JPH01134871A - Fuel cell power generating device - Google Patents
Fuel cell power generating deviceInfo
- Publication number
- JPH01134871A JPH01134871A JP62293545A JP29354587A JPH01134871A JP H01134871 A JPH01134871 A JP H01134871A JP 62293545 A JP62293545 A JP 62293545A JP 29354587 A JP29354587 A JP 29354587A JP H01134871 A JPH01134871 A JP H01134871A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- fuel
- hydrogen
- fuel cell
- enriched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 117
- 239000007789 gas Substances 0.000 claims abstract description 98
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 82
- 239000001257 hydrogen Substances 0.000 claims abstract description 81
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 81
- 239000002737 fuel gas Substances 0.000 claims abstract description 37
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 210000005056 cell body Anatomy 0.000 claims abstract description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 79
- 239000012528 membrane Substances 0.000 claims description 50
- 210000004027 cell Anatomy 0.000 claims description 46
- 239000001569 carbon dioxide Substances 0.000 claims description 38
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 38
- 238000010248 power generation Methods 0.000 claims description 24
- 238000000926 separation method Methods 0.000 claims description 24
- 238000000629 steam reforming Methods 0.000 claims description 12
- 230000005611 electricity Effects 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 16
- 230000007423 decrease Effects 0.000 description 12
- 230000035699 permeability Effects 0.000 description 10
- 229910002090 carbon oxide Inorganic materials 0.000 description 9
- 239000011148 porous material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920000620 organic polymer Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- -1 naphtha Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は燃料電池発電装置に関し、特に燃料を水蒸気改
質によって変成ないし改質(スチームリフオーミング)
して得られた水素含有ガスと、酸化剤としての空気を燃
料電池に供給し、電気化学反応により電気エネルギーを
発生させ電力を得る燃料電池発電装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel cell power generation device, and in particular, to a fuel cell power generation device, in particular a method for converting or reforming fuel by steam reforming (steam reforming).
The present invention relates to a fuel cell power generation device that supplies the hydrogen-containing gas obtained by this process and air as an oxidizing agent to a fuel cell, generates electrical energy through an electrochemical reaction, and obtains electric power.
[従来の技術]
従来の燃料電池には、燃料、例えば天然ガス、メタノー
ル、プロパン、ナフサ、石炭ガスを水蒸気改質反応器(
リフオーマ)により変成ないし改質し、水素含有ガスと
し、更にシフトコンバーターでの一酸化炭素変成反応に
より水素濃度を高めた水素含有ガス(本明細書では転換
ガスという)を製造する燃料改質装置部と、この転換ガ
スを燃料極(水素極)供給ガスとし、空気を酸素極ガス
とし、電気化学反応により化学エネルギーを直接電気エ
ネルギーに変換する燃料電池本体部及び電気エネルギー
を電力に変換する電力変換装置部から構成されている。[Prior Art] Conventional fuel cells use fuel such as natural gas, methanol, propane, naphtha, or coal gas in a steam reforming reactor (
A fuel reformer unit that produces a hydrogen-containing gas (herein referred to as converted gas) that is converted or reformed by a shift converter to produce a hydrogen-containing gas, and the hydrogen concentration is increased by a carbon monoxide shift reaction in a shift converter. This converted gas is used as the fuel electrode (hydrogen electrode) supply gas, air is used as the oxygen electrode gas, and a fuel cell main body that directly converts chemical energy into electrical energy through an electrochemical reaction and a power converter that converts electrical energy into electricity It consists of a device section.
以上の構成において、燃料電池本体部に供給された転換
ガスの水素の70〜85容量%が発電に供され、残りは
利用されることなく、燃料電池本体部から、燃料極排ガ
スとして流出し1例えば水蒸気改質反応器(リフオーマ
)の燃料(熱エネルギー)として使用されている。In the above configuration, 70 to 85% by volume of hydrogen in the conversion gas supplied to the fuel cell main body is used for power generation, and the remainder is not used and flows out from the fuel cell main body as fuel electrode exhaust gas. For example, it is used as fuel (thermal energy) for a steam reforming reactor (reformer).
