JPH0113486B2 - - Google Patents

Info

Publication number
JPH0113486B2
JPH0113486B2 JP54153589A JP15358979A JPH0113486B2 JP H0113486 B2 JPH0113486 B2 JP H0113486B2 JP 54153589 A JP54153589 A JP 54153589A JP 15358979 A JP15358979 A JP 15358979A JP H0113486 B2 JPH0113486 B2 JP H0113486B2
Authority
JP
Japan
Prior art keywords
methyl
pentene
copolymer
weight
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54153589A
Other languages
Japanese (ja)
Other versions
JPS5676416A (en
Inventor
Riichiro Nagano
Katsumi Funakoshi
Kunisuke Fukui
Takao Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP15358979A priority Critical patent/JPS5676416A/en
Publication of JPS5676416A publication Critical patent/JPS5676416A/en
Publication of JPH0113486B2 publication Critical patent/JPH0113486B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規な4−メチル−1−ペンテン共
重合体に関する。 結晶性の4−メチル−1−ペンテンの単独重合
体あるいは4−メチル−1−ペンテンと他のα−
オレフインとの共重合体は、一般に三塩化チタン
等のチタン触媒成分を用いる立体特異性触媒によ
つて製造されている。この触媒で製造される4−
メチル−1−ペンテンの単独又は共重合体は、常
温において多くの溶媒に不溶であり、したがつて
溶液型の塗料や接着剤として使用するには多くの
制約を受けねばならない。該単独重合体もしくは
共重合体の分子量分布は広く、またその融点も高
い。例えば重量平均分子量と数平均分子量の比
(以下、これを分子量分布という)は、多くの場
合6以上の値となる。また4−メチル−1−ペン
テンの重合単位がx重量%であるときの融点Tm
(℃)は、3x−60の値と大きく離れることはな
い。 前記単独または共重合体を押出機等で混練りす
る方法によつて、より低い分子量のものを作る方
法は知られているが、一般的な方法によれば分子
構造は本質的に原料のそれと変ることはなく、融
点や溶解性も分子量が極端に小さくならない限り
ほとんど変化しない。さらにこのような押出機を
使う方法において、少量のラジカル開始剤の存在
下に行う方法が米国特許第3144436号明細書に開
示されている。この明細書には、分解されて得ら
れる重合体はベース重合体と同じ溶解性を有して
いることが明記されており、4−メチル−1−ペ
ンテン重合体の分解例では、メルトインデツクス
が高々20〜25倍程度となるような例が示されてい
るにすぎない。事実この程度の分解では分子構造
や融点、溶解性などは、原料と分解生成物の間に
ほとんど差がないと言える。 本発明者らは4−メチル−1−ペンテンの重合
体もしくは共重合体の改質を研究している段階
で、ラジカル開始剤を用い、該重合体もしくは共
重合体の分子構造を変えるような分解を行つたと
きに、改良された性質の共重合体が得られること
を見出すに至つた。この共重合体は、 (A) 4−メチル−1−ペンテン重合単位と、少な
くとも一種の炭素数2乃至18の不飽和炭化水素
(4−メチル−1−ペンテンを除く)重合単位
とから成る4−メチル−1−ペンテンランダム
共重合体であつて、 (B) 4−メチル−1−ペンテン重合単位が70ない
し99.7重量%、及び前記不飽和炭化水素重合単
位が0.3ないし30重量%の範囲にあり、 (C) 示差走査熱量計に基づく融点が100ないし235
℃の範囲でしかも4−メチル−1−ペンテンの
重合単位がx重量%のときの該融点が(5x−
260)℃以下(x≧95の場合)又は(3x−70)
℃以下(x<95の場合)であり、 (D) 135℃、デカリン中で測定した極限粘度が0.2
ないし10.0dl/g、 (E) 重量平均分子量/数平均分子量が1.5ないし
3.8 で特徴づけられる。 本発明の共重合体は、4−メチル−1−ペンテ
ンの重合単位が70ないし99.7重量%、好ましくは
80ないし99.5重量%、その他の不飽和炭化水素の
重合単位が0.3ないし30重量%、好ましくは0.5な
いし20重量%からなる。本発明の共重合体は、後
でも説明するように4−メチル−1−ペンテンと
その他の不飽和炭化水素を直接共重合させたもの
のみを称するものではなく、4−メチル−1−ペ
ンテンの単独重合体もしくは共重合体を分解した
際に新たな不飽和炭化水素の共重合単位が生じて
いるときは、そのような不飽和炭化水素の共重合
体としてとらえている。 4−メチル−1−ペンテンを除く炭素数2ない
し18の不飽和炭化水素の重合単位としては、エチ
レン、プロピレン、1−ブテン、イソブテン、1
−ペンテン、2−メチル−1−ブテン、3−メチ
ル−1−ブテン、1−ヘキセン、3−メチル−1
−ペンテン、2−メチル−1−ペンテン、1−ヘ
プテン、1−オクテン、1−デセン、1−ドデセ
ン、1−テトラデセン、1−ヘキサデセン、1−
オクタデセン、ビニルシクロヘキサン、スチレ
ン、アルリルベンゼン、α−メチルスチレン、β
−メチルスチレン、ビニルトルエン、ビニルエチ
ルベンゼン、ビニルクメンなどの重合単位を挙げ
ることができる。これらの重合単位は、直接共重
合によつて生成させたものでもよく、あるいは分
解の際にもともとあつた重合単位の一部が切断さ
れて生じたものであつてもよく、さらには分解の
際にラジカル開始剤や溶媒などを使用したとき
に、ラジカル開始剤の分解物や溶媒が付加して生
じたものであつてもよい。これら4−メチル−1
−ペンテン以外の不飽和炭化水素の重合単位は2
種以上存在していてもよい。また微量であれば、
過酸化物の切片の付加した含酸素ビニルモノマー
単位、例えばビニルフエニルケトンやビニルフエ
ニルカルビノールなどの単位が存在してもよい。 なお本発明の共重合体中の4−メチル−1−ペ
ンテンの重合単位は、赤外線吸収スペクトルによ
つて求めることができる。例えば本発明に係る共
重合体の適当な溶剤に対する溶液および4−メチ
ル−1−ペンテン単独重合体の溶液の赤外線吸収
スペクトルをとり、イソブチル基に基づく1365cm
-1付近の極大吸収帯の吸光度の比率から共重合体
の4−メチル−1−ペンテン重合単位含有量を求
めることができる。 本発明の共重合体の示差走査熱量計(DSC)
に基づく融点は100ないし235℃の範囲にあつてし
かも4−メチル−1−ペンテンの重合単位がx重
量%のときの該融点は(5x−260)℃以下(x≧
95の場合)又は(3x−70)℃以下(x<95の場
合)である。なおここに融点は次のようにして測
定される。すなわち試料を示差走査熱量計(du
Pout990型)に仕込み、室温から20℃/minの速
度で昇温し、250℃に達した所で20℃/minの速
度で降温して一旦25℃まで下げた後、再び20℃/
minの速度で昇温し、このときの融解ピークから
融点を読み取る(多くの場合、複数の融解ピーク
が現われるので、この場合は高融点側の値を採用
した)。このような測定法に基づくとき、立体特
異性触媒を用いて重合して得た通常の4−メチル
−1−ペンテンの単独重合体の融点は240℃近辺
であり、また4−メチル−1−ペンテン共重合体
は、4−メチル−1−ペンテン含有量がx重量%
%のときに、融点が(3x−60)℃近辺を示すも
のが多い。したがつて本願発明の共重合体は、こ
のような立体特異性触媒を用いて得た4−メチル
−1−ペンテン共重合体と比較するときに、同一
の4−メチル−1−ペンテン重合単位含有量のも
ので比較すると、融点が相当に低いということが
できる。 本発明の共重合体は、フイルム、塗料、接着
剤、その他各種成形品として有用であるには、
135℃デカリン中で測定した極限粘度〔η〕が0.2
ないし10.0dl/g、好ましくは0.4ないし5.0dl/
gである。 本発明の共重合体は、分子量分布が狭く重量平
均分子量/数平均分子量(Mw/Mn)が1.5ない
し3.8、好ましくは1.7ないし3.0である。ここに
Mw/Mnは、ゲルバーミエーシヨンクロマトグ
ラフイー(GPC)により次のようにして求める。 すなわち、溶媒としてo−ジクロルベンゼンを
用い、溶媒100重量部に対し、ポリマー0.04g
(安定剤として2,6−ジ−tert−ブチル−p−
クレゾールをポリマー100重量部に対し0.05g添
加)を加え、溶液としたあと、1μのフイルター
を通してゴミなどの不溶物を除去する。その後、
カラム温度135℃、流速1.0ml/分に設定したGPC
測定機を用いて測定し、数値比はポリスチレンベ
ースで換算した。 このような分子量分布の狭い共重合体は特に室
温付近での溶解性を一層向上させるので好まし
い。一般の立体特異性触媒を用いて製造した4−
メチル−1−ペンテン単独重合体もしくは共重合
体は、Mw/Mnが多くの場合6を越えている。 本発明の共重合体は、多くの場合DSCに基づ
く結晶化度が3ないし33%の範囲にある。なお結
晶化度は次のような方法によつて測定した。 すなわち、前記したDSCによる融点測定時の
チヤートを用い、測定試料の融解面積(S)と、
対照サンプルであるインジウムの単位量当りの融
解エネルギー(Po)に相当する記録紙上の融解
面積(So)を比べる。インジウムのPoは既知量
であり、一方4−メチル−1−ペンテン重合体の
結晶部の単位量当りの融解エネルギー(P)も下
記のように既知であるので、測定試料の結晶化度
は次式により求まる。 結晶化度(%)=S/So×Po/P100 ここに、 Po:27Joul/g(at156±0.5℃) P:141.7Joul/g(F.C.Frank et al、
Philosophical Magazine、、200(1959)) そして多くの場合、溶媒に対する溶解性が良好
であり、25℃において100重量倍以下、好ましく
は30重量倍以下のシクロヘキセンに溶解する。こ
の場合、該共重合体を25℃でシクロヘキセンに加
え、25℃/hrの速度で70℃まで昇温させ、2時間
その温度に保持した後、再び25℃/hrの速度で25
℃まで冷却したときに目視により溶液が完全に透
明で透遊物が何ら存在しない状態を溶解状態と考
えている。 本発明の共重合体を得る方法の一つとして、立
体特異性触媒の存在下で、4−メチル−1−ペン
テン又は4−メチル−1−ペンテンとそれ以外の
炭素数2ないし18のα−オレフインとを重合もく
は共重合して得られる4−メチル−1−ペンテン
重合体もしくは共重合体を、有機過酸化物の存在
下、特定の条件下で分解する方法が挙げられる。
このような原料として4−メチル−1−ペンテン
単独重合体が好適であり、4−メチル−1−ペン
テン共重合体を原料とする場合にあつては、4−
メチル−1−ペンテン含有量が85重量%以上のも
のを用いるのが好ましい。分解を行う好適な方法
は、上記4−メチル−1−ペンテン重合体もしく
は共重合体を炭化水素溶媒中、該重合体もしくは
共重合体が溶解する条件下に有機過酸化物の共存
のもとに100ないし400℃の温度に維持する方法で
ある。炭化水素溶媒としては、ヘキサン、ヘプタ
ン、オクタン、デカン、ドデカン、テトラデカ
ン、灯油のような脂肪族炭化水素、メチルシクロ
ペンタン、シクロヘキサン、メチルシクロヘキサ
ン、シクロオクタン、シクロドデカンのような脂
環族炭化水素、ベンゼン、トルエン、キシレン、
エチルベンゼン、クメン、エチルトルエン、トリ
メチルベンゼン、シメン、ジイソプロピレンベン
ゼンなどの芳香族炭化水素などを例示することが
できる。これらの中ではとくにアルキル芳香族炭
化水素が好適である。このような溶媒を用いる場
合には、分解生成物中に溶媒が付加している場合
が多く、とくにアルキル芳香族炭化水素を用いた
場合にその量が多い。 溶媒の使用量は、原料の4−メチル−1−ペン
テン重合体もしくは共重合体100重量部に対し、
100ないし100000重量部、とくに300ないし10000
重量部とするのが好ましい。 上記方法で使用される有機過酸化物の代表的な
ものを列記すると、アルキルペルオキシド、アリ
ールペルオキシド、アシルペルオキシド、アロイ
ルペルオキシド、ケトンペルオキシド、ペルオキ
シカーボネート、ペルオキシカルボキシレート、
ヒドロペルオキシド等がある。アルキルペルオキ
シドとしては、ジイソプロピルペルオキシド、ジ
−tert−ブチルペルオキシド、2,5−ジメチル
−2,5−ジtert−ブチルペルオキシヘキシン−
3など、アリールペルオキシドとしては、ジクミ
ルペルオキシドなど、アシルペルオキシドとして
はジラウロイルペルオキシドなど、アロイルペル
オキシドとしては、ジベンゾイルペルオキシドな
ど、ケトンペルオキシドとしては、メチルエチル
ケトンヒドロペルオキシド、シクロヘキサノンペ
ルオキシドなど、ヒドロペルオキシドとしては、
tert−ブチルヒドロペルオキシド、クメンヒドロ
ペルオキシドなどを挙げることができる。これら
の中では、ジ−tert−ブチルペルオキシド、2,
5−ジメチル−2,5−ジtertブチルペルオキシ
−ヘキシン−3、ジクミルペルオキシド、ジベン
ゾイルペルオキシドなどが好ましい。 有機過酸化物の使用量は、原料重合体もしくは
共重合体100重量部に対し、5ないし1000重量部、
とくに10ないし600重量部とするのが好ましい。
分解の温度は100ないし250℃、とくに120ないし
200℃の範囲が好ましく、分解の時間は10分ない
し10時間程度が適当である。分解反応は回分式あ
るいは連続式で行うことができ、回分式にあつて
は、有機過酸化物や原料重合体もしくは共重合体
を逐次添加する方法を採用することができる。 分解の程度は、分解生成物の極限粘度〔η〕
が、原料の極限粘度〔η〕の0.1ないし50%、と
くに1ないし20%となるように行うのがよい。 このような分解方法を採用するとき、4−メチ
ル−1−ペンテン重合単位は、多くの場合原料に
比較して減少している。この原因として原料の主
鎖の切断のみならず、側鎖の切断やあるいは溶媒
および/または有機過酸化物に基づく炭化水素基
の付加などが生じているためである。 また分解反応の方法として、押出機等を用いて
溶融状態で分子鎖の両端が炭化水素から成つてい
るペルオキシドからなるラジカル開始剤と接触さ
せる方法も採用することができる。この場合、原
料ポリマー100重量部に対しラジカル開始剤を0.7
ないし10重量部、好ましくは1.0ないし5重量部
添加し、200ないし400℃で0.5分ないし10分間混
練すれば良い。 また、この溶融反応による分解の場合、使用す
るラジカル開始剤の種類により融点を低下させる
効率が異なる。従つて、この場合、ラジカル開始
剤としては有機過酸化物の中でも、アルキルペル
オキシド、アシルペルオキシド、アロイルペルオ
キシド、ケトンペルオキシド、ペルオキシカーボ
ネート、ペルオキシカルボキシレートが好まし
い。特に好ましいものはアルキルペルオキシド
で、分子量が200以上、更に好ましくは250以上で
芳香環を有せず、1分子中に2個のペルオキシド
基を有するものである。このようなペルオキシド
