JPH01136284A - Mechanical recognition method and apparatus for discrimination of numerous individual graphics - Google Patents

Mechanical recognition method and apparatus for discrimination of numerous individual graphics

Info

Publication number
JPH01136284A
JPH01136284A JP62287219A JP28721987A JPH01136284A JP H01136284 A JPH01136284 A JP H01136284A JP 62287219 A JP62287219 A JP 62287219A JP 28721987 A JP28721987 A JP 28721987A JP H01136284 A JPH01136284 A JP H01136284A
Authority
JP
Japan
Prior art keywords
image
coordinates
order
case
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62287219A
Other languages
Japanese (ja)
Inventor
Min Chen In
イン ミン チェン
Fuwa Shii Eu
エウ フワ シイ
Fu Chun Chin
チン フ チュン
J Van Dale
ダル ジョン ファン
Chan Eu Jenk
ジェンク チャン エウ
Run U Fuu
フウ ルン ウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to JP62287219A priority Critical patent/JPH01136284A/en
Publication of JPH01136284A publication Critical patent/JPH01136284A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To contrive the high speed and high accuracy of the discrimination of a graphic by simultaneously advancing the moving of a base surface and an image processing work and analyzing the center location, the dimension and the shape of a graphic by an image processing unit. CONSTITUTION: On the base surface 1 moved within a plane by a driving device 11, a drawing 20 is fixed. Two photographing devices 3 and 5 are fixed on a table 14 and the schematic image and the precision image of a drawing are photographed by these devices. These photographing devices 3 and 5 are connected with an image processing unit 6. The image processing unit 6 includes an image digitizing device and an image analysis program and performs an image processing and the analysis of drawing data The image processing unit 6 includes the programs controlling the base surface l and the photographing devices 3 and 5. A processing result is displayed on a display 7 for image display and is outputted to a working device 8.

Description

【発明の詳細な説明】 一種の機械視覚方法およびその装置、多数個別図形を含
む図件、印刷PCボートの穴位置図のようなものの判読
に使用される。その構造は、一つ駆動される台面が一つ
平面上に移動したり、固定できるものと、台面上に設置
する二台の撮影装置と、−影像処理ユニットから構成さ
れる。その中にある台面の上には対象図面を置き、その
中の一つ撮影g&置に大部分取像をし、もう一つ撮影装
置に詳細な撮影をするものを提供する、得られた映像電
気信号は影像処理ユニットに出力し、各図形の中心座標
を見出し、図形の大小、形状等を分類して、加工に必要
な寸法、位置と移動する有効な経路などの制御資料を発
生する。
DETAILED DESCRIPTION OF THE INVENTION A kind of machine vision method and apparatus thereof, which is used to interpret objects containing a large number of individual figures, such as hole position maps of printed PC boards. Its structure consists of one driven platform that can move or fix on a plane, two imaging devices installed on the platform, and an image processing unit. The target drawing is placed on a table in it, one of which captures most of the image, and the other provides the imaging device with the detailed image. The electrical signal is output to the image processing unit, which finds the center coordinates of each figure, classifies the figure's size, shape, etc., and generates control data such as dimensions, position, and effective path for movement required for processing.

本発明は「機械認識方法と装置」に係わり、特に一種の
撮影装置を利用して多数の個別図形を含む平面図性を影
像電気信号にし、そして一つ影像処理ユニットに人力し
て、各図形の中心座標を見出し、図形の大小形状と適当
な連結順序など資料を分析するものを指す。
The present invention relates to a "mechanical recognition method and apparatus," and in particular, uses a kind of photographing device to convert a plan view including a large number of individual figures into an image electrical signal, and then manually inputs each figure to an image processing unit. It refers to finding the center coordinates of shapes and analyzing materials such as the size and shape of shapes and the appropriate connection order.

上述した図件の一つ実施列としてプリントサーキットボ
ートの穴位置図(プリントサーキットボートの大きい小
さいとその上にある必要な穴あけの寸法および位置の配
置図面)があり。
One example of the above-mentioned drawings is the hole location map of a printed circuit board (a diagram showing the size and location of the large and small holes on the printed circuit board).

生産工場は取引先が提供する穴位置図でプリントサーキ
ットボートを加工し、その前に必ず先に穴位置図上の各
穴位置、大きさと形状を分析し、又最適穴あけ経路の配
列などを求めてから穴あけ機械の操作順序を設定する0
通常、プリントサーキットボート穴あけ位置図の処理順
序は: (i)穴位置図を修正し、写像を透明フィルムに製作す
る。
The production factory processes the printed circuit board using the hole location map provided by the supplier, and before doing so, it must first analyze the position, size and shape of each hole on the hole location map, and determine the optimal drilling route arrangement. then set the operation order of the drilling machine0
Generally, the processing order for printed circuit boat hole location maps is: (i) Modify the hole location map and produce the mapping on a transparent film.

(ニ)違った色で穴径を分類する(人工処理)(三)同
じ色で同じ種類の穴位置を連接する(人工処理) (四)方程式発生器(Prograa+m1n3 n+
achine)を持って各穴座標を見出す(人工処理)
(五)穴位置座標をコンピュタ−に人力し、最適な穴1
jけ経路の配列をする。
(d) Classify hole diameters with different colors (artificial processing) (3) Connect the same type of hole positions with the same color (artificial processing) (4) Equation generator (Prograa+m1n3 n+
achine) to find the coordinates of each hole (artificial processing)
(5) Enter the hole position coordinates manually into the computer and find the optimal hole 1.
Arrange the routes.

(六)数値′XjI御プログラム方式で、穴位置座標お
よび穴あけの有効経路の資料を穴あけ機に人力する。
(6) Manually input data of hole position coordinates and effective drilling route to the drilling machine using numerical 'XjI control program method.

上述した伝統的プリントサーキットボートの穴位置判断
順序は、人工の介入で、その速度と精確さおよび信頼性
などが限られ;しかもその方程式発生器のネダンは高く
て、業者の負担を増加し、故にコストダウンの1、確実
な速度の要求が出来、精度および信頼性を前提とする一
種のプリントサーキットボート穴位置図面の認識方法と
装置を提供するのは業者の切望する所である。
The above-mentioned traditional printed circuit boat hole position determination sequence is artificially intervened, and its speed, accuracy, and reliability are limited; in addition, the equation generator is expensive, increasing the burden on the contractor. Therefore, it is highly desired by the industry to provide a method and apparatus for recognizing printed circuit board hole position drawings that can reduce costs, meet reliable speed requirements, and provide accuracy and reliability.

