JPH01135569A - Frequency control system of ultrasonic wave oscillator - Google Patents
Frequency control system of ultrasonic wave oscillatorInfo
- Publication number
- JPH01135569A JPH01135569A JP62294227A JP29422787A JPH01135569A JP H01135569 A JPH01135569 A JP H01135569A JP 62294227 A JP62294227 A JP 62294227A JP 29422787 A JP29422787 A JP 29422787A JP H01135569 A JPH01135569 A JP H01135569A
- Authority
- JP
- Japan
- Prior art keywords
- amplifier
- output
- phase difference
- error
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010355 oscillation Effects 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 5
- 230000003321 amplification Effects 0.000 abstract description 7
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
- H01L24/78—Apparatus for connecting with wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/852—Applying energy for connecting
- H01L2224/85201—Compression bonding
- H01L2224/85205—Ultrasonic bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Wire Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、特に超音波振動子の振動振幅の立上りの傾き
を可変にする超音波発信器の周波数制御方式に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention particularly relates to a frequency control system for an ultrasonic transmitter that makes the slope of the rise of the vibration amplitude of an ultrasonic transducer variable.
(従来の技術)
例えば、ICチップとリードフレームをワイヤで電気的
に接続する工程に使用される機器にボンダがある。こ・
のボンダはICの多品種化にともない、各用途における
特性の細かな対応が要求されている。このような状況下
において、ワイヤに超音波振動を加えて接続を強固にす
るボンダ用超音波発振器にも同様の要求がある。(Prior Art) For example, a bonder is a device used in the process of electrically connecting an IC chip and a lead frame with a wire. child·
With the increasing variety of IC types, bonders are required to have detailed characteristics for each application. Under these circumstances, there is a similar demand for an ultrasonic oscillator for bonders that applies ultrasonic vibration to the wire to strengthen the connection.
このボンダ用超音波発振器に要求されるものの一つとし
て、超音波振動子の振動振幅の立上りの傾きを可変にす
ることがある。ある種のICにおいては、ボンディング
時にワイヤに急激に振動を加えると、ICに大きなダメ
ージを与える。その為、この振動振幅の立ち上がりに傾
きを持たせて。One of the requirements for this ultrasonic oscillator for bonders is to make the slope of the rise of the vibration amplitude of the ultrasonic vibrator variable. For some types of ICs, applying sudden vibrations to the wire during bonding can cause significant damage to the IC. Therefore, the rise of this vibration amplitude has a slope.
徐々に振幅を増加させてやる必要がある。また、立上り
の傾きは、各ICにあわせて任意に設定できる必要があ
る。It is necessary to gradually increase the amplitude. Further, the slope of the rise needs to be arbitrarily set according to each IC.
従来ボンダ用として使用されてきた超音波発振器の例を
第7図に示す、第7図において、1は入力電圧を制御し
て発振周波数を制御することのできる電圧制御発振器(
以下vCOと略称する)、2は出力・時間調整器、3は
出力増幅器、4は位相差検出器、 5′は誤差増幅器、
6は位相差設定器、7は負荷の超音波振動子、8は乗算
器、9は積分器、10はパルス波発生器である。An example of an ultrasonic oscillator conventionally used for bonders is shown in FIG. 7. In FIG.
2 is an output/time adjuster, 3 is an output amplifier, 4 is a phase difference detector, 5' is an error amplifier,
6 is a phase difference setter, 7 is an ultrasonic transducer as a load, 8 is a multiplier, 9 is an integrator, and 10 is a pulse wave generator.
第8図は、超音波振動子7の振動子入力電圧を一定とし
たときの、超音波振動子7の特性例を示した図である。FIG. 8 is a diagram showing an example of the characteristics of the ultrasonic transducer 7 when the transducer input voltage of the ultrasonic transducer 7 is constant.
超音波振動子7は交流の電気的パワーを機械的振動に変
換するものである。超音波振動子への入力周波数と、振
動振幅及び入力電圧電流位相差には、第8図の様な関係
がある。すなわち、振動子は共振周波数fを持ち、その
周波数では振動振幅が最大となり、入力電圧電流の位相
差θは0°となる。この状態では振動振幅は入力される
電気的パワーに比例する。The ultrasonic vibrator 7 converts alternating current electrical power into mechanical vibration. The input frequency to the ultrasonic transducer, the vibration amplitude, and the input voltage/current phase difference have a relationship as shown in FIG. 8. That is, the vibrator has a resonant frequency f, the vibration amplitude is maximum at that frequency, and the phase difference θ of the input voltage and current is 0°. In this state, the vibration amplitude is proportional to the input electrical power.
