JPH0113532B2 - - Google Patents

Info

Publication number
JPH0113532B2
JPH0113532B2 JP56138254A JP13825481A JPH0113532B2 JP H0113532 B2 JPH0113532 B2 JP H0113532B2 JP 56138254 A JP56138254 A JP 56138254A JP 13825481 A JP13825481 A JP 13825481A JP H0113532 B2 JPH0113532 B2 JP H0113532B2
Authority
JP
Japan
Prior art keywords
transducer array
lens
propagation medium
scanning
acoustic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56138254A
Other languages
Japanese (ja)
Other versions
JPS5839943A (en
Inventor
Takatsune Inoe
Masanori Noguchi
Shinichi Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP56138254A priority Critical patent/JPS5839943A/en
Publication of JPS5839943A publication Critical patent/JPS5839943A/en
Publication of JPH0113532B2 publication Critical patent/JPH0113532B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、超音波を被検体に投射しその反射波
を受信し、その信号に基づいて被検体の断層像を
得るようにした超音波撮像装置において使用する
超音波探触子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic imaging device for use in an ultrasonic imaging device that projects ultrasonic waves onto a subject, receives the reflected waves, and obtains a tomographic image of the subject based on the signal. It concerns the probe.

従来より、複数個の短冊状振動子を直線状に配
列して振動子アレイを形成し、その中のn個の振
動子を1組として1個ずつずらせながら順次に走
査するいわゆるリニア走査を行なつて音波ビーム
を走査する方式の超音波探触子がある。このよう
なリニア走査型の探触子では走査線間隔は隣接す
る振動子の中心間隔に等しいから、走査線を密に
しようとすれば振動子を細くしなければならな
い。しかし、振動子を細くするとビームが広がる
から、鋭い指向性をもたせるためにはある程度の
幅を持たせる必要がある。従つて、走査線間隔は
ある限度以上には密にできないという欠点があつ
た。
Conventionally, so-called linear scanning is performed in which a plurality of strip-shaped transducers are arranged in a straight line to form a transducer array, and n transducers are sequentially scanned as a set while shifting one transducer one by one. There is an ultrasonic probe that scans a beam of sound waves. In such a linear scanning type probe, the scanning line spacing is equal to the center spacing of adjacent transducers, so in order to make the scanning lines denser, the transducers must be made thinner. However, if the transducer is made thinner, the beam will spread, so in order to have sharp directivity, it is necessary to have a certain width. Therefore, there is a drawback that the scanning line spacing cannot be made denser than a certain limit.

一方、n個の振動子を位相駆動し、この位相を
順次に変えることによりビームを扇状に振らせる
いわゆるセクタ走査によれば、振動子の中心間隔
に関係なく走査線間隔を密にすることはできる
が、このようなセクタ走査の走査線はリニア走査
の場合のように平行状とはならず扇状に広がるた
め深さが増すにつれて走査線間隔が広がるという
問題があつた。また、微小な振れ角のセクタ走査
とリニア走査とを組合せた走査によつて走査線間
隔を密にする試みもなされているが、走査線の粗
密ができると共に探触子の駆動回路等の複雑化を
招くという問題がある。
On the other hand, according to so-called sector scanning, in which n transducers are phase-driven and the beam is swung in a fan shape by sequentially changing the phase, it is not possible to make the scanning line spacing dense regardless of the center spacing of the transducers. However, the scanning lines of such sector scanning are not parallel as in the case of linear scanning, but are spread out in a fan shape, so there is a problem that the spacing between the scanning lines increases as the depth increases. Attempts have also been made to increase the spacing between scanning lines by combining sector scanning with a small deflection angle and linear scanning. There is a problem that it leads to

本発明の目的は、このような欠点を除き、振動
子の中心間隔に関係なく、簡単な構成により平行
状に発生せられる走査線を極めて密に発生させる
ことのできる超音波探触子を提供することにあ
る。
An object of the present invention is to eliminate such drawbacks and provide an ultrasonic probe that can generate parallel scanning lines extremely densely with a simple configuration, regardless of the center spacing of the transducers. It's about doing.