本発明は上述した問題および要求に対して、一種の作業
速度が早く、しかも精密度、信頼性の高い機械視覚認識
の方法およびg置を開発したものである。
The present invention solves the above-mentioned problems and demands by developing a machine visual recognition method and g position that has high working speed, high accuracy, and high reliability.

即ち本発明の主要目的は、一つ平面内に安定移動できる
台i[(X −Y  table)を利用し、その上に
図面をのせて、撮影装置に取像するものを供給する、取
像したあと影像処理ユニットに穴位置の判断をさせ゛、
完全に人工処理プロセスに代って、経済的、実用な自動
図面認識の方法および装置を達成するもの。
That is, the main object of the present invention is to use a table i [(X - Y table) that can stably move within one plane, place a drawing on it, and supply the photographic device with what is to be imaged. After that, let the image processing unit judge the hole position,
To achieve an economical and practical automatic drawing recognition method and apparatus that completely replaces artificial processing processes.

本発明のもう一つ目的は、−個の撮影装置が概略の取像
をし、もう−個撮影s装置が精密な取像をする構造を利
用して、特殊影像処理および分析プロセスを加え、高作
業速度の自動図面認識方法および装置を達成するもの。
Another object of the present invention is to take advantage of the structure in which one imaging device captures rough images and one imaging device captures precise images, and adds special image processing and analysis processes. A high working speed automatic drawing recognition method and apparatus are achieved.

本発明のまた一つ目的は、撮影装置の精密取像二値化法
およU取像幾何失真の修正であり、それで高精密度の自
動判読図面の方法と装置を達成したのである。
Another object of the present invention is to correct the precision image binarization method of the photographing device and the U-imaging geometric aberration, thereby achieving a method and apparatus for automatically interpreting drawings with high precision.

本発明の特徴をよりよい実施例に、図面を合わして次に
説明する: 本発明の構成は第1図で示したように、一つ台面(1)
が一つ駆動器(11)に制御され、一つ平面内に固定お
よび移動が出来、其の上に図面(20)が載せられ、台
面(1)の中には、一つ内蔵光源の透光装置を設置でき
、透明図面も透視出来る構造;一つti影!!装(3)
は、テーブル(4)の上に固定し、図面(20)の上方
から図面(20)の概略取像をする;別のl!影&1g
1(5)もテーブル(4)の上に固定して、図面(20
)の精密取像をする;一つ影像処理ユニット(6)は、
影像デジタル化装置および影像分析プログラムを含み、
影像処理と図面資料の分析をする、それに一つ台面(1
)、撮影ia置(3,5)および影像処理ユニット(6
)の作動を制御するプログラムを含む、これ以外に、影
像表示用デイスプレー(7)を外接でき、しかもテープ
パンチャー (Tape Puncher)或いは図に
示していない加工装置(8)に連続的に資料の出力がで
きる。
The features of the present invention will be described below in conjunction with a better embodiment and the drawings: The structure of the present invention is as shown in FIG.
is controlled by one driver (11), can be fixed and moved within one plane, a drawing (20) is placed on it, and inside the base (1) there is a built-in light source. A structure that allows you to install a light device and see through transparent drawings; one ti shadow! ! Attachment (3)
is fixed on the table (4) and a schematic image of the drawing (20) is taken from above the drawing (20); another l! Shadow & 1g
1 (5) is also fixed on the table (4) and the drawing (20
); one image processing unit (6) is
includes an image digitization device and an image analysis program;
Image processing and analysis of drawing materials, and one table (1
), imaging ia position (3, 5) and image processing unit (6
In addition to this, the image display display (7) can be circumscribed, and the material can be continuously transferred to a tape puncher or a processing device (8) not shown in the figure. Can output.

本発明装置の運用プロセスには、次のものを包括する: (i)より大きい層像範囲の撮影装置(3)が、図件(
20)に対して大部分取像をし、影像信号に成す、影像
処理ユニット(6)で、影像上各図形の概略中心位置を
求める(二)各図形の概略中心の影像上座標に対応する
台面(図外)座標に変換する。
The operation process of the device of the present invention includes the following: (i) The photographing device (3) for a larger layer image range
The image processing unit (6) obtains the approximate center position of each figure on the image (2) corresponds to the coordinates of the approximate center of each figure on the image. Convert to tabletop (not shown) coordinates.

(三)全部の図形を適当な順序で排列し、各々精密な層
像の路程を獲得する。
(3) Arrange all the figures in an appropriate order and obtain a precise path of each layer image.

(四)より小さい層像範囲の撮影装置(5)は、ステッ
プ(三)から得られた路程順序に依って各図形を一々取
像し、そして影像から各図形の精確な中心位置、図形の
大小、形状など資料を計算する。
(4) The photographing device (5) with a smaller layer image range images each figure one by one according to the path order obtained from step (3), and then determines the exact center position of each figure from the image. Calculate materials such as size, shape, etc.

(五)各図形の精密な中心位置影像座標むよび影像の寸
法を図外の台面座標と実際寸法に換算する。
(5) Convert the precise center position image coordinates and image dimensions of each figure into tabletop coordinates and actual dimensions.

(六)図形の大小、形状によって図形を分類および順序
排列をし、加工装置に出力する運用f!科を決定する。
(6) Operation of classifying and arranging figures according to their size and shape, and outputting them to processing equipment f! Decide on the department.

史に項ごとに詳しく述べると: (i)概略影像処理: 撮影表装置3)が図外(20)に対して概略層像をし、
全部の図面をいくつかのブロックに分けて順序よく層像
をし、影像を二値化処理して、格点跳躍検査法で各図形
を探し出し、そして概略中心位置も計算し出す。   
゛ !、二値化法: 処理の影像は悉く図形対背景の白黒対比影像でJ以下の
計算順序で早くかつ正確的に成度分解値(thrsho
ld)を判別し、影像を二値化して、□成度分解値に依
る、多階層成度の影像を白J対比の明亮二階層影像に転
換する、即ち図形範囲は黒暗で、図形以外の背景は明る
い、又はこれと逆である。
To explain the history in detail for each section: (i) Schematic image processing: The imaging table device 3) performs a schematic layer image on the outside of the image (20),
Divide all the drawings into several blocks, image the layers in an orderly manner, binarize the image, find each figure using the case point jumping test method, and calculate the approximate center position.
゛! , Binarization method: The images to be processed are all black-and-white contrast images of figures and backgrounds, and the gradient decomposition values (thrsho
ld) and binarizes the image, □ converts the multi-layered image into a bright two-layered image with contrast between white and J based on the component decomposition value, that is, the figure range is black and dark, and other than figures. has a light background, or vice versa.