としては具体的には、2,5−ジメチル−2,5
−ジ−tert−ブチルペルオキシ−ヘキサン、2,
5−ジメチル−2,5−ジ−tert−ブチルペルオ
キシ−ヘキシン−3、α,α′−ジ−tert−ブチル
ペルオキシジイソプロピルベンゼンなどを挙げる
ことができる。 また、ポリマーに対するこれらのペルオキシド
の添加方法としては、予めパウダー状あるいはペ
レツト状のポリマーに混合しておく方法が好まし
い。押出機のシリンダーからメルト状のポリマー
に注入する方法も可能ではあるが、大抵の場合ペ
ルオキシドを溶剤に溶かす必要があるため、引火
爆発等の危険があり、またこの注入方式ではスク
リユーのデザインひいては押出機のデザインを大
幅に変更する必要性(例えば注入ゾーンからダイ
までの長さを長くしてやる必要があるため、スク
リユーのL/Dを大きくする)や、更にはメルト
状のポリマーへのペルオキシド(溶液)の分散を
短時間のうちに行わないと、部分的にポリマーの
分解がおこるため生成物が不均一になりやすいな
どの欠点がある。 本発明の共重合体は、各種溶剤に対する溶解性
が良好であり、従つてこのような溶剤に溶解した
溶液は、各種基材、例えば金属、ポリオレフイ
ン、ガラスなどの被覆剤、接着剤、塗料などに使
用することができる。このような目的に使用され
る溶剤としては、四塩化炭素、トリクレン、クロ
ロホルム、クロルベンゼンのようなハロゲン化炭
化水素、シクロヘキサン、シクロヘキセンのよう
な炭化水素などが好適である。 本発明の共重合体はまた通常の4−メチル−1
−ペンテン重合体または共重合体と同様に押出成
形、射出成形、中空成形、真空成形などによつて
フイルム、シート、中空ビン、管、各種成形品に
成形して利用することができる。 このような種々の用途において、安定剤、酸化
防止剤、紫外線吸収剤、顔料、染料、各種充填剤
などを適宜配合することができる。 本発明の共重合体はまた他の樹脂やゴムの改質
剤として多くの樹脂やゴムに配合して用いること
もできる。例えばポリエチレン、ポリプロピレ
ン、ポリ−1−ブテン、ポリ−4−メチル−1−
ペンテン、エチレン・プロピレン共重合体、エチ
レン・1−ブテン共重合体などとブレンドして使
用することができる。 通常の成形法によつて得られたこれらの組成物
のフイルム、シート、チユーブ、パイプ、中空ビ
ン等各種成形品の溶剤による塗装性、接着性、印
刷性等を改良することもできる。一般に同様の効
果が無定形の共重合ゴムをブレンドした場合も認
められるものの、この場合、ブレンド後の組成物
の機械的強度や硬度が低下するなどの欠点を有す
るが、本発明の共重合体をブレンドした組成物の
場合は、まだ結晶性を有しているためこのような
欠点がない。 実施例 1 4−メチル−1−ペンテンの単独重合体(〔η〕
9.38、融点237℃、分子量分布7.1、結晶化度35
%)50gをトルエン1に加え、系を窒素で置換
したのち、145℃に昇温しポリマーを完全に溶解
させた。しかるのちに、ジクミルペルオキシド
32.4g(100mlのトルエンに溶解)を4時間かけ
て系に供給し、更に撹拌を2時間続けた。反応混
合物を室温まで冷却したのち、多量のアセトンを
加え、ポリマーを完全に沈殿させ、ポリマーを
取した。ウエツトケーキを更にアセトンで繰返し
洗浄し、60℃で減圧乾燥することにより4−メチ
ル−1−ペンテン共重合体の精製物を得た。この
反応生成物の融点は216℃、〔η〕1.12、分子量分
布2.3、結晶化度21%であり、4−メチル−1−
ペンテン単位含量99.2wt%、アリルベンゼン単位
含量0.4wt%、プロピレン単位含量0.2wt%、ビニ
ルフエニルケトン単位微量という組成であつた。 参考例 1 実施例1で得られた4−メチル−1−ペンテン
共重合体2gを100mlのシクロヘキサンに70℃で
溶かし、室温まで冷却したところ、ポリマーは全
く析出・沈澱せず、完全に均一な透明溶液であつ
た。 参考例 2 参考例1で得られたポリマーの溶液を室温でア
ルミ板上に塗布したところ、室温で風乾するだけ
で均一で透明な薄膜が形成された。 実施例 2ないし10 ジクミルペルオキシドの使用量を表1に示した
ように増減し、かつ反応を表1に示した温度で行
う他は、実施例1と同様の方法で4−メチル−1
−ペンテン共重合体を合成した。精製ポリマーの
物性、組成について表1に示した。 また、参考例1および2と全く同じ方法でこれ
らの4−メチル−1−ペンテン共重合体の室温で
の溶解性、室温での成膜性について調べた。結果
を表1に示した。
The present invention relates to a novel 4-methyl-1-pentene copolymer. Crystalline 4-methyl-1-pentene homopolymer or 4-methyl-1-pentene and other α-
Copolymers with olefins are generally produced by stereospecific catalysts using titanium catalyst components such as titanium trichloride. 4- produced with this catalyst
Methyl-1-pentene homopolymers or copolymers are insoluble in many solvents at room temperature, and therefore must be subject to many restrictions when used as solution-type paints or adhesives. The homopolymer or copolymer has a wide molecular weight distribution and a high melting point. For example, the ratio of weight average molecular weight to number average molecular weight (hereinafter referred to as molecular weight distribution) is often a value of 6 or more. Also, the melting point Tm when the polymerized unit of 4-methyl-1-pentene is x% by weight
(°C) is not significantly different from the value of 3x−60. It is known to make products with lower molecular weights by kneading the above-mentioned homopolymers or copolymers using an extruder, etc., but according to the general method, the molecular structure is essentially the same as that of the raw material. It does not change, and its melting point and solubility hardly change unless the molecular weight becomes extremely small. Further, in a method using such an extruder, a method in which the extrusion is carried out in the presence of a small amount of a radical initiator is disclosed in US Pat. No. 3,144,436. This specification clearly states that the polymer obtained by decomposition has the same solubility as the base polymer, and in the example of decomposition of 4-methyl-1-pentene polymer, the melt index There are only examples where the amount is about 20 to 25 times higher. In fact, it can be said that at this level of decomposition, there is almost no difference in molecular structure, melting point, solubility, etc. between the raw material and the decomposition product. The present inventors were at the stage of researching the modification of a polymer or copolymer of 4-methyl-1-pentene, using a radical initiator to change the molecular structure of the polymer or copolymer. It has been found that when the decomposition is carried out, copolymers with improved properties are obtained. This copolymer consists of (A) a 4-methyl-1-pentene polymer unit and at least one unsaturated hydrocarbon polymer unit having 2 to 18 carbon atoms (excluding 4-methyl-1-pentene); - a methyl-1-pentene random copolymer, wherein (B) the 4-methyl-1-pentene polymerized unit is in the range of 70 to 99.7% by weight and the unsaturated hydrocarbon polymerized unit is in the range of 0.3 to 30% by weight; Yes, (C) melting point based on differential scanning calorimetry of 100 to 235
℃ range and when the polymerized unit of 4-methyl-1-pentene is x% by weight, the melting point is (5x-
260)℃ or less (if x≧95) or (3x−70)
(D) The intrinsic viscosity measured in decalin at 135°C is 0.2
10.0 dl/g, (E) Weight average molecular weight/number average molecular weight 1.5 or more
Characterized by 3.8. The copolymer of the present invention contains 70 to 99.7% by weight of 4-methyl-1-pentene polymerized units, preferably
80 to 99.5% by weight, and 0.3 to 30% by weight, preferably 0.5 to 20% by weight of polymerized units of other unsaturated hydrocarbons. As will be explained later, the copolymer of the present invention does not refer only to a direct copolymer of 4-methyl-1-pentene and other unsaturated hydrocarbons, but also to a copolymer of 4-methyl-1-pentene. When a homopolymer or copolymer is decomposed and new unsaturated hydrocarbon copolymer units are generated, it is considered to be a copolymer of such unsaturated hydrocarbons. Examples of polymerized units of unsaturated hydrocarbons having 2 to 18 carbon atoms other than 4-methyl-1-pentene include ethylene, propylene, 1-butene, isobutene,
-Pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, 3-methyl-1
-Pentene, 2-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-
Octadecene, vinylcyclohexane, styrene, allylbenzene, α-methylstyrene, β
- Polymerized units such as methylstyrene, vinyltoluene, vinylethylbenzene, vinylcumene, etc. may be mentioned. These polymerized units may be generated by direct copolymerization, or may be generated by cutting off a portion of the originally existing polymerized units during decomposition, or When a radical initiator, a solvent, or the like is used, it may be generated by adding a decomposition product of the radical initiator or a solvent. These 4-methyl-1
-Polymerized units of unsaturated hydrocarbons other than pentene are 2
There may be more than one species. Also, if the amount is small,