[発明が解決しようとする問題点]
このように従来の技術では、転換ガスの水素の70〜8
5容量%が発電に供されるにとどまり、供給された水素
の15〜30容量%は燃料極内での濃度分極及びガス流
速による制約から、それ以上に利用率を上げることは困
難で、発電に供することはできない。[Problems to be solved by the invention] As described above, in the conventional technology, 70 to 8
Only 5% by volume is used for power generation, and 15-30% by volume of the supplied hydrogen is limited by concentration polarization within the fuel electrode and gas flow rate, so it is difficult to increase the utilization rate further, and it is difficult to increase the utilization rate beyond that. It cannot be offered to
この欠点を改良する技術として、特開昭59−1844
68号では、その燃料極排ガスからアルカリ性溶剤を用
いて炭酸ガスを溶剤抽出除去し、回収水素含有ガスを再
度燃料として燃料電池本体に供給する方法を提案してい
る。As a technique to improve this drawback, Japanese Patent Application Laid-Open No. 59-1844
No. 68 proposes a method in which carbon dioxide is extracted and removed from the fuel electrode exhaust gas using an alkaline solvent, and the recovered hydrogen-containing gas is again supplied to the fuel cell body as fuel.
しかし、この溶剤による炭酸ガス除去装置は、溶剤によ
り炭酸ガスの吸収除去抽出装置、炭酸ガスを吸収した溶
剤の再生装置及び溶剤の循環装置が必要であり、装置が
複雑化する。これは発電装置として、必要な装置の安定
性、保守管理面の簡易化、負荷応答性に問題を生じるも
のである。However, this device for removing carbon dioxide gas using a solvent requires a device for absorbing and removing carbon dioxide gas using a solvent, a regeneration device for the solvent that has absorbed carbon dioxide gas, and a circulation device for the solvent, making the device complicated. This causes problems in the stability of the necessary equipment, simplification of maintenance management, and load response as a power generation device.
そこで、本発明の第1の目的は、燃料電池発電装置にお
いて、燃料極排ガスをその作用機構が圧力差のみである
簡易な膜分離装置により、炭酸ガス富化ガス流と水素富
化燃料ガス流との2つの流れに分離し、後者を再度燃料
極原料ガスとして使用することにより、燃料エネルギー
の発電への利用率を向上させることてあり、第2の目的
は、燃料電池本体内ての燃料水素濃度変化を減少させる
ことであり、また第3の目的は、燃料電池本体出口ガス
流速を高め燃料電池本体の温度分布等の均一化を高めら
れるようにすることである。Therefore, the first object of the present invention is to separate fuel electrode exhaust gas into a carbon dioxide-enriched gas stream and a hydrogen-enriched fuel gas stream using a simple membrane separation device whose working mechanism is only a pressure difference in a fuel cell power generation device. The second purpose is to improve the utilization rate of fuel energy for power generation by separating the latter into two flows and using the latter as fuel electrode raw material gas.The second purpose is to improve the utilization rate of fuel energy for power generation. The purpose is to reduce changes in hydrogen concentration, and the third purpose is to increase the gas flow rate at the exit of the fuel cell main body, thereby making it possible to improve the uniformity of temperature distribution, etc. in the fuel cell main body.
従来、膜分離装置では、燃料電池本体において燃料であ
る水素と主たる不純物である炭酸ガスは共に透過性の高
いガスで分離は困難とされていた。Conventionally, in a membrane separation device, it has been difficult to separate hydrogen, which is the fuel, and carbon dioxide, which is the main impurity, in the fuel cell body because both are highly permeable gases.
しかし、本発明者らは鋭意研究の結果、膜分離装置によ
り燃料極排ガスから、炭酸ガスを分離し、水素富化燃料
ガスとして水素含有ガスを回収、利用することが可能で
あることを見出したものである。即ち、膜分離装置から
得られる水素富化燃料ガスを転換ガスに混入することに
より、供給燃料ガスの水素濃度、従って燃料極への導入
水素分圧が低下しても、それによる発電効率の低下は微
かであり、水素富化燃料ガスの再利用による燃料利用率
の向上が、これを大幅に上回る結果、総合的には燃料電
池発電装置の効率が上昇することを見出し、これに基き
本発明を完成したものである。However, as a result of intensive research, the inventors of the present invention discovered that it is possible to separate carbon dioxide gas from fuel electrode exhaust gas using a membrane separation device, and recover and use the hydrogen-containing gas as hydrogen-enriched fuel gas. It is something. In other words, even if the hydrogen concentration of the supplied fuel gas and therefore the partial pressure of hydrogen introduced into the fuel electrode decreases by mixing the hydrogen-enriched fuel gas obtained from the membrane separation device with the converted gas, the power generation efficiency will decrease due to this. It was found that the improvement in fuel utilization rate by reusing hydrogen-enriched fuel gas greatly exceeds this, and as a result, the overall efficiency of the fuel cell power generation device increases.Based on this, the present invention was developed. This is the completed version.