(1)影像1諸像元(Pixel)は影像デジタル化装
置に依ってその個別の成度値 (Gray Level)が得られ、影像処理プログラ
ムから各像比の成度値を根拠に して同じ者を統計する、各成度値に対 応する像比数n+、i=o、1.2゜ 3、・−・・・・m、m=最大灰成度、既ちΣn l=
 N * Nは総像比数、を得られる。
(1) For each image element (Pixel) of image 1, its individual gray level is obtained by the image digitizing device, and the gray level of each pixel is obtained from the image processing program based on the gray level of each image ratio. Statistically, the number of image ratios corresponding to each composition value n+, i=o, 1.2゜3,...m, m=maximum gray composition, already Σn l=
N*N is the total image ratio number, and can be obtained.

(2)平均分布成度値tを求める: t = Σ(Gi・Ni)/N e+8 その中、Gi=灰度成 度3)次の各値を求める: N1.N2tt+tt2;
N菖=Σn1 N2=  Σ n。
(2) Find the average distribution composition value t: t = Σ(Gi・Ni)/N e+8, where Gi = gray degree composition 3) Find each of the following values: N1. N2tt+tt2;
N irises = Σn1 N2 = Σ n.

;; i = 歇シ ・ N 冨/N2L?=m −(
’m −t)  ・ N2/N+(4)二値化成度分界
値Tを求める: T  =1/2(t++tt) 2、概略影像中から図形を求める方法:理想なる図形探
し方法は下記要点を含 む:      、 ノ − (1)どの図形も一回きりの処理であること。
;; i = 歇し・N Tomi/N2L? =m −(
'm - t) ・N2/N+(4) Find the binarization component demarcation value T: T = 1/2 (t++tt) 2. How to find a figure from a rough image: The ideal way to find a figure is as follows: Contains: , No - (1) Every figure must be processed only once.

(2)処理完了の図形を影像上から除去して、重複処理
を免、く。
(2) Remove processed figures from the image to avoid duplicate processing.

(3)一つの図形処理を完Yしたあと、速・やか′に次
の図形を探し出し、一つも漏れないこと。
(3) After completing one figure processing, quickly find the next figure and do not omit any one figure.

(4)図形中心座標の計算を急ぐこと。(4) Hurry up the calculation of figure center coordinates.

本発明は、以上四点を満足させる為、 以下のごとき各点跳躍検査法をf!4造した(1)第2
図に示すごとく、あらゆる影像上に水平間隔ΔX、垂直
開隔ΔYの綱 格点り目、DI2+・・”+ 021. D22.・・
・+D31*・・・などを設定し、そして順番に格点の
明暗を検査して図形の存在が 分る。これで限度のある11′Wl検査だけをする為、
作業スピードを大いにアッ プ出来る、格点開隔ΔX、ΔYの設定 は最小図形の暢(例えば図形の直径) D$を探して決定る、そして一方路の 四格点は最小図形内に納められ、故に 如何なる図形であっても必ず二つの格 点を含む、こねに依って格点を検査す るとき図形を見逃さない、運算の便利 を計って、本発明はΔY=Ds −C1を取り、ΔX:
I/2ΔYため、その 中一般図形の直径D s−18の状況にも適用するため
、C=2を使用すること が出来る。
In order to satisfy the above four points, the present invention uses the following point-jump inspection method f! 4 made (1) 2nd
As shown in the figure, on every image there are grid points with horizontal spacing ΔX and vertical spacing ΔY, DI2+..."+ 021. D22...
・+D31*... etc. are set, and the brightness of the case points is checked in order to determine the existence of the figure. In order to perform only the limited 11'Wl inspection,
The setting of the case point spacing ΔX and ΔY, which can greatly increase the work speed, is determined by searching for the minimum shape D$ (for example, the diameter of the shape), and on the other hand, the four case points are stored within the minimum shape, Therefore, no matter what shape it is, it always contains two case points, and when checking the case points by kneading, no figure will be overlooked.For convenience of calculation, the present invention takes ΔY=Ds −C1, and ΔX:
Since I/2ΔY, C=2 can be used to apply to the situation where the diameter D of the general figure is s-18.

(2)第3図にごとく、格点A1から図形P (AIは
暗点)を探す場合、A1点を含む図形Pili囲内の水
平線段BCの中心点りからΔYの長さで下へ跳びH 点に至る、この時若しもH点がまだ図 形Pの内にあった場合は、図形PR囲 内にH点を含む水平線KLを描き、そ のとき線上に含み可能な格点A4、A5の暗点を明点に
転換しく図形でないこ とを示す)、故にその後の検査は重複 しない、又A1点を検査した後、次の 検査点はC点の後の格点A3となり、 それでAIとCの間に可能ある格点A2も検査されない
ことがある。
(2) As shown in Figure 3, when searching for figure P (AI is a dark point) from case point A1, jump downwards by a length of ΔY from the center point of horizontal line step BC within figure Pili that includes point A1. At this time, if the H point is still within the figure P, draw a horizontal line KL that includes the H point within the figure PR, and then draw the dark lines of case points A4 and A5 that can be included on the line. Therefore, subsequent inspections do not overlap, and after inspecting point A1, the next inspection point will be case point A3 after point C, so the difference between AI and C. The possible case point A2 in between may also not be examined.

(3)格点AIから図形中心を求める方法は第3図を参
考し、線膜BCからその中点りをとり、更にDから上向
きと下向きして図形Pの下縁の点E及びFを求め、線膜
EFから中心Gを求めば、図形Pの中心となる。
(3) To find the center of the figure from case point AI, refer to Figure 3, take the center point from line membrane BC, and then point E and F at the lower edge of figure P by pointing upward and downward from D. If the center G is found from the line membrane EF, it becomes the center of the figure P.