Oxygenated vinyl monomer units with attached peroxide fragments, such as units such as vinyl phenyl ketone and vinyl phenyl carbinol, may also be present. Note that the polymerized unit of 4-methyl-1-pentene in the copolymer of the present invention can be determined by infrared absorption spectrum. For example, the infrared absorption spectra of a solution of the copolymer according to the present invention in a suitable solvent and a solution of 4-methyl-1-pentene homopolymer are taken, and the 1365 cm
The content of 4-methyl-1-pentene polymer units in the copolymer can be determined from the ratio of the absorbance of the maximum absorption band around -1 . Differential scanning calorimetry (DSC) of the copolymer of the present invention
The melting point based on
95) or below (3x-70)°C (when x<95). Note that the melting point here is measured as follows. That is, the sample is subjected to differential scanning calorimetry (du
Pout990 type), the temperature was raised from room temperature at a rate of 20℃/min, and when it reached 250℃, the temperature was lowered at a rate of 20℃/min, once lowered to 25℃, and then again at a rate of 20℃/min.
The temperature is increased at a rate of min, and the melting point is read from the melting peak at this time (in many cases, multiple melting peaks appear, so in this case, the value on the higher melting point side was used). Based on this measurement method, the melting point of a normal homopolymer of 4-methyl-1-pentene obtained by polymerization using a stereospecific catalyst is around 240°C, and The pentene copolymer has a 4-methyl-1-pentene content of x% by weight.
%, many have melting points around (3x-60)°C. Therefore, when compared with a 4-methyl-1-pentene copolymer obtained using such a stereospecific catalyst, the copolymer of the present invention has the same 4-methyl-1-pentene polymer units. Comparing the contents, it can be said that the melting point is considerably low. In order for the copolymer of the present invention to be useful as films, paints, adhesives, and various other molded products,
Intrinsic viscosity [η] measured in decalin at 135℃ is 0.2
to 10.0dl/g, preferably 0.4 to 5.0dl/
It is g. The copolymer of the present invention has a narrow molecular weight distribution and a weight average molecular weight/number average molecular weight (Mw/Mn) of 1.5 to 3.8, preferably 1.7 to 3.0. Here
Mw/Mn is determined by gel vermiaction chromatography (GPC) as follows. That is, o-dichlorobenzene was used as a solvent, and 0.04 g of polymer was added to 100 parts by weight of the solvent.
(2,6-di-tert-butyl-p-
Add 0.05g of cresol per 100 parts by weight of the polymer to form a solution, and then pass through a 1μ filter to remove insoluble matter such as dust. after that,
GPC set at column temperature 135°C and flow rate 1.0ml/min
It was measured using a measuring device, and the numerical ratio was converted on a polystyrene basis. Such a copolymer with a narrow molecular weight distribution is preferable because it further improves solubility especially near room temperature. 4- produced using a general stereospecific catalyst
The methyl-1-pentene homopolymer or copolymer often has a Mw/Mn of more than 6. The copolymers of the present invention often have a crystallinity based on DSC in the range of 3 to 33%. The degree of crystallinity was measured by the following method. That is, using the chart for measuring the melting point by DSC described above, the melting area (S) of the measurement sample,
The melting area (So) on the recording paper corresponding to the melting energy (Po) per unit amount of indium, which is a control sample, is compared. Since the amount of Po in indium is known, and the melting energy (P) per unit amount of the crystal part of the 4-methyl-1-pentene polymer is also known as shown below, the crystallinity of the measurement sample is as follows. It is determined by the formula. Crystallinity (%) = S/So
Philosophical Magazine, 4 , 200 (1959)) In many cases, it has good solubility in solvents, and dissolves in cyclohexene at 25°C in an amount of 100 times or less by weight, preferably 30 times or less by weight. In this case, the copolymer was added to cyclohexene at 25°C, heated to 70°C at a rate of 25°C/hr, held at that temperature for 2 hours, and then heated again to 70°C at a rate of 25°C/hr.
A state in which the solution is completely transparent and no permeate is present when cooled to ℃ is considered to be a dissolved state. One method for obtaining the copolymer of the present invention is to prepare 4-methyl-1-pentene or 4-methyl-1-pentene and other α-C2 to C18 copolymers in the presence of a stereospecific catalyst. Examples include a method in which a 4-methyl-1-pentene polymer or copolymer obtained by polymerization or copolymerization with olefin is decomposed under specific conditions in the presence of an organic peroxide.
A 4-methyl-1-pentene homopolymer is suitable as such a raw material, and when a 4-methyl-1-pentene copolymer is used as a raw material, a 4-methyl-1-pentene homopolymer is suitable as a raw material.
It is preferable to use one having a methyl-1-pentene content of 85% by weight or more. A preferred method for decomposition is to prepare the 4-methyl-1-pentene polymer or copolymer in a hydrocarbon solvent in the presence of an organic peroxide under conditions such that the polymer or copolymer is dissolved. This method maintains the temperature between 100 and 400℃. Hydrocarbon solvents include hexane, heptane, octane, decane, dodecane, tetradecane, aliphatic hydrocarbons such as kerosene, alicyclic hydrocarbons such as methylcyclopentane, cyclohexane, methylcyclohexane, cyclooctane, cyclododecane, benzene, toluene, xylene,
Examples include aromatic hydrocarbons such as ethylbenzene, cumene, ethyltoluene, trimethylbenzene, cymene, and diisopropylenebenzene. Among these, alkyl aromatic hydrocarbons are particularly preferred. When such a solvent is used, the solvent is often added to the decomposition product, and the amount thereof is particularly large when an alkyl aromatic hydrocarbon is used. The amount of solvent used is based on 100 parts by weight of the raw material 4-methyl-1-pentene polymer or copolymer.
100 to 100,000 parts by weight, especially 300 to 10,000 parts by weight
Preferably, it is expressed in parts by weight. Typical organic peroxides used in the above method include alkyl peroxides, aryl peroxides, acyl peroxides, aroyl peroxides, ketone peroxides, peroxycarbonates, peroxycarboxylates,
There are hydroperoxides, etc. Examples of alkyl peroxides include diisopropyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di-tert-butylperoxyhexine-
Aryl peroxides include dicumyl peroxide, acyl peroxides include dilauroyl peroxide, aroyl peroxides include dibenzoyl peroxide, ketone peroxides include methyl ethyl ketone hydroperoxide and cyclohexanone peroxide, and hydroperoxides include ,
Examples include tert-butyl hydroperoxide and cumene hydroperoxide. Among these are di-tert-butyl peroxide, 2,