第8図はある条件下での特性例であり、振動振幅がピー
クとなる周波数は、温度やその他の要因により変化する
。しかし、振動振幅がピークとなる周波数が変化しても
、振動振幅と入力電圧電流位相差の関係は変化しない、
その為、超音波発振器は、振動子の入力電圧電流位相差
、すなわち発振器の出力電圧電流位相差が一定になるよ
うに、発振器の出力周波数を制御することにより振動振
幅を一定にしている。これにより、超音波振動子に入力
される電気的パワーに比例した機械的振動振幅が得られ
る。FIG. 8 shows an example of characteristics under certain conditions, and the frequency at which the vibration amplitude reaches its peak changes depending on temperature and other factors. However, even if the frequency at which the vibration amplitude peaks changes, the relationship between the vibration amplitude and the input voltage and current phase difference does not change.
Therefore, in an ultrasonic oscillator, the vibration amplitude is kept constant by controlling the output frequency of the oscillator so that the input voltage and current phase difference of the vibrator, that is, the output voltage and current phase difference of the oscillator is constant. This provides a mechanical vibration amplitude proportional to the electrical power input to the ultrasonic transducer.
第7図により従来の超音波発信器の動作を説明する0位
相差検出器4は超音波振動子7の入力電圧電流の位相差
を検出する。誤差増幅器5′は位相差設定器6による位
相差設定値と位相差検出器4からの位相差信号とを比較
し、その誤差を増幅して信号をVCOIに与える。VC
Olは入力信号の値により周波数が変化する発振器で、
誤差増幅器5′からの信号で発振周波数を補正し、電圧
電流位相差が設定値となる周波数に発信周波数を制御す
る。超音波振動は前記ICのボンディング時のワイヤを
接続する瞬間に所定の時間、所定の振幅で加えられるも
のであり、その時間及び振幅は、各ICに合わせて外部
よりの振動指令信号で与えられる。VCOLの信号は出
力・時間調整器2により所定の時間・所定の振幅の信号
に変換される。The operation of the conventional ultrasonic transmitter will be explained with reference to FIG. 7. The phase difference detector 4 detects the phase difference between the input voltage and current of the ultrasonic transducer 7. The error amplifier 5' compares the phase difference set value by the phase difference setter 6 and the phase difference signal from the phase difference detector 4, amplifies the error, and provides the signal to the VCOI. VC
Ol is an oscillator whose frequency changes depending on the value of the input signal,
The oscillation frequency is corrected by the signal from the error amplifier 5', and the oscillation frequency is controlled to a frequency at which the voltage-current phase difference becomes a set value. Ultrasonic vibration is applied for a predetermined time and at a predetermined amplitude at the moment when the wires are connected during bonding of the IC, and the time and amplitude are given by an external vibration command signal in accordance with each IC. . The VCOL signal is converted by the output/time adjuster 2 into a signal of a predetermined time and predetermined amplitude.
出力・時間調整器2の信号をそのまま増幅して超音波振
動子に加えると、振動の立ち上がりが急激になるので、
乗算器8.積分器9、パルス波発生器lOよりなる回路
で立ち上がりの傾きを可変にしている。パルス波発生器
10は、振動指令信号により大きさが一定で、設定され
たパルス幅のパルス波を発生する回路である。パルス波
は積分器9によって所定の立ち上がり傾きを持った台形
波に変換される。VCOLの出力信号は、乗算器8によ
りこの台形波信号とかけ算されて出力増幅器3に与えら
れる。出力増幅器3はこの入力信号をパワー増幅して負
荷の振動子7に加える。If the signal from the output/time adjuster 2 is directly amplified and applied to the ultrasonic transducer, the rise of the vibration will be rapid.
Multiplier 8. A circuit consisting of an integrator 9 and a pulse wave generator 1O makes the slope of the rise variable. The pulse wave generator 10 is a circuit that generates a pulse wave having a constant magnitude and a set pulse width in response to a vibration command signal. The pulse wave is converted by an integrator 9 into a trapezoidal wave having a predetermined rising slope. The output signal of the VCOL is multiplied by this trapezoidal wave signal by a multiplier 8 and is provided to an output amplifier 3. The output amplifier 3 amplifies the power of this input signal and applies it to the vibrator 7 of the load.
