酸の安定性によって異なり、最適な温
度を選択すべきであるが、通常135〜300℃の範囲
であれば反応は進行し、例えばフマル酸を用いる場合、
+60’C程度で充分である。
The reaction temperature varies depending on the stability of the acid used, and the optimum temperature should be selected, but the reaction usually proceeds within the range of 135 to 300°C. For example, when using fumaric acid,
A temperature of about +60'C is sufficient.

真空度は特に限定する必要はなく、着色が強くなる場合
は真空度を上げろか、または炭酸ガス置換をすることが
望ましいが、通常20〜755 mmHgで反応する。
The degree of vacuum does not need to be particularly limited, and if the coloring becomes strong, it is desirable to increase the degree of vacuum or replace the reaction with carbon dioxide gas, but the reaction is usually carried out at 20 to 755 mmHg.

本発明の方法によれば、グルコースやマルトースが結合
した分岐CD以外に各1糖が生成している。溶解度が上
昇するのは、CD環にグルコースまたはグルコース11
でリマーがαおよび/またはβ結合した分岐CD、また
はCD閏にマルトオリゴ糖が架橋した糖等が生成してい
るためと思われる。
According to the method of the present invention, monosaccharides are produced in addition to branched CDs to which glucose and maltose are bonded. The solubility increases due to glucose or glucose 11 in the CD ring.
This is thought to be due to the formation of branched CDs with α and/or β linkages of remers, or sugars with malto-oligosaccharides cross-linked to CD anchors.

〔実施例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例1 a−CD2.5zとグルコース0.5gにフマル酸を0
.01〜5.0 g添加し、温度1130℃、圧カフ4
0 m118で17時間反応させ、酸の添加量の影響を
調へた。その結果を表−1に示す。
Example 1 a-CD2.5z and glucose 0.5g with 0 fumaric acid
.. Add 01-5.0 g, temperature 1130℃, pressure cuff 4
The reaction was carried out at 0 mL 118 for 17 hours, and the influence of the amount of acid added was investigated. The results are shown in Table-1.

広しニー1 故1a1皿に立り−・ コ o、oi             。wide knee 1 Standing on the late 1a1 plate... o, oi.

O,134,6 0,249,1 0,562,3 0,648,6 0,836,1 3,033,3 5,03+、5 CD変換率の分析は高速液体クロマトグラフィー (H
PLC)を用いてjテなフた。なお、HPLCの条件は
島津「LC−4AJ 、水溶出、流速0.5 ml/m
 i n 、検出RI : AtLenLIaLIOI
+ 16X 、カラム:B10−Rad Am1nex
 Carbohydrate HPX−42Aであり・
二の条件下での各糖の保持時間(IIIin)は表−2
に示したとおりである。表中、例えばG1−α−CDは
グルコシル−α−CDを、G2−α−CDはマルトシル
−α−CDを意味する。
O,134,6 0,249,1 0,562,3 0,648,6 0,836,1 3,033,3 5,03+,5 CD conversion rate analysis was performed using high performance liquid chromatography (H
PLC) The HPLC conditions were Shimadzu's LC-4AJ, water elution, flow rate 0.5 ml/m.
i n , detection RI: AtLenLIaLIOI
+ 16X, column: B10-Rad Am1nex
Carbohydrate HPX-42A
Table 2 shows the retention time (IIIin) of each sugar under the second condition.
As shown in In the table, for example, G1-α-CD means glucosyl-α-CD, and G2-α-CD means maltosyl-α-CD.

型乏−二二二2− G 2− α −CD    8.3.     G 
 電−β −CD   +2.1゜G1−α−CD  
8.9.  G2      14.5゜ct−CD 
    9.7.  Gl       1G、6゜G
2−β−CD  11.6.  β−CD    19
.1実施例2 α−CD 1.5 gとマルトース0.5gにフマル酸
0゜1g添加し、温度+130’C,圧力(360mm
11gで反応させ、経時変1ヒを調べた。その結果を表
−3に示す。
Type oligo-2222- G 2- α -CD 8.3. G
Electron-β-CD +2.1゜G1-α-CD
8.9. G2 14.5゜ct-CD
9.7. Gl 1G, 6゜G
2-β-CD 11.6. β-CD19
.. 1 Example 2 0.1 g of fumaric acid was added to 1.5 g of α-CD and 0.5 g of maltose, and the mixture was heated at +130'C and pressure (360 mm).
The reaction was carried out with 11 g, and the time-dependent changes were investigated. The results are shown in Table-3.

ギ1:=二≦1 時間(H)      CD変填率(%)0.3   
              02         
          4.2418.7 8                   19.2以
上のように、本発明の方法は酵素反応法と比較して、反
応時間が4時間程でよく、非常に短時間に終了する。
Gi1:=2≦1 Time (H) CD change rate (%) 0.3
02
4.2418.7 8 19.2 As mentioned above, the method of the present invention requires only about 4 hours of reaction time and is completed in a very short time compared to the enzyme reaction method.