Preferred are 5-dimethyl-2,5-di-tert-butylperoxy-hexyne-3, dicumyl peroxide, dibenzoyl peroxide, and the like. The amount of organic peroxide used is 5 to 1000 parts by weight per 100 parts by weight of the raw material polymer or copolymer.
In particular, it is preferably 10 to 600 parts by weight.
The decomposition temperature is 100 to 250℃, especially 120 to 250℃.
The temperature range is preferably 200°C, and the appropriate decomposition time is about 10 minutes to 10 hours. The decomposition reaction can be carried out in a batch manner or in a continuous manner, and in the case of a batch method, a method of sequentially adding an organic peroxide and a raw material polymer or copolymer can be adopted. The degree of decomposition is determined by the intrinsic viscosity of the decomposition product [η]
is preferably 0.1 to 50%, particularly 1 to 20%, of the limiting viscosity [η] of the raw material. When employing such decomposition methods, the 4-methyl-1-pentene polymerized units are often reduced compared to the starting material. This is because not only the main chain of the raw material is cleaved, but also side chains are cleaved, and hydrocarbon groups are added based on the solvent and/or organic peroxide. Further, as a method for the decomposition reaction, a method can also be adopted in which the molecule is contacted in a molten state with a radical initiator consisting of a peroxide whose molecular chain has hydrocarbons at both ends using an extruder or the like. In this case, 0.7 parts of radical initiator is added to 100 parts by weight of raw material polymer.
It is sufficient to add from 1 to 10 parts by weight, preferably from 1.0 to 5 parts by weight, and knead at 200 to 400°C for 0.5 to 10 minutes. Furthermore, in the case of decomposition by this melt reaction, the efficiency of lowering the melting point varies depending on the type of radical initiator used. Therefore, in this case, among organic peroxides, alkyl peroxides, acyl peroxides, aroyl peroxides, ketone peroxides, peroxycarbonates, and peroxycarboxylates are preferable as the radical initiator. Particularly preferred are alkyl peroxides, which have a molecular weight of 200 or more, more preferably 250 or more, have no aromatic ring, and have two peroxide groups in one molecule. Specifically, such peroxides include 2,5-dimethyl-2,5
-di-tert-butylperoxy-hexane, 2,
Examples include 5-dimethyl-2,5-di-tert-butylperoxy-hexyne-3 and α,α'-di-tert-butylperoxydiisopropylbenzene. Furthermore, as a method for adding these peroxides to the polymer, it is preferable to mix them into a powder or pellet form of the polymer in advance. Although it is possible to inject the peroxide into the polymer melt through the cylinder of an extruder, in most cases it is necessary to dissolve the peroxide in a solvent, which poses a risk of ignition and explosion. The need for major changes in machine design (e.g. increasing the length from the injection zone to the die, thus increasing the screw L/D) and even the need to add peroxide to the polymer melt (solution ) is not dispersed within a short period of time, the polymer tends to partially decompose and the product tends to be non-uniform. The copolymer of the present invention has good solubility in various solvents, and therefore, solutions dissolved in such solvents can be used for various substrates, such as coatings for metals, polyolefins, glass, etc., adhesives, paints, etc. It can be used for. Suitable solvents used for this purpose include halogenated hydrocarbons such as carbon tetrachloride, trichloride, chloroform, and chlorobenzene, and hydrocarbons such as cyclohexane and cyclohexene. The copolymers of the present invention can also be used in conventional 4-methyl-1
- Like pentene polymers or copolymers, it can be used by forming into films, sheets, hollow bottles, tubes, and various molded products by extrusion molding, injection molding, blow molding, vacuum molding, etc. In these various uses, stabilizers, antioxidants, ultraviolet absorbers, pigments, dyes, various fillers, and the like can be blended as appropriate. The copolymer of the present invention can also be used as a modifier for other resins and rubbers by being blended with many resins and rubbers. For example, polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-
It can be used in a blend with pentene, ethylene/propylene copolymer, ethylene/1-butene copolymer, etc. It is also possible to improve the solvent paintability, adhesion, printability, etc. of various molded products such as films, sheets, tubes, pipes, and hollow bottles obtained from these compositions by conventional molding methods. Generally, similar effects are observed when amorphous copolymer rubbers are blended, but in this case, there are drawbacks such as a decrease in mechanical strength and hardness of the blended composition, but the copolymer of the present invention A blended composition does not have this drawback because it still has crystallinity. Example 1 Homopolymer of 4-methyl-1-pentene ([η]
9.38, melting point 237℃, molecular weight distribution 7.1, crystallinity 35
%) was added to toluene 1, the system was purged with nitrogen, and the temperature was raised to 145°C to completely dissolve the polymer. Later, dicumyl peroxide
32.4 g (dissolved in 100 ml of toluene) was fed to the system over 4 hours and stirring continued for an additional 2 hours. After the reaction mixture was cooled to room temperature, a large amount of acetone was added to completely precipitate the polymer, and the polymer was recovered. The wet cake was further washed repeatedly with acetone and dried under reduced pressure at 60°C to obtain a purified 4-methyl-1-pentene copolymer. The melting point of this reaction product was 216°C, [η] 1.12, molecular weight distribution 2.3, crystallinity 21%, and 4-methyl-1-
The composition had a pentene unit content of 99.2 wt%, an allylbenzene unit content of 0.4 wt%, a propylene unit content of 0.2 wt%, and a trace amount of vinyl phenyl ketone units. Reference Example 1 When 2 g of the 4-methyl-1-pentene copolymer obtained in Example 1 was dissolved in 100 ml of cyclohexane at 70°C and cooled to room temperature, the polymer did not precipitate or precipitate at all, and a completely uniform mixture was formed. It was a clear solution. Reference Example 2 When the solution of the polymer obtained in Reference Example 1 was applied on an aluminum plate at room temperature, a uniform and transparent thin film was formed simply by air drying at room temperature. Examples 2 to 10 4-Methyl-1
-A pentene copolymer was synthesized. Table 1 shows the physical properties and composition of the purified polymer. In addition, the solubility at room temperature and the film formability at room temperature of these 4-methyl-1-pentene copolymers were investigated in exactly the same manner as in Reference Examples 1 and 2. The results are shown in Table 1.