(ニ)各図形中心の影像座標から台面(図件)座標の換
算: 各図形中心の影像上座標を台面座標に換算する場合、数
学の方法を利用して影像の幾何変形を修正し、座標転換
の誤差を最小にする、影像の変形には、撮影!IIFに
あるレンズが発生するゆがみ、変形および電気装置に関
する誤差などがあり、これら誤差は影像中の長さと実際
図外の相閏長さとは鼻線性間係になる。影像上図形の中
心座標を正確かつ迅速に台面座標に転換する為、本発明
は一つ転換マトリックス法あるいは一つ比重自差法を運
用し、次で説明する: l、マトリックス転換法: 台面上の幾つかの既知座揉参考点を利用して影像上から
これら参考点の影像座標を見出し、上述の二組座標(台
面座標および影像座標)から一つ転換マトリックス(T
)を導き出し、これで影像と台面閏の座標を転換する、
このマトリックス(T)は、下記表示のごとく、 影像上の任意点に対して、既知座標が(X、y)のとき
、台面上に対応する座[(X。
(d) Conversion from image coordinates at the center of each figure to trapezoid (figure) coordinates: When converting the image coordinates at the center of each figure to trapezoid coordinates, use a mathematical method to correct the geometric deformation of the image, and then Shoot to deform the image to minimize conversion errors! There are distortions and deformations caused by the lens in IIF, and errors related to the electric device, and these errors are related to the nasal line length between the length in the image and the actual phase leap length not shown. In order to accurately and quickly convert the center coordinates of a figure on an image into trapezoidal coordinates, the present invention uses the one conversion matrix method or the one specific gravity difference method, which will be explained as follows: l. Matrix conversion method: on the trapezoid The image coordinates of these reference points are found on the image using several known reference points, and one transformation matrix (T
), and use this to convert the coordinates of the image and the platform plane,
This matrix (T) is as shown below: When the known coordinates of an arbitrary point on the image are (X, y), the corresponding position [(X.

Y)は、次の式より求められる: X=A/l、Y=B/L     (2)マトリックス
[T]の求め方に関して、四つの参考点の影像座標(t
zsvA) 、j==1,2.3,4  および対応す
る台面座標(UJ、vj)、J= 1.2,3.4を例
にして、説明する:Uj= a;/ t j、  Vt
=b J/  tj    (5)簡単にすれば: ”I’目本u3+T12本v j+ T Ia−U J
本731本u j−U J本T32本vj=[Jj  
   (6)T21本uj+T22本y J+ T 2
3− V j零T31本u 1− V i本T32本v
 j= V i     (7)即ち、[T]は次のマ
トリックス方程式で求められる。
Y) can be found from the following formula: X=A/l, Y=B/L (2) Regarding how to find the matrix [T], the image coordinates (t
zsvA), j = = 1, 2.3, 4 and the corresponding trapezoidal coordinates (UJ, vj), J = 1.2, 3.4 as an example: Uj = a; / t j, Vt
=b J/ tj (5) To simplify: ``I' book u3 + T12 v j + T Ia-U J
731 books u j - U J books T 32 books vj = [Jj
(6) T21 uj + T22 y J+ T 2
3- V j zero T 31 pieces u 1- V i piece T 32 pieces v
j=V i (7) That is, [T] is determined by the following matrix equation.

運用上には、必要な精度によって影像を若干個マトリッ
クス形ブロックに分割する、各マトリックス形ブロック
の四つ頂点から個別に一つ転換マトリックス[T]を計
算して、座標変換を行なう。
In operation, the image is divided into several matrix blocks according to the required accuracy, and one transformation matrix [T] is calculated individually from the four vertices of each matrix block to perform coordinate transformation.

2、比重自差法: (1)彩慄上多数参考点の座Ia(uI、v、)、i 
= 1.2.3.・・・n、nは整数であり、例えば9
、それに対応する台面座dは(U I@ V +) 、
t = 1s2tL・・・n。
2. Specific gravity deviation method: (1) Locus Ia (uI, v,), i of multiple reference points on Saikou
= 1.2.3. ...n, n are integers, for example 9
, the corresponding pedestal d is (UI@V +),
t = 1s2tL...n.

(2) Ki、 Miを計算する: Kt=U+/ut、i=1からnまで;M += V 
+/ V i、  I =1からnまで;(3)彩億上
の任意点に対して、既知座標を(x*y)とし、各参考
点(u i、 v +)の個別距離diは、下式より計
算する: d +=J (x −u +) ’+ (y−v4) 
’i=1からnまで: (4)K、MilIを計算するニ ー  に11 K= Σ□/ Σ□  。
(2) Calculate Ki, Mi: Kt=U+/ut, i=1 to n; M+=V
+/V i, I = 1 to n; (3) For any point on the iris, the known coordinates are (x*y), and the individual distance di of each reference point (u i, v +) is , calculated from the following formula: d + = J (x - u +) '+ (y - v4)
' From i=1 to n: (4) Calculate K, MilI to 11 K=Σ□/Σ□.

る・’  d+   6・’d+ II    MI     11   1M= Σ □
/ Σ □    。
ru・' d+ 6・'d+ II MI 11 1M= Σ □
/ Σ □.

−・’    d+     ’・’    d+(5
)影像座1m(x、y)に対応する台面座樵(X、Y)
を求める: X=に・X Y=MIIy (三)全部の図形を適当な順序で徘列し、一つずつ精密
層像の有効路程を獲得する二 本ステップは、全部の図形を順序よく配列して、後で一
つずつ各図形を取像する根拠を提供する。理想の排列原
則に依れば、第1図形に最も近い図形を第2図形として
並び、そして第2図形に最も近い図形を第3図形とする
、後はこれに準する;しかし図形数量が多いとき、上述
した理想原則で排列すると、多く時間を貴やし、システ
ム作業の速度に影響を及す。
−・' d+ '・' d+(5
) pedestal seat (X, Y) corresponding to the image seat 1m (x, y)
Find: This provides the basis for later imaging each figure one by one. According to the ideal arrangement principle, the figure closest to the first figure is arranged as the second figure, and the figure closest to the second figure is arranged as the third figure, and the rest follows; however, the number of figures is large. When arranging according to the above-mentioned ideal principle, it wastes a lot of time and affects the speed of system work.