[発明の構成]
上記目的を達成する本発明の燃料電池発電装置は、燃料
を水蒸気改質により変成して得られた水素含有ガスと空
気とを燃料電池に供給して電力を得る装置であって、燃
料電池本体から燃料極排ガスを回収して炭酸ガスを除去
し、再度燃料電池用燃料として燃料電池本体に供給する
燃料電池発電装置において、前記燃料電池本体からの燃
料極排ガスを膜分離装置に導入して炭酸ガス富化ガスと
水素富化燃料ガスとに分離し、該水素富化燃料ガスを転
換ガスに混合し、燃料電池用燃料として燃料電池本体に
供給することを特徴とする。[Structure of the Invention] The fuel cell power generation device of the present invention that achieves the above object is a device that obtains electric power by supplying hydrogen-containing gas obtained by converting fuel by steam reforming and air to a fuel cell. In the fuel cell power generation device, the fuel electrode exhaust gas is collected from the fuel cell main body, carbon dioxide gas is removed, and the fuel electrode exhaust gas is again supplied to the fuel cell main body as fuel for the fuel cell. The hydrogen-enriched fuel gas is introduced into a fuel cell to be separated into a carbon dioxide-enriched gas and a hydrogen-enriched fuel gas, and the hydrogen-enriched fuel gas is mixed with a converted gas and supplied to the fuel cell main body as a fuel for the fuel cell.
ここに、膜分離装置に使用するガス分離膜は、水素と炭
酸ガス分離性能が優れているものほどよい、この分離性
能を示す指標は、一般に高透過性ガスの透過係数と低透
過性ガスの透過係数の比で表される。この透過係数比が
大きい程好ましく、特殊なパラジウム合金膜のような水
素透過性金属薄膜では透過係数比は原理的には無限大と
なる。Here, the gas separation membrane used in the membrane separation device should have better hydrogen and carbon dioxide separation performance.In general, the index showing this separation performance is the permeability coefficient of high permeability gas and the permeability coefficient of low permeability gas. It is expressed as a ratio of transmission coefficients. The larger the permeability coefficient ratio is, the more preferable it is, and in principle, the permeability coefficient ratio is infinite in a hydrogen permeable metal thin film such as a special palladium alloy film.
一方、−船釣な膜では水素及び炭酸ガスは透過性の高い
ガスであり、その透過係数比は小さく、一般に1.4〜
5程度である。そのため水素及び炭酸ガスの分離法とし
ては膜分離法は用いられていない。本発明では燃料電池
発電装置の特徴から、これらの膜を用いることによって
燃料利用率の大巾な向上を見い出したものであり、その
透過係数比の下限は、約2であり、好ましくは3以上で
あればよく、例えば細孔径20〜2000人、好ましく
は細孔径40〜490人の細孔を有する無機多孔質膜、
具体的には多孔質ガラス膜、多孔質アルミナ膜、多孔質
ジルコニア膜、多孔質チタニア膜等、水素と炭酸ガスの
透過係数比2以上の有機高分子膜、具体的にはシリコー
ン薄膜、ポリイミド膜、セルロース・アセテート膜、ポ
リスルフォン膜等がある。その他、前述の水素透過性金
属薄膜等も使用できる。On the other hand, hydrogen and carbon dioxide gas are highly permeable gases in the membrane used for boat fishing, and their permeability coefficient ratio is small, generally 1.4~
It is about 5. Therefore, membrane separation is not used as a method for separating hydrogen and carbon dioxide gas. In the present invention, due to the characteristics of the fuel cell power generation device, we have found that the fuel utilization rate can be greatly improved by using these membranes, and the lower limit of the permeability coefficient ratio is about 2, preferably 3 or more. For example, an inorganic porous membrane having pores with a pore diameter of 20 to 2000 pores, preferably 40 to 490 pores;
Specifically, organic polymer membranes with a hydrogen to carbon dioxide permeability coefficient ratio of 2 or more, such as porous glass membranes, porous alumina membranes, porous zirconia membranes, porous titania membranes, etc., specifically silicone thin membranes, polyimide membranes. , cellulose acetate membrane, polysulfone membrane, etc. In addition, the aforementioned hydrogen-permeable metal thin film can also be used.
[作用]
本発明に係る燃料電池発電装置において、燃料電池本体
から発生する燃料極排ガスは、膜分離装置に導入され、
水素・炭酸ガス分離膜により、水素富化燃料ガスと炭酸
ガス富化ガスの2つの流れに分離される。水素富化燃料
ガスは、−酸化炭素変成器(シフトコンバーター)から
の転換ガスに混合されて、再度燃料極供給ガスとして循
環使用される。[Function] In the fuel cell power generation device according to the present invention, the fuel electrode exhaust gas generated from the fuel cell main body is introduced into the membrane separation device,
The hydrogen/carbon dioxide gas separation membrane separates the fuel gas into two streams: hydrogen-enriched fuel gas and carbon dioxide-enriched gas. The hydrogen-enriched fuel gas is mixed with the conversion gas from the carbon oxide shift converter (shift converter) and recycled as fuel electrode supply gas.