【表】 比較例 2 USP−3144436の記載の方法に従い、〔η〕3.6
の4−メチル−1−ペンテン単独重合体(融点
238℃、結晶化度36%、分子量分布7.2)100重量
部に対し、tert−ブチルヒドロペルオキシド0.08
部を加え、よく混合したあと300℃に設定した20
mmφ押出機(スクリユーL/D=28)により分解
を行つた。得られたポリマーの物性を表2に示し
た。また、参考例1および参考例2の方法に従
い、シクロヘキサンへの室温溶解性ならびに室温
成膜性について調べた結果を表2に示した。 比較例 3および4 通常のチタン系触媒により4−メチル−1−ペ
ンテンと1−デセンとの共重合体を合成した。こ
れらの物性を表2に示した。 また、これらの共重合体の室温溶解性、室温成
膜性についても表2に示した。 比較例 5 重合法によつて得られた〔η〕1.34の4−メチ
ル−1−ペンテン単独重合体(融点237℃、分子
量分布6.9、結晶化度36%)を、良溶媒としてト
リクレン、貧溶媒としてメタノールを用いる通常
の分別方法により、分子量の異なる6つのフラク
シヨンに分別した。これらの各フラクシヨンおよ
び原料重合体の物性と組成を表2に示した。また
参考例1および2の方法に従い、シクロヘキセン
への室温での溶解性と該溶液の室温成膜性につい
ても調べた。結果は表2に示したが、何れのフラ
クシヨンも室温ではシクロヘキセンに全くと言つ
てよいほど溶解しなかつた。また、フラクシヨン
のNo.1ないしNo.3は原料重合体に比べて融点が
下がつているが、これは単に低分子量化の効果に
すぎず、室温溶解性等に代表される特性は原重合
体と何ら変化していないことが明らかである。更
に、これらのフラクシヨンは分別により何れも分
子量分布が狭くなつているものの、この場合も単
に分子量分布が狭いだけでは室温溶解性等に代表
される特性の変化は起らないことも明らかであ
る。 これから、この全く新しい特性は、4−メチル
−1−ペンテン(共)重合体の分子構造を変える
ように変性を行うことにより生じる(1)4−メチル
−1−ペンテン単位の減少ならびに新しい重合単
位の生成と(2)コモノマーの含有量が比較的少ない
にもかかわらず通常の共重合では考えられない
程、大きく融点が低下していることならびに(3)分
子量分布の狭小化により発現されることが明らか
である。
[Table] Comparative Example 2 [η] 3.6 according to the method described in USP-3144436
4-methyl-1-pentene homopolymer (melting point
238℃, crystallinity 36%, molecular weight distribution 7.2) 0.08 tert-butyl hydroperoxide per 100 parts by weight
20 minutes at 300℃ after mixing well.
Decomposition was carried out using a mmφ extruder (screw L/D=28). Table 2 shows the physical properties of the obtained polymer. Further, according to the methods of Reference Examples 1 and 2, the room temperature solubility in cyclohexane and the room temperature film formability were investigated, and Table 2 shows the results. Comparative Examples 3 and 4 A copolymer of 4-methyl-1-pentene and 1-decene was synthesized using a common titanium-based catalyst. These physical properties are shown in Table 2. Table 2 also shows the room temperature solubility and room temperature film formability of these copolymers. Comparative Example 5 A 4-methyl-1-pentene homopolymer with [η] 1.34 (melting point 237°C, molecular weight distribution 6.9, crystallinity 36%) obtained by a polymerization method was treated with trichlene as a good solvent and as a poor solvent. It was fractionated into six fractions with different molecular weights by a conventional fractionation method using methanol as a solvent. Table 2 shows the physical properties and compositions of each of these fractions and raw material polymers. Further, according to the methods of Reference Examples 1 and 2, the solubility in cyclohexene at room temperature and the room temperature film forming properties of the solution were also investigated. The results are shown in Table 2, and none of the fractions was completely soluble in cyclohexene at room temperature. In addition, Fraction No. 1 to No. 3 have lower melting points than the raw material polymer, but this is simply an effect of lowering the molecular weight, and properties such as room temperature solubility are lower than the raw material weight. It is clear that nothing has changed since the merger. Furthermore, although the molecular weight distribution of these fractions has become narrower due to fractionation, it is clear that in this case as well, simply narrowing the molecular weight distribution does not cause changes in properties such as room temperature solubility. From now on, this completely new property is produced by modifying the 4-methyl-1-pentene (co)polymer to change its molecular structure (1) reduction of 4-methyl-1-pentene units and new polymerized units. (2) the melting point is lowered to an extent unimaginable in normal copolymerization despite the relatively low comonomer content, and (3) this is caused by a narrowing of the molecular weight distribution. is clear.