以下本発明を実施例につき図面を用いて詳しく
説明する。第1図は本発明に係る超音波探触子の
一実施例を示す要部構成図である。同図におい
て、1は短冊状の振動子を複数個平面状に配列し
てなる振動子アレイで、例えば、10個の振動子を
2.54mm間隔で配列したものである。2は振動子ア
レイの裏面に接着されたバツキング材、3は超音
波を伝播する伝播媒質4を収納する筐体、5は例
えばアクリルなどの材料より構成される音響レン
ズである。伝播媒質4としては伝播損失の少ない
水、ゲル等が使用され、また筐体3はアクリル樹
脂板等で形成される。筐体3は、その上端に振動
子アレイ1が取り付けられ、下端に到るに従つて
末広がりに(扇状に)形成されている。この筐体
3の下端部は、音響レンズ5の曲面51に密着す
るように形成されている。例えば、伝播媒質4が
水である場合は下端部をゴム等の薄膜で構成すれ
ばよい。筐体3及び音響レンズ5の奥行(厚さ)
方向は、第1図のロに示すようにほぼ一様に偏平
に形成されている。第3図は振動子アレイ1の駆
動回路を示す図であり、各振動子11,12,……
…,1nには図のように遅延回路311,312
………,31nがそれぞれ接続されている。これ
らの遅延回路には共通に送信回路32及び受信回
路33が接続され、振動子励振信号及び振動子か
らのエコー信号の送受が行なわれるようになつて
いる。これらの遅延回路は信号を定められた時間
だけ遅延するものであるが、その遅延時間は図示
しないコントローラによつて適宜に決定すること
ができるようになつている。適切な遅延時間の設
定により、音波ビームを焦点の前後の広範囲にわ
たつて細くする(いわゆる電子集束する)ことが
できる。次に、レンズ5の曲面の形状について詳
述する。今、伝播媒質4中の音速をV1、レンズ
5中の音速をV2(ただし、V2>V1)とし、超音
波ビームは説明を簡明にするために振動子アレイ
の中央(A点)から送出されるものとする。第2
図に示すように、A点から出て伝播媒質4を通過
した音波が、レンズ5を通つて下端面から直角に
送出されるためには、レンズ5の曲面51の形状
が次式を満たす楕円曲線となつている必要があ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below using examples and drawings. FIG. 1 is a diagram showing the configuration of essential parts of an embodiment of an ultrasonic probe according to the present invention. In the figure, reference numeral 1 denotes a transducer array consisting of a plurality of rectangular transducers arranged in a plane, for example, 10 transducers.
They are arranged at 2.54mm intervals. 2 is a backing material adhered to the back surface of the transducer array, 3 is a housing that houses a propagation medium 4 for propagating ultrasonic waves, and 5 is an acoustic lens made of a material such as acrylic. As the propagation medium 4, water, gel, or the like with low propagation loss is used, and the casing 3 is formed of an acrylic resin plate or the like. The casing 3 has the transducer array 1 attached to its upper end, and is formed in a fan-like shape toward the lower end. The lower end portion of this housing 3 is formed so as to be in close contact with the curved surface 51 of the acoustic lens 5. For example, if the propagation medium 4 is water, the lower end may be made of a thin film of rubber or the like. Depth (thickness) of the housing 3 and acoustic lens 5
The direction is substantially uniform and flat as shown in FIG. 1B. FIG. 3 is a diagram showing a drive circuit for the vibrator array 1, in which each vibrator 1 1 , 1 2 , . . .
..., 1n include delay circuits 31 1 , 31 2 ,
......, 31n are connected to each other. A transmitting circuit 32 and a receiving circuit 33 are commonly connected to these delay circuits, so that a vibrator excitation signal and an echo signal from the vibrator are transmitted and received. These delay circuits delay signals by a predetermined amount of time, and the delay time can be appropriately determined by a controller (not shown). By setting an appropriate delay time, the acoustic beam can be narrowed over a wide range before and after the focal point (so-called electronic focusing). Next, the shape of the curved surface of the lens 5 will be described in detail. Let us now assume that the sound velocity in the propagation medium 4 is V 1 and the sound velocity in the lens 5 is V 2 (V 2 > V 1 ), and the ultrasonic beam is set at the center of the transducer array (point A) for the sake of simplicity. ). Second
As shown in the figure, in order for the sound wave that has come out from point A and passed through the propagation medium 4 to be sent out at right angles from the lower end surface through the lens 5, the shape of the curved surface 51 of the lens 5 must be an ellipse that satisfies the following formula. It must be a curved line.