水素富化燃料ガスの水素ガス濃度は、適切な水素・炭酸
ガス分離膜を選択することにより、40〜フ0容量%程
度まで富化される。これを転換ガスに混入することによ
り、燃料ガス中の水素濃度は60〜75容量%程度に低
下するが、燃料電池本体内での燃料ガス中の水素分圧の
低下による発電効率の低下は第1図に示すように微かで
ある。よって、燃料極排ガスの水素富化利用による燃料
利用率の上昇は、発電効率の低下を大幅に上回り、燃料
利用率は凡そ90%まで達する。The hydrogen gas concentration of the hydrogen-enriched fuel gas can be enriched to about 40 to 0% by volume by selecting an appropriate hydrogen/carbon dioxide separation membrane. By mixing this into the conversion gas, the hydrogen concentration in the fuel gas decreases to about 60-75% by volume, but the decrease in power generation efficiency due to the decrease in the partial pressure of hydrogen in the fuel gas within the fuel cell body is minimal. As shown in Figure 1, it is faint. Therefore, the increase in fuel utilization rate due to the hydrogen-enriched use of fuel electrode exhaust gas greatly exceeds the decrease in power generation efficiency, and the fuel utilization rate reaches approximately 90%.
また、水素富化燃料ガスの水素濃度は40〜70容量%
で、その不純物である炭酸ガスが燃料極供給ガスの過剰
の水素ガス濃度を希釈し、燃料電池本体内の水素分圧の
分布がより均一化し、また、燃料電池本体出口ガス流速
を高めるため燃料電池発電装置の運転が安定する。In addition, the hydrogen concentration of hydrogen-enriched fuel gas is 40 to 70% by volume.
The impurity carbon dioxide dilutes the excess hydrogen gas concentration in the fuel electrode supply gas, making the distribution of hydrogen partial pressure within the fuel cell body more uniform, and increasing the gas flow rate at the outlet of the fuel cell body. The operation of the battery power generator becomes stable.
更に、炭酸ガス富化ガスは通常20〜30容量%の水素
と少量のメタン等を含むため、必要に応じて水蒸気改質
反応器の熱源として使用することが可能である。Furthermore, since the carbon dioxide enriched gas usually contains 20 to 30% by volume of hydrogen and a small amount of methane, it can be used as a heat source for a steam reforming reactor if necessary.
本発明において、燃料電池3として加圧型を用いるとき
は必ずしも必要てはないが、常圧型を用いるときは、燃
料電池の燃料極(水素極)と膜分離装置との間に、圧l
i1機を設けることが好ましい、即ち、燃料電池本体が
加圧型の場合には、燃料極排出ガス圧力を作用動力とし
て、膜分離により水素富化燃料ガスを回収し、その後、
加圧して燃料極供給ガスに混入する方法により、圧m機
の省略ないし小型化を計ることができる。尚、この場合
は、膜分離装置へのガス供給用圧縮機は不用とすること
も可能であるが、水素富化燃料ガス混入用圧縮機を設け
ることが好ましい。In the present invention, when using a pressurized type fuel cell 3, it is not necessary, but when using an ordinary pressure type, there is a pressure l
It is preferable to provide an i1 machine, that is, when the fuel cell main body is a pressurized type, the hydrogen-enriched fuel gas is recovered by membrane separation using the fuel electrode exhaust gas pressure as the working power, and then,
By pressurizing the gas and mixing it into the fuel electrode supply gas, it is possible to omit or downsize the pressure device. In this case, although it is possible to dispense with the compressor for supplying gas to the membrane separation device, it is preferable to provide a compressor for mixing hydrogen-enriched fuel gas.
尚1本発明に用いられる水蒸気改質反応器としては内熱
式リフオーマ−でも外熱式リフオーマ−てもよい、また
酸素極空気としては加圧空気を用いてもよい。更に本発
明の任意の系内において熱交換すること、あるいは公知
の燃料電池発電装置技術の応用も可能である(例えば特
公昭62−38828号参照)。Note that the steam reforming reactor used in the present invention may be an internally heated reformer or an externally heated reformer, and pressurized air may be used as the oxygen electrode air. Furthermore, it is also possible to perform heat exchange within any system of the present invention, or to apply known fuel cell power generation device technology (for example, see Japanese Patent Publication No. 38828/1983).