【表】 ×:全く溶解しない
実施例 11ないし14 反応溶媒として表3に掲げたものを用い、反応
を表3に示した温度で行う他は、実施例1と同様
の方法で反応を行つた。得られた4−メチル−1
−ペンテン共重合体の物性ならびに参考例1およ
び2と同様の方法で行つた室温溶解性、室温成膜
性の結果を表3に示した。 実施例 15ないし19 有機過酸化物として表4のものを用いる他は実
施例1と同様の方法で4−メチル−1−ペンテン
共重合体を合成した。得られたポリマーの物性を
表に示した。また、室温溶解性、室温成膜性の結
果を表4に示した。
[Table] ×: No dissolution at all Examples 11 to 14 The reaction was carried out in the same manner as in Example 1, except that the reaction solvent listed in Table 3 was used and the reaction was carried out at the temperature shown in Table 3. . The obtained 4-methyl-1
Table 3 shows the physical properties of the -pentene copolymer, as well as the results of room temperature solubility and room temperature film formability conducted in the same manner as in Reference Examples 1 and 2. Examples 15 to 19 4-methyl-1-pentene copolymers were synthesized in the same manner as in Example 1, except that the organic peroxides shown in Table 4 were used. The physical properties of the obtained polymer are shown in the table. Further, Table 4 shows the results of room temperature solubility and room temperature film formability.