ここに、 fはこの曲線に係る焦点距離 V1は伝播媒質中の音速 V2は音響レンズ中の音速 (ただし、V2>V1) である。 Here, f is the focal length related to this curve, V 1 is the speed of sound in the propagation medium, and V 2 is the speed of sound in the acoustic lens (V 2 >V 1 ).

なお、楕円曲線に代えて円弧曲線としても実質
上は十分な効果が得られる。このような曲面によ
り音響レンズ5の下端面からは、実質上その面と
直角な方向にビームが投射されることとなる。
Note that a substantially sufficient effect can be obtained by using a circular arc curve instead of an elliptic curve. Due to such a curved surface, a beam is projected from the lower end surface of the acoustic lens 5 in a direction substantially perpendicular to that surface.

ところで、振動子アレイ1は、送出されるビー
ムを集束させるために遅延回路で適宜に時間遅延
して位相駆動されるが、このとき更にその遅延時
間を調節して位相駆動することにより第1図に示
す超音波ビームの振れ角θを任意に変化させて、
セクタ状の走査を行うことができる。このように
セクタ走査を行つたとき、音響レンズ5の下端面
では第1図イに示すように投射ビームが左または
右方向に移動するいわゆるリニア状の走査とな
る。なお、反射波についても投射波と同じ波路を
通る。
By the way, the transducer array 1 is phase-driven with an appropriate time delay in a delay circuit in order to focus the emitted beam. By arbitrarily changing the deflection angle θ of the ultrasonic beam shown in
Sector-like scanning can be performed. When sector scanning is performed in this manner, the projection beam moves leftward or rightward on the lower end surface of the acoustic lens 5, as shown in FIG. 1A, resulting in so-called linear scanning. Note that the reflected wave also passes through the same wave path as the projected wave.

以上の説明において第2図では音波ビームを1
本の線で示してあるが、実際には第1図に示すよ
うにある幅を持つている。
In the above explanation, in Fig. 2, the sound wave beam is
Although it is shown as a line in the book, it actually has a certain width as shown in Figure 1.

このようにして被検体中に投射される各音波ビ
ームの間隔すなわち走査線の間隔は伝播媒質4中
でのビームの偏れ角θに依存し、この偏れ角θは
遅延回路311,312,………,31nの遅延時
間によつて決定される。従つて、遅延時間を適宜
に制御することによりリニアに走査される走査線
間隔を任意に制御することができ、容易にその間
隔を密にすることができる。前記リニア走査線間
隔は、例えば1mm間隔とすることもできるし、ま
た場所によつて任意に粗密にすることもできる。
The interval between the respective acoustic beams projected into the subject in this way, that is, the interval between the scanning lines, depends on the deflection angle θ of the beam in the propagation medium 4, and this deflection angle θ is determined by the delay circuits 31 1 , 31 It is determined by the delay time of 2 , . . . , 31n. Therefore, by appropriately controlling the delay time, the interval between linearly scanned scanning lines can be arbitrarily controlled, and the interval can be easily made dense. The linear scanning line spacing can be set to, for example, 1 mm, or can be made arbitrarily coarse or dense depending on the location.