第9図に出力・時間調整器2の出力信号の信号A、誤差
増幅器5の出力信号すなわち周波数信号の信号B、パル
ス波発生器9の出力信号の信号C1積分器9の出力信号
の信号D、出力増幅器3の出力電圧の信号E、及び超音
波振動子7の機械的振動振幅の信号Fの特性例を示す、
出力周波数は発信開始と同時に超音波振動子の共振周波
数に制御されるので、機械的振動振幅は入力電圧に比例
して所定の傾きになる。FIG. 9 shows a signal A of the output signal of the output/time adjuster 2, a signal B of the output signal of the error amplifier 5, that is, a frequency signal, a signal C of the output signal of the pulse wave generator 9, a signal D of the output signal of the integrator 9. , shows an example of the characteristics of the signal E of the output voltage of the output amplifier 3 and the signal F of the mechanical vibration amplitude of the ultrasonic transducer 7,
Since the output frequency is controlled to the resonance frequency of the ultrasonic transducer at the same time as the transmission starts, the mechanical vibration amplitude has a predetermined slope in proportion to the input voltage.
第1θ図には従来の誤差増幅器5′の例を示す。FIG. 1θ shows an example of a conventional error amplifier 5'.
第10図において、5Aは比例増幅器、5Gは発信周波
数の初期値を決める初期値設定器、5Bは比例増幅器5
A及び初期値設定値5Cの信号を加算する加算器である
。従来のボンダにおいては、超音波発信器の出力周波数
を出来るだけ速く超音波振動子7の振動振幅に制御しよ
うとして、誤差増幅器5′には応答の速いゲインを上げ
た比例増幅器が用いられており、充分この要求を満足し
ていた。初期値設定器5Cは発信開始周波数をあらかじ
め超音波振動子の共振周波数近辺において制御を速くす
る為のものである。In FIG. 10, 5A is a proportional amplifier, 5G is an initial value setting device that determines the initial value of the oscillation frequency, and 5B is a proportional amplifier 5.
This is an adder that adds the signals of A and the initial value set value 5C. In the conventional bonder, in order to control the output frequency of the ultrasonic transmitter to the vibration amplitude of the ultrasonic vibrator 7 as quickly as possible, a proportional amplifier with a fast response and increased gain is used as the error amplifier 5'. , fully satisfied this requirement. The initial value setter 5C is for speeding up control of the transmission start frequency in advance near the resonance frequency of the ultrasonic transducer.
(発明が解決しようとする問題点)
しかして従来の超音波発振器では、第7図のごとく超音
波振動子7の振動振幅の立ち上がりの傾きを可変にする
ために1乗算器8、積分器9、パルス波発生器10より
なる回路を用いていた。これらの回路は複雑で大きなス
ペースを必要とするだけでなく、アナログ乗算器等の高
価なICを用いねばならなかった。このため、ボンダ用
超音波発振(至)の小型化、低価格化を妨・げる大きな
要因となっていた。(Problems to be Solved by the Invention) However, in the conventional ultrasonic oscillator, in order to make the slope of the rise of the vibration amplitude of the ultrasonic transducer 7 variable, as shown in FIG. , a circuit consisting of a pulse wave generator 10 was used. These circuits are not only complex and require large amounts of space, but also require the use of expensive ICs such as analog multipliers. This has been a major factor hindering the miniaturization and cost reduction of ultrasonic oscillation for bonders.
本発明の目的は、簡単な構成の回路により超音波振動子
の振動振幅の立上りの傾きを任意に設定出来る様にした
超音波発振器の周波数制御方式を提供するものである。An object of the present invention is to provide a frequency control system for an ultrasonic oscillator that allows the slope of the rise of the vibration amplitude of an ultrasonic vibrator to be arbitrarily set using a circuit with a simple configuration.
(問題点を解決するための手段)
本発明の超音波発振器の周波数制御方式は、振動子の入
力電圧電流位相差の誤差を増幅する誤差増幅器を所定の
時定数を持った積分要素を含む増幅器とし1発振が停止
している状態では増幅器の出力を所定の初期値にリセッ
トし、発振を開始するとともに誤差増幅を開始するよう
にしたものである。(Means for Solving the Problems) The frequency control method of the ultrasonic oscillator of the present invention uses an error amplifier that amplifies the error in the input voltage and current phase difference of the transducer as an amplifier that includes an integral element with a predetermined time constant. When the first oscillation is stopped, the output of the amplifier is reset to a predetermined initial value, and the oscillation is started and error amplification is started.