実施例3 α−CD2.5gとグルコース0.5 gに各種酸を適
当量添加し、温度160℃、圧カフ40 vwHgで1
7時間反応させた。その結果を表4に示す。
Example 3 Appropriate amounts of various acids were added to 2.5 g of α-CD and 0.5 g of glucose, and the mixture was incubated at a temperature of 160°C and a pressure cuff of 40 vwHg.
The reaction was allowed to proceed for 7 hours. The results are shown in Table 4.

型乏−コニー↓エ フマル酸   0.5       62.7コハク酸
    0.1        32.1酒石酸   
  0.2        29.3実施例4 α−CD 1.5 gとグルコース0.5gにフマル酸
0゜58を添加し、温度160℃、圧力6GOmmHg
で17時間反応させた。この時の反応前1麦のクロマト
グラムを第1図に示す。この時のCD変換率は48.5
%であった。
Type poor-cony↓efmaric acid 0.5 62.7 Succinic acid 0.1 32.1 Tartaric acid
0.2 29.3 Example 4 Fumaric acid 0°58 was added to 1.5 g of α-CD and 0.5 g of glucose, and the temperature was 160°C and the pressure was 6 GO mmHg.
The reaction was carried out for 17 hours. The chromatogram of 1 barley before the reaction is shown in Figure 1. The CD conversion rate at this time was 48.5
%Met.

実施例5 前記した実施例4の反応物の25′Cにおける溶解度を
測定した。その結果をα−CDと比較して表−5に示す
Example 5 The solubility of the reactant of Example 4 above at 25'C was measured. The results are shown in Table 5 in comparison with α-CD.

型にコニ」Σ α−CD          14.1反応後    
  32.2 〔発明の効果〕 本発明によればCDを簡匣な処理により高溶解性とする
ことができ、本処理により分岐CDと思われる物質が大
量に効率的に生成される。
After reaction Σ α-CD 14.1
32.2 [Effects of the Invention] According to the present invention, CD can be made highly soluble through a simple treatment, and a substance considered to be a branched CD can be efficiently produced in large quantities through this treatment.

さらに、カーボン、イオン交換樹脂等を用いる方法、セ
ファデックスなどの分子量差を利用した方法、ODSカ
ラム、膜による分離方法を組合せて、反応混合物から分
岐CD部分を得ることができる9分岐CDが高分子の場
合は、目的に応じてその水溶液を酸処理して低分子化す
ることもできろ。
Furthermore, by combining methods using carbon, ion exchange resins, etc., methods using molecular weight differences such as Sephadex, separation methods using ODS columns, and membranes, 9-branched CDs can be obtained from the reaction mixture. In the case of molecules, depending on the purpose, the aqueous solution can be treated with an acid to reduce the molecules.

このように、本発明によって得られる反応生成物から分
岐CD部分を分離し、必要に応じて低分子化して用いる
ほか、用途により酸縮合反応を行なった反応生成物をそ
のまま製品化することもできる。これらの混合物は医薬
品、化粧品、香料。
In this way, in addition to separating the branched CD moiety from the reaction product obtained by the present invention and using it after reducing the molecular weight if necessary, the reaction product subjected to the acid condensation reaction can also be commercialized as it is depending on the purpose. . These mixtures are used in pharmaceuticals, cosmetics, and fragrances.

食品等の可溶化等に広く用いることができる。It can be widely used for solubilizing foods, etc.

また、難消化性であるのでビフイダス菌増殖因子、肥満
防止などの健康食品、特殊食品への用途が期待される。
In addition, since it is indigestible, it is expected to be used as a growth factor for Bifidobacteria, health foods for obesity prevention, and special foods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による酸処理反応前後のクロマトグラム
である。 時  P=1  (シ9・)
FIG. 1 shows chromatograms before and after the acid treatment reaction according to the present invention. Time P=1 (Si9・)

Claims (4)