【表】【table】

【表】 実施例 20ないし27 反応に用いる原料ポリマーとして表5に示した
4−メチル−1−ペンテン重合体もしくは共重合
体を用いる他は実施例1と同様にして各種4−メ
チル−1−ペンテン共重合体を合成した。これら
の物性を表5に示した。また参考例1ないし2と
同様の方法に従つて室温溶解性、室温成膜性を調
べた。その結果を表5に示した。
[Table] Examples 20 to 27 Various 4-methyl-1- A pentene copolymer was synthesized. These physical properties are shown in Table 5. In addition, room temperature solubility and room temperature film formability were examined in the same manner as in Reference Examples 1 and 2. The results are shown in Table 5.

【表】 実施例 28 実施例1で用いた4−メチル−1−ペンテン単
独重合体100重量部に対し、2,5−ジメチル2,
5−ジ−tert−ブチルペルオキシド−ヘキシン−
3、1重量部を加え、良く混合したのち、窒素雰
囲気下290℃に設定した20mmφの押出機(L/D
=28)にフイードする。得られたポリマーの
〔η〕は0.70、融点は220℃、分子量分布2.0、結
晶化度24%で、4−メチル−1−ペンテン単位の
含有量は99.1wt%であつた。更に参考例1に従つ
て、この生成物の室温溶解性を調べたところ、透
明な溶液が得られた。
[Table] Example 28 To 100 parts by weight of the 4-methyl-1-pentene homopolymer used in Example 1, 2,5-dimethyl2,
5-di-tert-butylperoxide-hexyne-
3. Add 1 part by weight and mix well, then transfer to a 20 mmφ extruder (L/D) set at 290°C under nitrogen atmosphere.
=28). The obtained polymer had a [η] of 0.70, a melting point of 220°C, a molecular weight distribution of 2.0, a crystallinity of 24%, and a content of 4-methyl-1-pentene units of 99.1% by weight. Further, when the solubility of this product at room temperature was examined according to Reference Example 1, a clear solution was obtained.