故に、本発明は独特の早い「分区および方向度+9排列
法」を次のように示す: 1、分区: 効率をアップする為、本発明は影像処理ユニット(6)
がある一つの図形資料を精密的に工[算する時、台面(
1)が次の図面に移動する動作を行ない、台面(1)が
両図形の間に移動する時間よりも影像処理ユニット(6
)が精密計算した図形資料の時間が大きいこと、白面(
1)の移動速度は眼側される為、故に、本発明は一枚全
面の図形(20)を適当に分区して、個別的、に大部分
取像と処理を行なう0分区の原則は、台面(1)の移動
するブロック肉量も遠い両図形閏距離に必要な時間が影
像処理ユニット(6)の一つ図形資料を精密計算するに
nす時間より短い若しくは等しいであること、故にその
後各図形を一つずつ精密層像をする時、影像処理ユニッ
ト(6)の計算作業は中断しなくてすむ。
Therefore, the present invention presents a unique and fast "segmentation and orientation +9 arrangement method" as follows: 1. Segmentation: In order to increase efficiency, the present invention provides an image processing unit (6)
When calculating precisely a certain graphic material, the table surface (
1) moves to the next drawing, and the image processing unit (6
) has a large amount of time for precisely calculated graphic data, and white surface (
Since the moving speed in 1) is determined by the eye, the principle of 0 division in the present invention is to appropriately divide the figure (20) on the entire surface of one sheet and individually capture and process most of the image. The amount of block movement of the table surface (1) is also far, and the time required for the leap distance of both figures is shorter than or equal to the time required for precise calculation of one figure data of the image processing unit (6). When performing precise layer imaging of each figure one by one, the calculation work of the image processing unit (6) does not need to be interrupted.

2、配列順序: 第4図に示すごとく、前述した跳躍検査で得たΔY=D
s−Cの値と同じく、影像をΔY本ΔYの正方路に区分
すると、一方路に多くて一つ図形中心と対応できる、卯
ちn個図形中心座act  (tz 、vt )、i:
1,2、・・・、nに対して、n組の数列(a is 
bi+1)を配列順序の根拠として建立できる、その中
、iは図形の番号で、lからnまでの整数である; a
+’= (u+ /ΔY)の整数値を取り、図表C1の
U軸向き格位を表す;b1= (vt /ΔY)の整数
値を取り、図表CIのV軸向き格位を表す0例えば、第
4図の中にある図形C1に対応する数列は、(2,l、
1)であり、図形C2に対応する数列は、(9,1,2
)である、・・・・・・等、これに基づく各数列の第−
値a、は小さいから大きいの順序で各数列を配列し、数
列の第三値iから図形の順序を獲得する;第−値a、の
数列が同じいであれば、第二値す、の大小で先後の順序
を決定し、その場合は、以前の一つai値の数列の存在
をb1値の大小排列を変損する方式により決定する。第
4図を例に挙げると割に容易に説明出来る、矢じるし系
列P1、P2、・・・、P9等は、一つずっ各方路が図
形の実行順序があるかどうかを検査することを表す、そ
の中に矢じるし21行の中には図形が存在しないので、
22行は、まだ同じ方向で検査をし、これに依って図形
c5を検出したあと23行が検査方向を変えて、図形C
3を獲得する、そして24行が再び検査方向を変えて図
形C3、C7,を取得する。以下これに類して、即ち各
図形は図で示したように矢しるし系列Qと連接のCs、
 ’C++ C31C7C@ * C4およびC2順序
で配列し、これで一つずつ層像順序の路程とする、この
方向変換順序配列方法では、最適(最も短い)路程の配
列に最接近する、獲得する速度一番早くできる方法であ
る、それにCI+ C21C:lI・・・、C7の順序
で排列する方法に比べると台面(1)の運動距離と所要
時間が縮小出来、作業効率をアップできる。
2. Arrangement order: As shown in Figure 4, ΔY=D obtained from the jump test mentioned above.
Similarly to the value of s-C, if the image is divided into ΔY square paths and ΔY square paths, there are n figure center loci act (tz, vt), i: at most one path can correspond to the figure center.
For 1, 2, ..., n, n sets of numerical sequences (a is
bi+1) can be established as the basis for the arrangement order, where i is the number of the figure and is an integer from l to n; a
+'= Takes an integer value of (u+ /ΔY) and represents the U-axis orientation of diagram C1; b1= Takes an integer value of (vt /ΔY) and represents the V-axis orientation of diagram CI 0For example: , the number sequence corresponding to figure C1 in Fig. 4 is (2, l,
1), and the number sequence corresponding to figure C2 is (9, 1, 2
), etc. Based on this, the −th of each sequence is
Arrange each sequence of numbers in order from smallest to largest, and obtain the order of figures from the third value i of the sequence; if the sequences of the -th value a, are the same, then the magnitude of the second value, i, is the same. In this case, the existence of a numerical sequence of one previous ai value is determined by a method of changing the magnitude arrangement of b1 values. Taking Fig. 4 as an example, the arrowhead series P1, P2, . . . , P9, etc., which can be explained relatively easily, check whether each route has the execution order of the figures. Since there is no figure in the 21st line with an arrowhead indicating that,
Line 22 continues the inspection in the same direction and detects figure c5, then line 23 changes the inspection direction and detects figure C.
3 is obtained, and the 24th row changes the inspection direction again to obtain figures C3 and C7. Below, in a similar manner, each figure has an arrow mark series Q and a connected Cs, as shown in the figure.
'C++ C31C7C@ * Arranged in C4 and C2 order, and each one is a path of layer image order. In this direction change order arrangement method, the speed to be acquired that approaches the optimal (shortest) path arrangement This is the fastest method, and compared to the method of arranging in the order of CI+C21C:lI...,C7, the movement distance of the platform (1) and the time required can be reduced, and work efficiency can be increased.