(作用)
本発明においては、発振器出力周波数が所定の初期値よ
り発振を開始し、誤差増幅器の積分時定数にしたがった
傾きで出力周波数を位相差設定値で決まる値まで変化さ
せてその値に制御する。そのため、従来方式で、必要で
あった乗算器、積分器、パルス波発生器の回路なしでも
、超音波振動子の振動振幅の立上りの傾きを任意に設定
出来る。(Function) In the present invention, the oscillator output frequency starts oscillating from a predetermined initial value, and the output frequency is changed at a slope according to the integral time constant of the error amplifier to a value determined by the phase difference setting value, and then reaches that value. Control. Therefore, the slope of the rise of the vibration amplitude of the ultrasonic transducer can be arbitrarily set without the need for the multiplier, integrator, and pulse wave generator circuits required in the conventional method.
(実施例)
以下本発明を第1図および第2図に示す一実施例につい
て説明する。第1図および第2図において、第7図およ
び第10図と同一符号のものは、同一の構成要素を示す
ものであるからその説明を省略する1本発明では、第7
図における誤差増幅器5′を改造することにより従来の
乗算器8.積分器9、パルス波発生器10を不要として
いる。また第2図は本発明の第1図の誤差増W器5の具
体的な構成例である。(Example) The present invention will be described below with reference to an example shown in FIGS. 1 and 2. 1 and 2, the same reference numerals as in FIGS. 7 and 10 indicate the same components, so their explanation will be omitted.1 In the present invention, the seventh
By modifying the error amplifier 5' in the figure, the conventional multiplier 8. The integrator 9 and pulse wave generator 10 are not required. Further, FIG. 2 shows a specific example of the configuration of the error multiplier 5 shown in FIG. 1 according to the present invention.
本発明における誤差項@器5を比例積分増幅器としてい
る。比例積分増幅器5は、演算増幅器5Dと、リセット
スイッチ5T、抵抗器R,,R,。The error term @device 5 in the present invention is a proportional-integral amplifier. The proportional-integral amplifier 5 includes an operational amplifier 5D, a reset switch 5T, and resistors R,,R,.
R1、コンデンサCよりなっている。振動指令信号がO
FFの時、演算増幅器5Dは、リセットスイッチ5Tの
接点閉によりリセットされているので、加算器5Bの出
力信号は初期値設定器5Cにより設定された信号である
。したがって、第1図のVCOLは初期値設定器5Cで
設定された周波数で発振している。It consists of R1 and capacitor C. Vibration command signal is O
At the time of FF, the operational amplifier 5D is reset by closing the contact of the reset switch 5T, so the output signal of the adder 5B is the signal set by the initial value setter 5C. Therefore, the VCOL in FIG. 1 oscillates at the frequency set by the initial value setter 5C.
振動指令信号がONとなれば、リセットスイッチ5Tの
接点間により演算増幅器5Dを開放する。When the vibration command signal is turned ON, the operational amplifier 5D is opened between the contacts of the reset switch 5T.
演算増幅器5Dは、第1図の位相差設定器6の位相差設
定値と、電圧電流位相差との誤差によりVCOLの入力
信号を補正し周波数は位相差設定値で決まる最終値に制
御される。このとき、第3図に示すように、初期値設定
器5Cを調整して周波数の初期値を共振周波数から所定
の値だけずらしておけば、振動指令がONになると1周
波数は抵抗R7、コンデンサCより決まる積分の時定数
にしたがった傾きで、初期値から共振周波数まで変化す
る。従って振動振幅も図のように初期値から設定値まで
変化する。The operational amplifier 5D corrects the VCOL input signal based on the error between the phase difference setting value of the phase difference setting device 6 in FIG. 1 and the voltage-current phase difference, and the frequency is controlled to the final value determined by the phase difference setting value. . At this time, as shown in Fig. 3, if the initial value of the frequency is shifted by a predetermined value from the resonant frequency by adjusting the initial value setter 5C, when the vibration command is turned on, one frequency is set by the resistor R7, the capacitor It changes from the initial value to the resonance frequency with a slope according to the integral time constant determined by C. Therefore, the vibration amplitude also changes from the initial value to the set value as shown in the figure.