[実施例]
以下に第2図を参照して、本発明の実施例によって詳細
を説明するが1本発明はこれらの実施例に何ら限定され
るものではない。[Example] The present invention will be described in detail below with reference to FIG. 2 through examples, but the present invention is not limited to these examples in any way.
実施例 l
ナフサ等の燃料は水蒸気(スチーム)と共に供給管10
1を通り、水蒸気改質反応器スに導入され、水素を主成
分とする一酸化炭素、炭酸ガス、水及びメタン混合改質
ガスに改質され、導入管102で一酸化炭素変成器(シ
フトコンバーター)2に供給される。−酸化炭素変成器
2では一酸化炭素と水のシフト反応で、−酸化炭素濃度
1容量%以下に転化され、水素濃度が高められる。その
組成の例としては、ドライ基準で水素濃度約75容量%
、炭酸ガス濃度22〜25容量%、−酸化炭素濃度l容
量%以下、メタン濃度2容量%以下である。その転換ガ
スは、ライン103を経て、後述の膜分離装置7で水素
濃度を富化された水素富化燃料ガスと混合され、燃料電
池燃料導入ライン104を経て燃料電池本体3の燃料極
31に導入される。Embodiment l Fuel such as naphtha is supplied to the supply pipe 10 along with steam (steam).
1, the gas is introduced into a steam reforming reactor, where it is reformed into a mixed reformed gas of carbon monoxide, carbon dioxide gas, water, and methane containing hydrogen as its main component. converter) 2. - In the carbon oxide shift converter 2, the shift reaction between carbon monoxide and water converts the -carbon oxide concentration to 1% by volume or less, and increases the hydrogen concentration. An example of its composition is a hydrogen concentration of approximately 75% by volume on a dry basis.
, a carbon dioxide concentration of 22 to 25% by volume, a -carbon oxide concentration of 1% by volume or less, and a methane concentration of 2% by volume or less. The converted gas passes through a line 103 and is mixed with a hydrogen-enriched fuel gas whose hydrogen concentration has been enriched in a membrane separator 7, which will be described later, and passes through a fuel cell fuel introduction line 104 to the fuel electrode 31 of the fuel cell main body 3. be introduced.
その導入ガスの組成の例としては後記圧縮@5の圧力か
4.5Kg/cm″Gのときの例では、ドライ基準で水
素濃度71〜73容量%、炭酸ガス濃度25〜27容量
%、−酸化炭素濃度1容量%以下、メタン濃度2容量%
以下である。As an example of the composition of the introduced gas, in the case of compression@5 pressure or 4.5 kg/cm''G as described later, on a dry basis, the hydrogen concentration is 71 to 73% by volume, the carbon dioxide concentration is 25 to 27% by volume, - Carbon oxide concentration 1% by volume or less, methane concentration 2% by volume
It is as follows.
燃料電池本体3の空気極32には導入ライン109より
空気が導入され、この燃料電池本体3で燃料ガスと空気
が電気化学反応的に反応し、化学エネルギーが直接電気
エネルギーに変化され直流電流として発電される。この
直流電流は電力変換器4を経て電力として出力させる。Air is introduced into the air electrode 32 of the fuel cell main body 3 through the introduction line 109, and the fuel gas and air react electrochemically in the fuel cell main body 3, and the chemical energy is directly converted into electrical energy and is converted into direct current. Generated electricity. This DC current is outputted as electric power through a power converter 4.
燃料極排ガスは圧縮機5で圧力1〜50Kg/cm″G
5好ましくは1〜10Kg/crn’Gに昇圧された後
、熱交換器6で熱回収される。この燃料極排ガスのm成
の例は、前記圧1i1115の圧力が4.5Kg/cm
’Gのときの例ては、水素濃度33〜37容量%、炭酸
ガス濃度58〜65容量%、−酸化炭素濃度2容量%以
下、メタン濃度4容量%以下である。この圧縮された燃
料極排ガスは120℃以上の温度で、アルミナ製無機多
孔質膜であるセラベールアルミナ膜(細孔径40〜40
0人)を組の込んだ成分#装置7(透過係数比的4)に
おいて水素富化燃料ガス106と炭酸ガス富化ガス10
7の2つの流れに分離される。前記圧縮a5の圧力が4
.5Kg/ctfGのときの例ては、前者の組成は水素
濃度約45容量%、炭酸ガス濃度約54容量%、−酸化
炭素及びメタン濃度l容量%以下であり、水素富化燃料
ガスとしてライン106を経てライン103の転換ガス
と混合され燃料極供給ガスとして再利用される。同じく
後者の組成例は水素濃度約25容量%、炭酸ガス濃度7
0〜75容量%、−酸化炭素濃度2容量%以下、メタン
濃度1〜6容量%であり、ライン107を経てナフサ又
は灯油等の燃料油と混合され、水蒸気改質反応器1の熱
源として利用される。Fuel electrode exhaust gas is compressed by compressor 5 to a pressure of 1 to 50 Kg/cm''G.