第4図は、本発明の他の実施例図で、第1図の
ものと異なるところは、凹型状の音響レンズ5に
代えて凸型状の音響レンズ5′を使用した点であ
る。この場合の音響レンズ5′は、そのレンズ中
での音速V2′が伝播媒質中の音速V1よりも大きい
ような物質で形成され、その凸状曲面51′が第
5図に示すようなx−y軸に対して次式を満足す
る双曲線に形成されたものである。
FIG. 4 shows another embodiment of the present invention, which differs from the one in FIG. 1 in that a convex acoustic lens 5' is used in place of the concave acoustic lens 5. In this case, the acoustic lens 5' is formed of a material such that the sound velocity V 2 ' in the lens is greater than the sound velocity V 1 in the propagation medium, and its convex curved surface 51' is as shown in FIG. It is formed into a hyperbola that satisfies the following equation with respect to the x-y axes.

なお、この場合も、双曲線に代えて次式で表わ
される曲率半径Rの円弧曲線で近似した曲面に形
成してもよい。
In this case as well, instead of the hyperbola, it may be formed into a curved surface approximated by a circular arc curve with a radius of curvature R expressed by the following equation.

R=f(V1/V2−1) このような音響レンズによつても第1図の探触
子と同じ目的を達成することができる。
R=f(V 1 /V 2 -1) The same purpose as the probe shown in FIG. 1 can also be achieved with such an acoustic lens.

なお、電子集束によれば走査方向におけるビー
ム幅を細く絞ることはできるが、厚み方向におけ
るビーム幅は絞れない。そこで厚み方向でビーム
を絞ることができるように、第6図に示すような
形状に音響レンズを形成してもよい。すなわち、
第6図のイは曲面51を厚み方向に凹型にしたも
の、第6図のロはレンズ5の下端面を凹型状にし
たもの、第6図のイは曲面51′を凸状にしたも
の、第6図のハはレンズ5′の下端面を凸状にし
たものである。あるいは、レンズ形状は変えない
で、振動子アレイ1を厚み方向に湾曲させビーム
を絞るように形成してもよい。また、振動子アレ
イ部と筐体3とを着脱自在の構成とし、セクタ走
査専用の探触子に容易に装着可能なようにしても
よい。
Note that although the beam width in the scanning direction can be narrowed down by electron focusing, the beam width in the thickness direction cannot be narrowed down. Therefore, an acoustic lens may be formed in the shape shown in FIG. 6 so that the beam can be focused in the thickness direction. That is,
A in FIG. 6 is a case in which the curved surface 51 is concave in the thickness direction, B in FIG. 6 is a case in which the lower end surface of the lens 5 is concave, and A in FIG. 6 is a case in which the curved surface 51' is convex. , C in FIG. 6 shows that the lower end surface of the lens 5' is made convex. Alternatively, the transducer array 1 may be curved in the thickness direction to narrow the beam without changing the lens shape. Further, the transducer array section and the housing 3 may be configured to be detachable so that they can be easily attached to a probe dedicated to sector scanning.

以上説明したように、本発明によれば、振動子
アレイから発射される音波ビームを伝播媒質を介
して後セクタ・リニア変換の可能な音響レンズを
通すように構成したため、位相駆動する振動子ア
レイの位相差を制御することにより振動子の配列
間隔を変えることなく走査線間隔を容易に密にす
ることのできる超音波探触子を実現することがで
きる。
As explained above, according to the present invention, since the acoustic beam emitted from the transducer array is configured to pass through the acoustic lens capable of post-sector linear conversion via the propagation medium, the transducer array is phase-driven. By controlling the phase difference, it is possible to realize an ultrasonic probe in which the scanning line spacing can be easily made dense without changing the arrangement spacing of the transducers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る超音波探触子の一実施例
を示す構成図、第2図は音響レンズ5の曲面を説
明するための図、第3図は振動子アレイの駆動回
路の要部構成図、第4図は本発明の他の実施例
図、第5図は音響レンズ5′の曲面を説明するた
めの図、第6図は音響レンズの他の実施例図であ
る。 1……振動子アレイ、3……筐体、4……伝播
媒質、5,5′……音響レンズ、51,51′……
曲面、6……被検体。
FIG. 1 is a configuration diagram showing an embodiment of the ultrasonic probe according to the present invention, FIG. 2 is a diagram for explaining the curved surface of the acoustic lens 5, and FIG. 3 is a diagram showing the main components of the drive circuit for the transducer array. 4 is a diagram showing another embodiment of the present invention, FIG. 5 is a diagram for explaining the curved surface of the acoustic lens 5', and FIG. 6 is a diagram showing another embodiment of the acoustic lens. 1... Vibrator array, 3... Housing, 4... Propagation medium, 5, 5'... Acoustic lens, 51, 51'...
Curved surface, 6...Object.