(4)図形影像の逐次処理: 層像範囲の割に小なる撮影装置(5)は、ステ・レプ(
三)によって得た路程で、図形(20)の各図形を一つ
ずつ層像する。勿論、層像は台面(1)(図外20)が
固定位置に移動した時に層像する。その確認の方法は、
任意の既知検測手鎖セ台面あるいはl!勤11rllは
静止したか否かで分る。層像完了後、台面(1)は、継
続に次の位置に移動し、影像処理ユニット(6)が同時
に影像処理を進行する、−像は前述した二値化で先に処
理し、しかも層像は図形概略中心に対する故、影像の中
心点は必ず図形の1!1m内にある、故にその中心点か
ら四周に向かって図形の全部の辺総点を求め、辺総点の
座標を平均して図形の正確な中心座標を求め、そして図
形の大小と形状を判別する。
(4) Sequential processing of graphical images: The photographing device (5) is small compared to the layered image range.
Using the path obtained in step 3), layer images of each figure (20) one by one. Of course, the layer image is formed when the tabletop (1) (not shown 20) moves to a fixed position. The method of confirmation is
Any known test hand chain surface or l! You can tell whether the work 11rll is stationary or not. After the layer image is completed, the table surface (1) is continuously moved to the next position, and the image processing unit (6) simultaneously proceeds with the image processing. Since the image is relative to the approximate center of the figure, the center point of the image is always within 1!1m of the figure.Therefore, calculate the total points of all sides of the figure from the center point toward the four circumferences, and average the coordinates of the total side points. Find the exact center coordinates of the figure, and then determine the size and shape of the figure.

(五)各図形の正確な中心位置の影像座標を台面座aに
換算する、即ち図外上の座標にする、≠の方法はステッ
プ(ニ)と同じ。
(5) The method of converting the image coordinates of the exact center position of each figure to the base seat a, that is, converting them into coordinates on the outside of the figure, is the same as in step (d).

(六)ステップ(1!りに依って求めた図形の大小、形
状等の資料で図形を分類し、しかも適当な順序で配列す
る、排列の方法はステップ(三)と同じく、これに依っ
て加工装置に必゛要な制′a資料を提供出来る。叉これ
らの資料は直接に加工装置に出力し、あるいはテープパ
ンチャーで記録した後、再び加工装置にて使用される、
その方式は既知技術に依って達成する。
(6) Step (1!) Classify the shapes based on the data such as their size and shape found in step 1, and arrange them in an appropriate order. It is possible to provide necessary control materials to the processing equipment.These materials can be output directly to the processing equipment, or recorded with a tape puncher and then used again by the processing equipment.
The method is accomplished using known techniques.