【特許請求の範囲】[Claims] (1)サイクロデキストリンと澱粉分解物を混合し、酸
処理を行なうことを特徴とする溶解性の高いサイクロデ
キストリンの製造方法。
(1) A method for producing highly soluble cyclodextrin, which comprises mixing cyclodextrin and starch decomposition product and subjecting the mixture to acid treatment.
(2)澱粉分解物がグルコースおよびマルトース、マル
トトリオース、マルトテトラオース、マルトペンタオー
スおよびマルトヘキサオースの中から選ばれたマルトオ
リゴ糖単独、デキストリン、またはこれらの混合物であ
る特許請求の範囲第1項記載の製造方法。
(2) Claim 1, wherein the starch decomposition product is a maltooligosaccharide selected from glucose and maltose, maltotriose, maltotetraose, maltopentaose, and maltohexaose, dextrin, or a mixture thereof. Manufacturing method described in section.
(3)サイクロデキストリンがα−、β−およびγ−サ
イクロデキストリンのいずれか、またはこれらの混合物
である特許請求の範囲第1項記載の製造方法。
(3) The manufacturing method according to claim 1, wherein the cyclodextrin is any one of α-, β-, and γ-cyclodextrin, or a mixture thereof.
(4)酸が塩酸、硫酸およびリン酸の中から選ばれた無
機酸、ならびに酢酸、シュウ酸、プロピオン酸、乳酸、
マレイン酸、フマル酸、コハク酸、リンゴ酸、酒石酸、
クエン酸、グルコン酸の中から選ばれた有機酸のいずれ
かである特許請求の範囲第1項記載の製造方法。
(4) an inorganic acid selected from hydrochloric acid, sulfuric acid and phosphoric acid, and acetic acid, oxalic acid, propionic acid, lactic acid,
maleic acid, fumaric acid, succinic acid, malic acid, tartaric acid,
The manufacturing method according to claim 1, wherein the organic acid is selected from citric acid and gluconic acid.
JP62295298A 1987-11-25 1987-11-25 Method for producing highly soluble cyclodextrin Expired - Lifetime JP2571199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62295298A JP2571199B2 (en) 1987-11-25 1987-11-25 Method for producing highly soluble cyclodextrin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295298A JP2571199B2 (en) 1987-11-25 1987-11-25 Method for producing highly soluble cyclodextrin

Publications (2)

Publication Number Publication Date
JPH01138202A true JPH01138202A (en) 1989-05-31
JP2571199B2 JP2571199B2 (en) 1997-01-16

Family

ID=17818795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295298A Expired - Lifetime JP2571199B2 (en) 1987-11-25 1987-11-25 Method for producing highly soluble cyclodextrin

Country Status (1)

Country Link
JP (1) JP2571199B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016733A1 (en) * 1993-01-29 1994-08-04 Chiesi Farmaceutici S.P.A. Highly soluble multicomponent inclusion complexes containing a base type drug, an acid and a cyclodextrin
US5426184A (en) * 1992-02-12 1995-06-20 The United States Of America As Represented By The Department Of Health And Human Services Cyclodextrin glycosides and processes for their preparation
CN100335527C (en) * 2005-08-22 2007-09-05 暨南大学 Water soluble polylactic-acid material, prepn. method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426184A (en) * 1992-02-12 1995-06-20 The United States Of America As Represented By The Department Of Health And Human Services Cyclodextrin glycosides and processes for their preparation
WO1994016733A1 (en) * 1993-01-29 1994-08-04 Chiesi Farmaceutici S.P.A. Highly soluble multicomponent inclusion complexes containing a base type drug, an acid and a cyclodextrin
CN100335527C (en) * 2005-08-22 2007-09-05 暨南大学 Water soluble polylactic-acid material, prepn. method and application thereof

Also Published As

Publication number Publication date
JP2571199B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
JPH0331440B2 (en)
JP3150266B2 (en) Glucan having cyclic structure and method for producing the same
JPS63196596A (en) Glucooligosaccharide having inositol residue linked to terminal and production thereof
JP2012016309A (en) Maltotriose-forming amylase, production method and use thereof
EP0307534B1 (en) A heterogeneous multiple-branched cyclodextrin and method for the preparation thereof
US5686132A (en) Glucans having a cycle structure, and processes for preparing the same
JP3078923B2 (en) Novel branched cyclodextrin and method for producing the same
JPH01138202A (en) Preparation of cyclodextrin having high solubility
JPS61236802A (en) Novel branched gamma-cyclodextrin and its preparation
US5366879A (en) Method of preparing branched cyclodextrin
JPH0320121B2 (en)
WO2019174137A1 (en) Method for improving transparency of starch liquefied product
JPH0121959B2 (en)
JPH0253038B2 (en)
JP2863262B2 (en) Novel hetero-branched cyclodextrin in which a galactosyl group is transfer-bonded to the side chain portion of a branched cyclodextrin by an α-bond, and a method for producing the same
JP2700423B2 (en) Glucosyl-cyclodextrin production method
Wu et al. α-Cyclodextrin: Enzymatic Production and Applications
JPH02131592A (en) Production of sweetener
JP2024502807A (en) Dextrin with improved cloudiness and method for producing the same
JPS62104590A (en) Production of cyclodextrin
JPH08325304A (en) New branched cyclodextrin and its production
JP3655325B2 (en) Mannosyl-cyclodextrin
JPH0329374B2 (en)
JPH0441998B2 (en)
WO1991009963A1 (en) Procedure for producing maltodextrins and starch and maltose syrups containing cyclodextrins