5 After the pressure is increased to preferably 1 to 10 Kg/crn'G, the heat is recovered by a heat exchanger 6. An example of m composition of this fuel electrode exhaust gas is that the pressure 1i1115 is 4.5Kg/cm.
Examples of 'G' include hydrogen concentration of 33 to 37% by volume, carbon dioxide concentration of 58 to 65% by volume, -carbon oxide concentration of 2% by volume or less, and methane concentration of 4% by volume or less. This compressed fuel electrode exhaust gas is heated to a temperature of 120°C or higher using the Cerabel alumina membrane, an inorganic porous membrane made of alumina (pore size 40-40).
Hydrogen enriched fuel gas 106 and carbon dioxide enriched gas 10
7 into two streams. The pressure of the compression a5 is 4
.. For example, in the case of 5 Kg/ctfG, the former composition has a hydrogen concentration of about 45% by volume, a carbon dioxide concentration of about 54% by volume, and a carbon oxide and methane concentration of 1% by volume or less, and the line 106 is used as a hydrogen-enriched fuel gas. The gas is mixed with the conversion gas in line 103 and reused as fuel electrode supply gas. Similarly, the latter composition example has a hydrogen concentration of about 25% by volume and a carbon dioxide concentration of 7.
0 to 75% by volume, - carbon oxide concentration of 2% by volume or less, methane concentration of 1 to 6% by volume, mixed with fuel oil such as naphtha or kerosene through line 107, and used as a heat source for steam reforming reactor 1. be done.
この膜分離装置7を導入することにより通常の燃料電池
発電装置の燃料利用率80%に対し、燃料利用率が89
%と約lO%の向上を計ることができる。By introducing this membrane separation device 7, the fuel utilization rate has been reduced to 89% compared to the 80% of a normal fuel cell power generation device.
% and an improvement of approximately 10%.
一方、燃料電池本体での燃料ガス中の水素の分圧の低下
による出力電圧の低下は第1図に示すように水素分圧依
存性は少なく、水素分圧が75%から65%へ低下して
も出力電圧の影響は5mV以下である。即ち、この分圧
低下による出力電圧低下による効率の低下は1%以下で
、上記水素利用率の向上はこれを大幅に上回るものであ
る。On the other hand, as shown in Figure 1, the decrease in output voltage due to a decrease in the partial pressure of hydrogen in the fuel gas in the fuel cell body has little dependence on the hydrogen partial pressure, and the hydrogen partial pressure decreases from 75% to 65%. However, the effect on the output voltage is less than 5 mV. That is, the decrease in efficiency due to the decrease in output voltage due to this decrease in partial pressure is less than 1%, and the improvement in the hydrogen utilization rate greatly exceeds this.
また、アルミナ製無機多孔質膜の代わりにバイコールガ
ラス多孔質膜(細孔径40〜400人)を組み込んだ膜
分離装置を用いても同様の結果が得られた。Similar results were also obtained using a membrane separation device incorporating a Vycor glass porous membrane (pore diameter: 40 to 400 pores) instead of the alumina inorganic porous membrane.
実施例 2
実施例1のガス膜分離装置において、分離膜として、無
機多孔質の代わりに宇部興産社製ポリイミド系有機高分
子非多孔質膜を用いることのみ異ならせた。このポリイ
ミド系有機高分子非多孔質膜の水素/炭酸ガス透過係数
比は高く、膜分離装置供給ガスの圧力が約5 Kg/c
ゴGの場合、ライン106の水素富化燃料ガスの水素濃
度が約56容量%、ライン107の炭酸ガス富化ガスの
炭酸ガス濃度か約80容量%であり、燃料利用率は約9
2%と通常の燃料電池発電装置と比較し約15%の向上
を計ることかてきる。Example 2 The gas membrane separation device of Example 1 was changed only in that a polyimide-based organic polymer non-porous membrane manufactured by Ube Industries, Ltd. was used instead of an inorganic porous membrane as the separation membrane. This polyimide-based organic polymer non-porous membrane has a high hydrogen/carbon dioxide gas permeability coefficient ratio, and the pressure of the gas supplied to the membrane separator is approximately 5 Kg/c.
In the case of GoG, the hydrogen concentration of the hydrogen-enriched fuel gas in line 106 is about 56% by volume, the carbon dioxide concentration of the carbon dioxide-enriched gas in line 107 is about 80% by volume, and the fuel utilization rate is about 9%.