このときの各部信号の特性を示したものが第4図である
。各信号は出力・時間調整器2の出力信号の信号A、誤
差増幅器5の出力信号すなわち周波数信号の信号B、出
力増幅器3の出力電圧の信号E、及び超音波振動子7の
機械的振動@幅の信号F、振動子入力電圧電流位相差の
信号Gである。FIG. 4 shows the characteristics of each part signal at this time. Each signal is a signal A of the output signal of the output/time adjuster 2, a signal B of the output signal of the error amplifier 5, that is, a frequency signal, a signal E of the output voltage of the output amplifier 3, and a mechanical vibration of the ultrasonic transducer 7@ These are the width signal F, and the signal G of the vibrator input voltage/current phase difference.
出力増幅器3の出力電圧の信号Eは瞬時に立ち上るが、
信号Bの様に周波数がランプ状に変化するため、超音波
振動子の振動振幅の信号Fも、第4図のようにある傾き
を持って立ち上がる。振動振幅の立ち上がりの傾き、す
なわち比例積分増幅の積分時定数は、抵抗R7、コンデ
ンサCの値を変えることにより任意に設定できる。The output voltage signal E of the output amplifier 3 rises instantaneously,
Since the frequency changes in a ramp like signal B, the signal F of the vibration amplitude of the ultrasonic transducer also rises with a certain slope as shown in FIG. The slope of the rise of the vibration amplitude, that is, the integral time constant of proportional-integral amplification, can be arbitrarily set by changing the values of resistor R7 and capacitor C.
本発明の第2図と従来の第10図を比較してわかるよう
に1本発明による回路の改造および部品の追加は、非常
に少なく、S単車型で低価格の回路により、従来方式と
まったく同様の性能を有するものである。As can be seen by comparing Fig. 2 of the present invention with Fig. 10 of the conventional system, the modification of the circuit and the addition of parts according to the present invention are extremely small, and the circuit is of the S-series type and low-cost, making it completely different from the conventional system. It has similar performance.
第5図に示す本発明の他の実施例においては。In another embodiment of the invention shown in FIG.
可変抵抗器R1゜により積分増幅の時定数の調整を。Adjust the time constant of integral amplification using variable resistor R1°.
可変抵抗器R11により比例増幅のゲインの調整を行う
構成にしたものである。これにより調整時間の短縮がは
かれる。また第6図は、出力増幅器3に定電流制御器1
1を追加して振動振幅制御の精度向上をはかったもので
ある0以上、−例として、誤差増幅器5に比例積分増幅
器を用いた方式につき説明を行ったが、誤差増幅器5は
超音波振動子やICの種類に合わせ、積分増幅器でも同
様の効果を発揮することは明らかである。The configuration is such that the gain of proportional amplification is adjusted by a variable resistor R11. This reduces adjustment time. In addition, in FIG. 6, the constant current controller 1 is connected to the output amplifier 3.
1 is added to improve the accuracy of vibration amplitude control.As an example, we have explained a method using a proportional-integral amplifier as the error amplifier 5, but the error amplifier 5 is an ultrasonic transducer. It is clear that similar effects can be achieved with an integrating amplifier depending on the type of IC.
以上のように本発明によれば、誤差増幅器を所定の時定
数を持った比例積分増幅器としたことにより、アナログ
乗算器等の高価でまた複雑な回路を使用しなくても、f
M車な回路構成で、超音波振動子の振動振幅の立ち上が
りの傾きを、任意に設定できる。したがって、装置の小
型化、低価格化に効果が大きい、これは、ボンダ用超音
波発振器に適用した場合、そのボンディング時にそのI
Cにあった傾きでなだらかに、超音波振動子の振動振幅
を、増加させるという、高度な作業の普及につながり、
IC製造の分留まり及び、ICの信頼性の向上に大きな
効果がある。また、従来のものは、出力増幅器の出力レ
ベルを制御しているので、出力増幅器の損失が大きくな
るが、本発明のものは出力レベルが一定で、周波数を制
御しているため、出力増幅器の損失が小さくなる。As described above, according to the present invention, by using a proportional-integral amplifier with a predetermined time constant as the error amplifier, f
With the M-wheel circuit configuration, the slope of the rise of the vibration amplitude of the ultrasonic transducer can be set arbitrarily. Therefore, it is highly effective in reducing the size and cost of the device.When applied to an ultrasonic oscillator for a bonder, the I
This led to the spread of advanced work in which the vibration amplitude of the ultrasonic transducer was gradually increased with a slope that matched C.