Claims (1)

【特許請求の範囲】 1 複数個の振動子を直線状に配列してなる振動
子アレイと、 超音波を伝播する伝播媒質を収納し、一端に前
記振動子アレイが接着されると共に、その一端か
ら他端へ向かつて末広がりに形成された筐体と、 この筐体の他端に接着されると共に前記伝播媒
質の音速よりも早い音速となるような材料が使用
され、前記振動子アレイから伝播媒質を経由して
くる音波ビームをすべて同一方向に向けるための
音響レンズ を具備し、振動子アレイの各振動子を適宜に位相
駆動し、伝播媒質中でセクタ状に走査される音波
ビームが音響レンズ中ではリニア状に走査される
ようにしたことを特徴とする超音波探触子。
[Scope of Claims] 1. A transducer array formed by arranging a plurality of transducers linearly, and a propagation medium for propagating ultrasonic waves, the transducer array is adhered to one end, and the transducer array is bonded to one end of the transducer array. A housing is formed to widen toward the other end, and a material is used that is bonded to the other end of the housing and has a sound velocity faster than the sound velocity of the propagation medium, and Equipped with an acoustic lens to direct all the sound wave beams passing through the medium in the same direction, each vibrator of the transducer array is driven with appropriate phase, so that the sound wave beam scanned in sectors in the propagation medium becomes acoustic. An ultrasonic probe characterized in that the lens is scanned linearly.
JP56138254A 1981-09-02 1981-09-02 Ultrasonic probe Granted JPS5839943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56138254A JPS5839943A (en) 1981-09-02 1981-09-02 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56138254A JPS5839943A (en) 1981-09-02 1981-09-02 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS5839943A JPS5839943A (en) 1983-03-08
JPH0113532B2 true JPH0113532B2 (en) 1989-03-07

Family

ID=15217650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56138254A Granted JPS5839943A (en) 1981-09-02 1981-09-02 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS5839943A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315159A (en) * 1986-07-07 1988-01-22 Hitachi Constr Mach Co Ltd Focas probe

Also Published As

Publication number Publication date
JPS5839943A (en) 1983-03-08

Similar Documents

Publication Publication Date Title
US4207901A (en) Ultrasound reflector
JPS624973B2 (en)
WO2004089220A1 (en) Ultrasonic probe and ultrasonic diagnosing device using it
JPS63177700A (en) Ultrasonic probe
JP2003009288A (en) Piezoelectric device, ultrasonic wave probe and ultrasonic wave image pickup device
JPS6284699A (en) Ultrasonic probe
JPS6052823B2 (en) Probe for ultrasound diagnostic equipment
JPH0113532B2 (en)
JPS649012B2 (en)
JP3003489B2 (en) Ultrasonic probe
JPS59174150A (en) Multi-focus ultrasonic diagnostic apparatus
JPS5935205Y2 (en) ultrasonic transducer
JPH0440099A (en) Ultrasonic probe
JPS6245690Y2 (en)
JPH08173432A (en) Electron scanning type ultrasonic probe
JPS5822043A (en) Ultrasonic probe
JPS5838541A (en) Ultrasonic wave transmitting and receiving apparatus
JPH0155411B2 (en)
JP2712065B2 (en) Ultrasonic probe
JPH0127740B2 (en)
JPS6238981B2 (en)
JPS6145455B2 (en)
JPS61292550A (en) Array type ultrasonic probe
JP2606017B2 (en) Ultrasonic probe
JPH06245931A (en) Ultrasonic probe