2%, which is an improvement of about 15% compared to a normal fuel cell power generation device.
実施例 3
実施例1のガス膜分離装置において、分離膜として、無
機多孔質の代わりに旭硝子社製シリコーン系有機高分子
膜を用いることのみ異ならせた。このシリコーン系有機
高分子膜の特徴は炭酸ガスの透過速度が水素の透過速度
より大きく、非透過ガスとして水素富化燃料ガスが回収
されるため分#膜での圧力損失がない点にある。この膜
を用いた膜分離装置では、膜分離装置供給ガスの圧力が
約3にg/cm″Gの場合、水素濃度約27%の燃料極
排ガスから、水素濃度約40容量%の水素富化燃料ガス
が回収でき、炭酸ガス濃度約75〜77容量%の炭酸ガ
ス富化ガスとして、炭酸ガスが除去でき、燃料電池発電
装置の総合水素利用率は約90%である。Example 3 The gas membrane separation device of Example 1 was changed only in that a silicone-based organic polymer membrane manufactured by Asahi Glass Co., Ltd. was used instead of an inorganic porous membrane as the separation membrane. The feature of this silicone-based organic polymer membrane is that the permeation rate of carbon dioxide gas is higher than the permeation rate of hydrogen, and since the hydrogen-enriched fuel gas is recovered as a non-permeable gas, there is no pressure loss in the membrane. In a membrane separator using this membrane, when the pressure of the gas supplied to the membrane separator is about 3 g/cm''G, hydrogen enrichment with a hydrogen concentration of about 40% by volume is obtained from the fuel electrode exhaust gas with a hydrogen concentration of about 27%. The fuel gas can be recovered and carbon dioxide can be removed as carbon dioxide enriched gas with a carbon dioxide concentration of about 75 to 77% by volume, and the overall hydrogen utilization rate of the fuel cell power generation device is about 90%.
[発明の効果]
本発明に係る燃料電池発電装置は、燃料極排ガスを膜分
離装置で水素富化燃料ガスと炭酸ガス富化ガスの2つの
流れに分離し、水素富化燃料ガスを再度燃料極供給ガス
に循環使用するので、燃料使用率が大幅に向上する。更
に適度の炭酸ガスの焉釈効果により燃料電池本体内のガ
ス流速の均−化及び温度分布の均一化をもたらし、燃料
電池運転の安定化に顕著な効果をもたらす。また、膜分
離装置の採用は、従来の炭酸ガス除去装置に比べ装置が
単純であるため、運転、保守管理が容易である利点かあ
る。[Effects of the Invention] The fuel cell power generation device according to the present invention separates fuel electrode exhaust gas into two flows, hydrogen-enriched fuel gas and carbon dioxide-enriched gas, using a membrane separation device, and reuses the hydrogen-enriched fuel gas as fuel. Since the gas is recycled to the electrode supply gas, the fuel usage rate is greatly improved. Furthermore, the moderate carbon dioxide gas dispersion effect equalizes the gas flow rate and temperature distribution within the fuel cell body, resulting in a remarkable effect on stabilizing the fuel cell operation. Furthermore, the use of a membrane separation device has the advantage of being simpler in operation and maintenance than conventional carbon dioxide removal devices.
第1図は燃料極における一定出力電流での水素分圧と出
力電圧の関係図、第2図は本発明の実施例を示すフロー
スキームである。
1・・・水蒸気改質反応器
2・・・−酸化炭素変成器
3・・・燃料電池本体
4・・・電力変換装置
5・・・圧縮機
6・・・熱交換器
7・・・膜分離装置
31・・・燃料極(水素極)
32・・・空気極(酸素極)
33・・・電解層
101−・・燃料又はそのライン
102・・・改質ガス又はそのライン
103・・・転換ガス又はそのライン
104・・・燃料極供給ガス又はそのライン105・・
・燃料極排ガス又はそのライン106・・・水素富化燃
料ガス又はそのライン107−・・炭酸ガス富化ガス又
はそのライン108・・・水蒸気改質反応器燃料
109・・・酸素極空気
111・・・燃料電池直流電流
112・・・出力電力FIG. 1 is a diagram showing the relationship between hydrogen partial pressure and output voltage at a constant output current at the fuel electrode, and FIG. 2 is a flow scheme showing an embodiment of the present invention. 1...Steam reforming reactor 2...-carbon oxide shift converter 3...Fuel cell main body 4...Power converter 5...Compressor 6...Heat exchanger 7...Membrane Separation device 31... fuel electrode (hydrogen electrode) 32... air electrode (oxygen electrode) 33... electrolytic layer 101... fuel or its line 102... reformed gas or its line 103... Conversion gas or its line 104...Fuel electrode supply gas or its line 105...