This has a great effect on reducing IC manufacturing costs and improving IC reliability. In addition, the conventional system controls the output level of the output amplifier, which increases the loss of the output amplifier, but the system of the present invention has a constant output level and controls the frequency, so the loss of the output amplifier increases. Loss becomes smaller.
第1図は本発明の超音波発振器の周波数制御方式の一実
施例を示すブロック図、第2図は本発明に使用する誤差
増幅器の詳細回路図、第3図は本発明の詳細な説明する
ための超音波振動子の入力周波数と振動振幅との関係を
示す特性図、第4図は本発明の振動指令信号と振動振幅
の関係例を示す特性図、第5図は本発明の誤差増幅器の
他の実施例を示す詳細回路図、第6図は本発明の他の実
施例を示すブロック図、第7図は従来の超音波発振器を
示すブロック図、第8図は超音波振動子の特性図、第9
図は従来の振動指令信号と振動振幅の関係特性図、第1
0図は従来の誤差増幅器の回路図である。
l・・・電圧制御発振器(VCO)
2・・・出力・時間調整器 3・・・出力増幅器4・
・・位相差検出器 5・・・誤差増幅器5B・・・加
算器 5C・・・初期値設定器5D・・・比例積
分増幅器の演算増幅器5E・・・リセットスイッチ 6
・・・位相差設定器7・・・超音波振動子
代理人 弁理士 猪股祥晃(ほか1名)第1図
C
第2図
第3図
第5図
第7図
L
第8図
第9図
第10図FIG. 1 is a block diagram showing an embodiment of the frequency control method of an ultrasonic oscillator according to the present invention, FIG. 2 is a detailed circuit diagram of an error amplifier used in the present invention, and FIG. 3 is a detailed explanation of the present invention. FIG. 4 is a characteristic diagram showing an example of the relationship between the vibration command signal and vibration amplitude of the present invention, and FIG. 5 is a characteristic diagram showing the relationship between the input frequency and vibration amplitude of the ultrasonic transducer of the present invention. 6 is a block diagram showing another embodiment of the present invention, FIG. 7 is a block diagram showing a conventional ultrasonic oscillator, and FIG. 8 is a block diagram showing a conventional ultrasonic oscillator. Characteristic diagram, No. 9
The figure is a conventional characteristic diagram of the relationship between vibration command signal and vibration amplitude.
FIG. 0 is a circuit diagram of a conventional error amplifier. l... Voltage controlled oscillator (VCO) 2... Output/time adjuster 3... Output amplifier 4.
... Phase difference detector 5 ... Error amplifier 5B ... Adder 5C ... Initial value setter 5D ... Operational amplifier 5E of proportional-integral amplifier ... Reset switch 6
...Phase difference setting device 7...Ultrasonic transducer representative Patent attorney Yoshiaki Inomata (and one other person) Fig. 1C Fig. 2 Fig. 3 Fig. 5 Fig. 7 L Fig. 8 Fig. 9 Figure 10
Claims (2)
とし、入力信号の値により発振周波数が変化する電圧制
御発振器、この電圧制御発振器の出力信号を増幅して前
記超音波振動子に電力を供給する出力増幅器、この出力
増幅器の出力電圧電流の位相差を検出する位相差検出器
、この位相差検出器で検出した出力電圧電流の位相差と
位相差設定値との誤差を増幅する誤差増幅器よりなり、
前記誤差増幅器の出力信号を前記電圧制御発振器の入力
信号とすることによりフェーズロックドループを構成し
、前記出力電圧電流の位相差を位相差設定値に制御する
超音波発振器において、前記誤差増幅器を所定の時定数
を持った比例積分増幅器とし、発振が停止している状態
では比例積分増幅器の出力を所定の初期値にリセットし
、発振を開始するとともに誤差増幅を開始するようにし
たことを特徴とする超音波発振器の周波数制御方式。(1) A voltage-controlled oscillator whose load is an ultrasonic transducer whose power factor changes depending on the frequency, and whose oscillation frequency changes according to the value of the input signal; the output signal of this voltage-controlled oscillator is amplified to provide power to the ultrasonic transducer. an output amplifier that supplies the output voltage, a phase difference detector that detects the phase difference between the output voltage and current of this output amplifier, and an error that amplifies the error between the phase difference of the output voltage and current detected by this phase difference detector and the phase difference setting value. Consists of an amplifier,
In an ultrasonic oscillator that configures a phase-locked loop by using an output signal of the error amplifier as an input signal of the voltage controlled oscillator, and controls a phase difference of the output voltage and current to a set phase difference value, the error amplifier is configured to have a predetermined value. The proportional-integral amplifier has a time constant of frequency control method for ultrasonic oscillators.