上述のごとく、本発明は二つの撮影装置を利用して台面
の移動で図形の概略および各図形の逐次層像をし、台面
の移動と影像処理作業が同時に進行し、自動二値化技術
で影像を二値化して、影像処理ユニットの図形中心位置
、寸法および形状分析計算に供給する、再び修正幾何変
形機能のある座標転換方法で台面の対応座標を獲得する
、しかも同性分区および図形変向排列法で有効な配合と
処理をして、高速度、高精度の図外判別機能を達成し、
この初めて創造した方法と装置で確実に産業上の利用価
値を協える
As mentioned above, the present invention utilizes two imaging devices to obtain an outline of the figure and successive layered images of each figure by moving the table, and moves the table and image processing simultaneously, and uses automatic binarization technology. Binarize the image and feed it to the image processing unit's figure center position, dimension and shape analysis calculations, and obtain the corresponding coordinates of the tabletop again using a coordinate transformation method with corrective geometric transformation function, as well as homogeneous division and figure transformation. Through effective formulation and processing using the array method, we have achieved high-speed, high-precision off-the-mark discrimination function.
This method and device created for the first time will surely provide industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明装置の構成図。 第2図は、本発明の中にある影像処理ユニットが概略取
像の影像中の図形検査跳躍格点図。 第3図は、本発明の中にある概略影像中の図形概略中心
を計算する原理。 第4図は、本発明の中にある図形排列順序の説明例。 第1図 第2図 第3図
FIG. 1 is a configuration diagram of the apparatus of the present invention. FIG. 2 is a jump case diagram of a graphical test in an image roughly captured by the image processing unit in the present invention. FIG. 3 shows the principle of calculating the approximate center of a figure in a rough image, which is included in the present invention. FIG. 4 is an explanatory example of the figure arrangement order in the present invention. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、一種の平面図面上にある多数個別図形判別の機械認
識方法及び装置で、次のステップを包括する; (a)撮影装置で、関係図面を大部写像撮り、大部写像
は、図面の全部あるいはその一部 分のブロックで、その中には多数個別図形 を包含する; (b)大部写像を二値化処理し、図形を背景に対して明
暗の対比と成さす; (c)最小図形映像内の一つブロックを収納できる長さ
で、幅は縦向き及び横向きの累進 値とし、映像上に格点跳躍検査をしたうえ 、格点の明暗で図形のいる場所を検出する (d)検出された図形の格点横向きで図形の両辺縁点を
取得する、その両点の中点縦向き から図形の別の両辺縁点を取得して、その 中点を図形の概略中心とする; (e)図面上の多数個参考点の既知座標に対応する影像
上の既知座標を基礎にして、影像 上の各図形の概略中心座標を図面上の座標 に転換する; (f)図形全体を概略中心位置から、適当な配列順序を
作る; (g)撮影装置でステップ(f)の図形配列順序から、
ステップ(e)の図形上孔位置概略中心座標を取像中心
とし、各々図形に対して 精密な取像をするとともに以下の処置をす る; [1]影像を二値化する; [2]影像中心から外向きに図形の全部辺縁点を探し取
り、座標値を平均する、そして 図面の正確な中心の影像座標を得る;そ れに辺縁点の座標性質から図形の形状と 影像上の長さを判断する; (h)各図形の正確な中心影像座標及び影像の寸法を図
面上の図形中心座標および実際寸 法に転換する; (i)各図形の形状と寸法から分類し、同じ種類の図形
を適当な順序に配列して、出力操 作の資料とする。 2、特許請求の範囲第1項に述べたような方法で、その
中のステップ(b)と(g)にある影像の二値化処理対
影像諸映像素子の灰度分界位置Tは下列の式で計算する
; ▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼ t_1=t・N_1/N_2 t_2=m−(m−t)・N_2/N_1 T=1/2(t_1+t_2) その中、M=全部映像素子の最大灰度値( 最小灰度値は0) G_i=0からmまでの任意灰度値 n_i=灰度値はG_iの累計映像素子数 N=総映像素子数、即ち▲数式、化学式、表等がありま
す▼ 3、特許請求の範囲第一項に述べたような方法、その中
のステップ(e)と(h)中から、一つ影像座標(x、
y)を図面座標(X、Y)に転換する場合は次の式より
計算する: ▲数式、化学式、表等があります▼ X=A/t Y=B/t その中、[T]=一つ既知マトリックス、 次の式で表示できる、 ▲数式、化学式、表等があります▼ そして、次の順序より求得する: 既知n個(n≧4)参考点があり、その影 像座標(u_1、v_1)、(u_2、v_2)、・・
・、(u_n、v_n)が、各々図件座標(U_1、V
_1)、(U_2、V_2)、・・・、(U_n、V_
n)に対応する、そのときのマトリックス方程式は▲数
式、化学式、表等があります▼ 4、特許請求の範囲第1項に述べたような方法、その中
のステップ(e)および(h)中から、一つ影像座標(
x、y)を図面座標(X、Y)に転換する場合は次の式
より計算する: X=K・x Y=M・y その中、KとMは一つの数字、以下の順序 で求得する: 既知n個参考点があり、その影像座標(u_1、v_1
)、(u_2、v_2)、・・・、(u_n、v_n)
が、各々図件座標(U_1、V_1)、(U_2、V_
2)、・・・、(U_n、V_n)に対応する、そのと
き: ▲数式、化学式、表等があります▼ その中に、 d_i=√(x−u_i)^2+(y−v_i)^25
、特許申請の範囲第1項に述べたような方法で、その中
のステップ(f)および(i)の中に、図形排列順序の
プロセスは下列の通り: [1]、影像上最小図形の広さより少し小さい数値を間
隔とし、各図形の中心をその間隔縦 横区分の網格内に納め、即ち網格が数行の 排列を形成、片側から向う側へ順序よく第 一行、第二行・・・最末行に至り、各行の 片端から向こう端まで順序を第一格、第二 格、・・・最末格に至る。 [2]、第一行から末行まで順序よく各格の中に図形が
あるかどうかを検査し、そして検出 された図形順序に依って図形を配列する、 各行の中から各格への検査は第一格から末 格まで、或いは末格から第一格までにする 、その順序の決定は「もしもある行に図形 があれば、次の行の検査方向はその行の反 対方向とし、逆の場合は同一方向である」 とする。 6、一種の機械視覚装置で、多数個別図形を含む平面図
面を判読するもの、例えばプリントPCボートの穴開け
の孔位置図ようなものに依って、図形を認識し、位置と
寸法などの資料を取得するもの、中には: 一つ機械テーブル; 一つ台面、テーブルに設置され、判読図面 を置く場所に使用され、台面は平面に於いて一定の範囲
内に、ある一つ駆動及び制御装置の作用で、相対的にテ
ーブルのどの位置へも移動できる; 一つ第一撮影装置、テーブルの上に固定し 、その撮影軸線が台面の平面に垂直する、割に大きい取
像範囲が得られる、台面が所定の位置に移動するとき、
多数図形を含む台面上図件の影像を撮影し、電気信号に
転換して出力する; 一つ第二撮影装置、テーブルの上に固定し 、その撮影軸線が台面の平面に垂直する、割に小さい取
像範囲が得られる、台面が所定の位置に移動するとき、
単一図形を含む台面上図件の影像を撮影し、電気信号に
転換して出力する; 一つ影像処理ユニット、影像デジタル化装 置およびマイクロコンピュータ装置があり、内部にはプ
ロセス制御プログラムを含む、上述した台面にある第一
及び第二撮影装置に対する定位移動を操作し、適時に第
一および第二撮影装置の影像信号を捕える;影像分析プ
ログラムには、影像二値化、図形検査、図形センター計
算、影像座標対図件座標の転換および図形順序排列処置
などプロセスを含み、プロセス制御プログラムの運用と
合わして、第一撮影装置より図面の大部分を取像し、各
図形の概略中心を求め、第二撮影装置に適当な順序で一
つずつ各図形の精密な影像を取像する概略中心を提供し
て、各図形の正確な資料を求める。 7、特許請求の範囲第6項に述べるような装置、その中
にある第一撮影装置の取像範囲大きさは「台面がその影
像内に一番遠い距離の二つ図形位置に移動する(第二撮
影装置の取像用として)必要な時間は影像処理装置が一
つ正確な図形資料を求める時間より大きくない」による
もの。
[Scope of Claims] 1. A machine recognition method and apparatus for discriminating a large number of individual figures on a plane drawing, which includes the following steps: (a) Using a photographing device to take a picture of most of the related drawings; A partial map is a block of all or part of a drawing, and includes many individual figures; (b) A partial map is binarized and the figures are contrasted in light and dark against the background. (c) The length is long enough to accommodate one block in the minimum figure image, the width is a progressive value in both vertical and horizontal directions, and a case point jump test is performed on the image, and the location of the figure is determined by the brightness and darkness of the case point. (d) Case point of the detected figure Obtain both edge points of the figure in horizontal orientation, midpoint of both points Obtain another edge point of the figure from the vertical orientation, and set the midpoint to the figure (e) convert the approximate center coordinates of each figure on the image into coordinates on the drawing based on the known coordinates on the image that correspond to the known coordinates of multiple reference points on the drawing; (f) Create an appropriate arrangement order for the entire figure from the approximate center position; (g) From the arrangement order of the figure in step (f) using the photographing device,
Taking the approximate center coordinates of the upper hole position of the figure as the image center in step (e), take precise images of each figure and perform the following procedures: [1] Binarize the image; [2] Image Find all edge points of the figure outward from the center, average the coordinate values, and obtain the image coordinates of the exact center of the drawing; and from the coordinate properties of the edge points, determine the shape of the figure and the length on the image. (h) Convert the accurate center image coordinates and image dimensions of each figure into the figure center coordinates and actual dimensions on the drawing; (i) Classify each figure based on its shape and dimensions, and identify figures of the same type. Arrange them in an appropriate order and use them as data for output operations. 2. In the method described in claim 1, the image binarization processing in steps (b) and (g) therein and the ashness demarcation position T of the image video elements are performed as shown in the lower row. Calculate with formulas; ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ▲There are mathematical formulas, chemical formulas, tables, etc.▼ t_1=t・N_1/N_2 t_2=m-(m-t )・N_2/N_1 T=1/2 (t_1+t_2) Wherein, M = maximum grayness value of all video elements (minimum grayness value is 0) G_i = arbitrary grayness value from 0 to m n_i = grayness value is the total number of video elements of G_i N = total number of video elements, that is, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ 3. The method as stated in claim 1, steps (e) and ( h) One of the image coordinates (x,
y) to drawing coordinates (X, Y), calculate using the following formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ X=A/t Y=B/t Among them, [T]=1 ▲ There are mathematical formulas, chemical formulas, tables, etc., which can be expressed by the following formula. Then, it is obtained from the following order: There are n known reference points (n ≥ 4), and their image coordinates (u_1, v_1 ), (u_2, v_2),...
・, (u_n, v_n) are the object coordinates (U_1, V
_1), (U_2, V_2), ..., (U_n, V_
The matrix equation corresponding to n) may be a mathematical formula, a chemical formula, a table, etc.▼ 4. The method as stated in claim 1, steps (e) and (h) therein , one image coordinate (
x, y) to drawing coordinates (X, Y), calculate using the following formula: Obtain: There are n known reference points, and their image coordinates (u_1, v_1
), (u_2, v_2), ..., (u_n, v_n)
are the object coordinates (U_1, V_1) and (U_2, V_
2) Corresponding to..., (U_n, V_n), then: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Among them, d_i=√(x-u_i)^2+(y-v_i)^25
, in the method as described in the scope of the patent application, item 1, in steps (f) and (i) therein, the process of figure arrangement order is as below: [1], the smallest figure on the image The spacing is a value slightly smaller than the width, and the center of each figure is placed within the grid of the vertical and horizontal divisions of the interval, that is, the grid forms an arrangement of several rows, in order from one side to the other, the first row, the second row, etc.・Reaching to the last line, the order from one end of each line to the other is first case, second case, and so on until the final case is reached. [2] Check whether there is a figure in each case in order from the first line to the last line, and then arrange the figures according to the detected order of figures.Inspection from each line to each case is as follows. Deciding the order from the first case to the final case, or from the final case to the first case, is ``If there is a figure in a certain line, the next line's inspection direction is the opposite direction of that line; If the two directions are the same, then the direction is the same. 6. A type of machine vision device that reads plan drawings containing many individual figures, such as hole position maps for drilling holes in printed PC boats, and recognizes figures and records information such as positions and dimensions. , including: one machine table; one table, installed on the table, used as a place to place the interpretation drawing; the table, within a certain range in the plane, one drive and control; Due to the action of the device, it can be moved to any position on the table relatively; one first imaging device is fixed on the table, and its imaging axis is perpendicular to the plane of the table surface, providing a relatively large imaging range. when the table moves to a predetermined position.
A second imaging device is fixed on the table, and its imaging axis is perpendicular to the plane of the table, which is relatively easy to use. When the table surface moves to a predetermined position, a small imaging range can be obtained.
It takes an image of the object on the table including a single figure, converts it into an electric signal and outputs it; there is an image processing unit, an image digitization device and a microcomputer device, which contains a process control program; The stereotactic movement of the first and second imaging devices on the table mentioned above is operated to capture the image signals of the first and second imaging devices in a timely manner; the image analysis program includes image binarization, graphic inspection, and graphic center. It includes processes such as calculation, conversion of image coordinates to object coordinates, and figure order arrangement treatment, and in conjunction with operation of the process control program, images most of the drawing from the first imaging device and determines the approximate center of each figure. , provide the second photographing device with the approximate center of taking precise images of each figure one by one in an appropriate order, and obtain accurate data of each figure. 7. The size of the imaging range of the first photographing device in the apparatus as described in claim 6 is defined as "the table surface moves to the two figure positions furthest within its image ( The time required (for the acquisition of the image by the second imaging device) is not greater than the time required by the image processing device to obtain one accurate graphical document.
JP62287219A 1987-11-13 1987-11-13 Mechanical recognition method and apparatus for discrimination of numerous individual graphics Pending JPH01136284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62287219A JPH01136284A (en) 1987-11-13 1987-11-13 Mechanical recognition method and apparatus for discrimination of numerous individual graphics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62287219A JPH01136284A (en) 1987-11-13 1987-11-13 Mechanical recognition method and apparatus for discrimination of numerous individual graphics