-Fuel electrode exhaust gas or its line 106...Hydrogen enriched fuel gas or its line 107-...Carbon dioxide enriched gas or its line 108...Steam reforming reactor fuel 109...Oxygen electrode air 111... ...Fuel cell DC current 112...Output power
Claims (1)
スと空気とを燃料電池に供給して電力を得る装置であっ
て、燃料電池本体から燃料極排ガスを回収して炭酸ガス
を除去し、再度燃料電池用燃料として燃料電池本体に供
給する燃料電池発電装置において、前記燃料電池本体か
らの燃料極排ガスを膜分離装置に導入して炭酸ガス富化
ガスと水素富化燃料ガスとに分離し、該水素富化燃料ガ
スを転換ガスに混合し、燃料電池用燃料として燃料電池
本体に供給することを特徴とする燃料電池発電装置。A device for generating electricity by supplying hydrogen-containing gas and air obtained by converting fuel by steam reforming to a fuel cell, which collects fuel electrode exhaust gas from the fuel cell body and removes carbon dioxide gas, In a fuel cell power generation device that supplies the fuel cell main body as fuel for the fuel cell again, the fuel electrode exhaust gas from the fuel cell main body is introduced into a membrane separation device and separated into carbon dioxide enriched gas and hydrogen enriched fuel gas. , A fuel cell power generation device characterized in that the hydrogen-enriched fuel gas is mixed with a conversion gas and supplied to the fuel cell main body as a fuel for the fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62293545A JPH01134871A (en) | 1987-11-19 | 1987-11-19 | Fuel cell power generating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62293545A JPH01134871A (en) | 1987-11-19 | 1987-11-19 | Fuel cell power generating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01134871A true JPH01134871A (en) | 1989-05-26 |
Family
ID=17796137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62293545A Pending JPH01134871A (en) | 1987-11-19 | 1987-11-19 | Fuel cell power generating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01134871A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010050102A (en) * | 2002-01-25 | 2010-03-04 | Ceramic Fuel Cells Ltd | Desulfurization method of fuel |
JP2012022968A (en) * | 2010-07-16 | 2012-02-02 | Mitsubishi Heavy Ind Ltd | Fuel cell power generation system |
-
1987
- 1987-11-19 JP JP62293545A patent/JPH01134871A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010050102A (en) * | 2002-01-25 | 2010-03-04 | Ceramic Fuel Cells Ltd | Desulfurization method of fuel |
JP2012022968A (en) * | 2010-07-16 | 2012-02-02 | Mitsubishi Heavy Ind Ltd | Fuel cell power generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2946939C (en) | Method and system for producing carbon dioxide, purified hydrogen and electricity from a reformed process gas feed | |
KR101939687B1 (en) | Reformer-electrolyzer-purifier(rep) assembly for hydrogen production, systems incorporating same and method of producing hydrogen | |
US8530101B2 (en) | Anode exhaust recycle system | |
JPH0364866A (en) | Fuel cell system | |
KR20180115746A (en) | SOEC-optimized carbon monoxide production process | |
JP5618680B2 (en) | Solid oxide fuel cell system | |
US3148089A (en) | Hydrogen-purification device for use in fuel cell | |
US20140311917A1 (en) | Hydrogen production process | |
JPH01134871A (en) | Fuel cell power generating device | |
JP4416503B2 (en) | Apparatus and method for supplying hydrogen to a fuel cell and use of the fuel cell for electrically driving a vehicle | |
JP2004171802A (en) | Fuel cell system | |
KR102116876B1 (en) | A fuel cell system using liquid fuel and hydrogen peroxide and a method for operating fuel cell | |
JPH0757758A (en) | Fuel cell system | |
WO2018101587A1 (en) | Fuel cell system using liquid fuel and hydrogen peroxide, and method for operating fuel cell | |
US20230357933A1 (en) | Method for the start-up of an electrolysis system | |
JP2001202982A (en) | Solid polymer fuel cell system | |
JP2001206702A (en) | Fuel reforming device and fuel cell system | |
JP2024147869A (en) | Fuel Cell Systems | |
JPH0367305B2 (en) | ||
JPH03236166A (en) | Power generating method for molten carbonate fuel cell | |
WO2023217704A1 (en) | Conversion of carbon dioxide and water to synthesis gas | |
JP2022147020A (en) | Hydrogen purification system and method for operating the same | |
JP2021147647A (en) | Hydrogen production system | |
JP2019149266A (en) | System for supplying hydrogen power | |
JP2005335962A (en) | Hydrogen production apparatus |