特許請求の範囲第1項記載の超音波発振器の周波数制御
方式。(2) A frequency control system for an ultrasonic oscillator according to claim 1, characterized in that the error amplifier is an integrating amplifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62294227A JPH0653268B2 (en) | 1987-11-24 | 1987-11-24 | Ultrasonic oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62294227A JPH0653268B2 (en) | 1987-11-24 | 1987-11-24 | Ultrasonic oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01135569A true JPH01135569A (en) | 1989-05-29 |
JPH0653268B2 JPH0653268B2 (en) | 1994-07-20 |
Family
ID=17804986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62294227A Expired - Lifetime JPH0653268B2 (en) | 1987-11-24 | 1987-11-24 | Ultrasonic oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0653268B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005340780A (en) * | 2004-04-27 | 2005-12-08 | Matsushita Electric Ind Co Ltd | Electronic component mounting device and electronic component mounting method |
EP2145718A3 (en) * | 2008-07-16 | 2011-04-27 | Calsonic Kansei Corporation | Ultrasonic welder and joined body obtained by the welder |
CN109670139A (en) * | 2019-01-29 | 2019-04-23 | 杭州国彪超声设备有限公司 | A kind of determination method and system of ultrasonic wave truning fixture tracking frequency |
-
1987
- 1987-11-24 JP JP62294227A patent/JPH0653268B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005340780A (en) * | 2004-04-27 | 2005-12-08 | Matsushita Electric Ind Co Ltd | Electronic component mounting device and electronic component mounting method |
EP2145718A3 (en) * | 2008-07-16 | 2011-04-27 | Calsonic Kansei Corporation | Ultrasonic welder and joined body obtained by the welder |
CN109670139A (en) * | 2019-01-29 | 2019-04-23 | 杭州国彪超声设备有限公司 | A kind of determination method and system of ultrasonic wave truning fixture tracking frequency |
CN109670139B (en) * | 2019-01-29 | 2023-04-25 | 杭州国彪超声设备有限公司 | Method and system for determining tracking frequency of ultrasonic turning device |
Also Published As
Publication number | Publication date |
---|---|
JPH0653268B2 (en) | 1994-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2936232B2 (en) | Power supply for piezoelectric transducer actuation | |
JP4368219B2 (en) | Crystal oscillator, oscillation method and heater | |
US5376855A (en) | Driving device for ultrasonic wave motor | |
US4271371A (en) | Driving system for an ultrasonic piezoelectric transducer | |
US9654892B2 (en) | Condenser microphone | |
JPH04200282A (en) | Drive device for ultrasonic motor | |
JPH01135569A (en) | Frequency control system of ultrasonic wave oscillator | |
KR100228995B1 (en) | A clock generator designed for microprocessor and a pll circuit | |
JPH03239168A (en) | Ultrasonic motor drive system | |
KR100339564B1 (en) | Speed control method for switched reluctance motor | |
JP2002135051A (en) | Piezoelectric oscillator | |
JPH11159652A (en) | Control device and control circuit for solenoid proportional control valve | |
US4644188A (en) | Voltage comparison circuits for motion amplitude regulators or the like | |
JPH07303635A (en) | Drive device for ultrasonic oscillator | |
CN107683568A (en) | Low noise oscillator amplitude modulator | |
JPH07297641A (en) | Clock oscillator | |
RU2046539C1 (en) | Method of and device for controlling vibratory motor | |
JPS6021602A (en) | Variable frequency crystal oscillating circuit | |
JP2001025272A (en) | Drive controller for ultrasonic motor | |
JPH02197273A (en) | Driving device for ultrasonic motor | |
JPH03112379A (en) | Drive circuit for ultrasonic motor | |
JPH09148845A (en) | Oscillation circuit | |
JP3114954B2 (en) | Ultrasonic motor drive | |
JPH0638563A (en) | Motor-speed controller | |
JPH02151294A (en) | Motor driving device |