Publications (1)

Publication Number Publication Date
JPH01136284A true JPH01136284A (en) 1989-05-29

Family

ID=17714585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62287219A Pending JPH01136284A (en) 1987-11-13 1987-11-13 Mechanical recognition method and apparatus for discrimination of numerous individual graphics

Country Status (1)

Country Link
JP (1) JPH01136284A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372433A (en) * 1976-12-08 1978-06-27 Fuji Electric Co Ltd Plurale pattern recognition unit
JPS62145383A (en) * 1985-12-19 1987-06-29 Toshiba Corp Position recognition device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372433A (en) * 1976-12-08 1978-06-27 Fuji Electric Co Ltd Plurale pattern recognition unit
JPS62145383A (en) * 1985-12-19 1987-06-29 Toshiba Corp Position recognition device

Similar Documents

Publication Publication Date Title
US4123695A (en) Pattern recognition system
EP4280153A1 (en) Defect detection method, apparatus and system
US6118893A (en) Analysis of an image of a pattern of discrete objects
JP3515199B2 (en) Defect inspection equipment
US4866629A (en) Machine vision process and apparatus for reading a plurality of separated figures
JP5861462B2 (en) Inspection standard registration method for solder inspection and board inspection apparatus using the method
JP2014055916A (en) Appearance inspection device, appearance inspection method, and program
US20210150700A1 (en) Defect detection device and method
CN113146073B (en) Vision-based laser cutting method and device, electronic equipment and storage medium
CN110940670B (en) Machine vision-based flexographic printing label printing first manuscript detection system and implementation method thereof
JP3887807B2 (en) Image measuring device
CN110658215B (en) PCB automatic splicing detection method and device based on machine vision
JPH01136284A (en) Mechanical recognition method and apparatus for discrimination of numerous individual graphics
KR910007348B1 (en) Machine vision process and apparatus for reading a plurality of separated figures
CA1075795A (en) Automatic machine tool
JP3230111B2 (en) Automatic calibration device
JPS6243505A (en) Method and instrument for detecting defect of pattern
JP2562047B2 (en) Position and orientation recognition method of target object
CN110857924A (en) System for assisting array typesetting circuit board identification and recording defect position
CN117670887B (en) Tin soldering height and defect detection method based on machine vision
JPS61196110A (en) Shape inspection device
WO2021111768A1 (en) Setting system, setting method, and program
KR100249808B1 (en) Ic leadframe lead spacing automatic visual inspection system
JPH0230065B2 (en)
KR20220123467A (en) Pattern matching devices, pattern measurement systems, and non-transitory computer-readable media