Claims (1)

【特許請求の範囲】 1 (A) 4−メチル−1−ペンテン重合単位と、
少なくとも一種の炭素数2乃至18の不飽和炭化
水素(4−メチル−1−ペンテンを除く)重合
単位とから成る4−メチル−1−ペンテンラン
ダム共重合体であつて、 (B) 4−メチル−1−ペンテン重合単位が70ない
し99.7重量%、及び前記不飽和炭化水素重合単
位が0.3ないし30重量%の範囲にあり、 (C) 示差走査熱量計に基づく融点が100ないし235
℃の範囲でしかも4−メチル−1−ペンテンの
重合単位がx重量%のときの該融点が(5x−
260)℃以下(x≧95の場合)又は(3x−70)
℃以下(x<95の場合)であり、 (D) 135℃、デカリン中で測定した極限粘度が0.2
ないし10.0dl/g、 (E) 重量平均分子量/数平均分子量が1.5ないし
3.8 で特徴づけられる4−メチル−1−ペンテン共重
合体。
[Claims] 1 (A) 4-methyl-1-pentene polymerized unit;
A 4-methyl-1-pentene random copolymer consisting of at least one unsaturated hydrocarbon (excluding 4-methyl-1-pentene) polymerized unit having 2 to 18 carbon atoms, (B) 4-methyl -1-pentene polymerized units range from 70 to 99.7% by weight and said unsaturated hydrocarbon polymerized units range from 0.3 to 30% by weight; (C) a melting point based on differential scanning calorimetry of 100 to 235;
℃ range and when the polymerized unit of 4-methyl-1-pentene is x% by weight, the melting point is (5x-
260)℃ or less (if x≧95) or (3x−70)
(D) The intrinsic viscosity measured in decalin at 135°C is 0.2
10.0 dl/g, (E) Weight average molecular weight/number average molecular weight 1.5 or more
3.8 A 4-methyl-1-pentene copolymer characterized by:
JP15358979A 1979-11-29 1979-11-29 4-methyl-1-pentene copolymer Granted JPS5676416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15358979A JPS5676416A (en) 1979-11-29 1979-11-29 4-methyl-1-pentene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15358979A JPS5676416A (en) 1979-11-29 1979-11-29 4-methyl-1-pentene copolymer

Publications (2)

Publication Number Publication Date
JPS5676416A JPS5676416A (en) 1981-06-24
JPH0113486B2 true JPH0113486B2 (en) 1989-03-07

Family

ID=15565786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15358979A Granted JPS5676416A (en) 1979-11-29 1979-11-29 4-methyl-1-pentene copolymer

Country Status (1)

Country Link
JP (1) JPS5676416A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723413B2 (en) * 1986-04-15 1995-03-15 三井石油化学工業株式会社 4-Methyl-1-pentene random copolymer and process for producing the same
CN102382224B (en) * 2004-06-10 2014-05-21 三井化学株式会社 Olefin-based polymers and uses thereof
KR20070047274A (en) * 2004-08-03 2007-05-04 미쓰이 가가쿠 가부시키가이샤 Poly-4-methyl-1-pentene resin composition, film, and mold for producing electronic component sealing body
JP5423968B2 (en) * 2010-01-08 2014-02-19 三井化学株式会社 Thermoplastic resin composition and molded article thereof
KR101312155B1 (en) * 2008-07-10 2013-09-26 미쓰이 가가쿠 가부시키가이샤 4-methyl-1-pentene polymer, 4-methyl-1-pentene polymer-containing resin composition, master batch thereof, and molded articles of same
US8765872B2 (en) * 2008-07-10 2014-07-01 Mitsui Chemicals, Inc. 4-methyl-1-pentene polymer, resin composition containing 4-methyl-1-pentene polymer, masterbatch thereof, and formed product thereof
US8633290B2 (en) 2008-07-15 2014-01-21 Mitsui Chemicals, Inc. Optical resin, optical resin composition, optical film, and film
JP5762303B2 (en) 2009-11-06 2015-08-12 三井化学株式会社 4-methyl-1-pentene / α-olefin copolymer, composition containing the copolymer, and 4-methyl-1-pentene copolymer composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457246A (en) * 1967-03-03 1969-07-22 Phillips Petroleum Co Copolymers of 4-methyl-1-pentene with lower 1-olefins
JPS5022077A (en) * 1973-06-26 1975-03-08
JPS53110085A (en) * 1977-03-08 1978-09-26 Mitsui Petrochemical Ind Resin coated electric wire and cable
JPS54139987A (en) * 1978-04-24 1979-10-30 Mitsui Petrochem Ind Ltd Preparation of 4-methyl-1-pentene copolymer composition
JPS55165908A (en) * 1979-06-12 1980-12-24 Mitsubishi Petrochem Co Ltd Propylene copolymer and preparation of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457246A (en) * 1967-03-03 1969-07-22 Phillips Petroleum Co Copolymers of 4-methyl-1-pentene with lower 1-olefins
JPS5022077A (en) * 1973-06-26 1975-03-08
JPS53110085A (en) * 1977-03-08 1978-09-26 Mitsui Petrochemical Ind Resin coated electric wire and cable
JPS54139987A (en) * 1978-04-24 1979-10-30 Mitsui Petrochem Ind Ltd Preparation of 4-methyl-1-pentene copolymer composition
JPS55165908A (en) * 1979-06-12 1980-12-24 Mitsubishi Petrochem Co Ltd Propylene copolymer and preparation of the same

Also Published As

Publication number Publication date
JPS5676416A (en) 1981-06-24

Similar Documents

Publication Publication Date Title
Saunders Organic polymer chemistry: an introduction to the organic chemistry of adhesives, fibres, paints, plastics, and rubbers
KR0145323B1 (en) Process for making a propylene polymer with free-end long chain branching and use thereof
EP1002809B1 (en) Propylene/ethylene random copolymer, molding material, and molded article
EP0074194B2 (en) Propylene-ethylene random copolymer, production process thereof, and film derived therefrom
US3177269A (en) Graft copolymers of polyolefins and acrylic and methacrylic acid and method of making the same
PT690891E (en) POLYMERIC COMPOSITIONS BASED ON HIGHLY PROCESSABLE LLDPE
FR2519007A1 (en) MODIFIED COPOLYMERS OF ETHYLENE AND AT LEAST ONE A-OLEFIN AND PROCESS FOR THEIR PREPARATION
US3985826A (en) Hydrogenated block copolymers of butadiene and isoprene
WO1990012057A1 (en) Syndiotactic polypropylene molding and method of producing the same
US5461113A (en) Propylene graft copolymers
US3299181A (en) Thermally modified polyethylene and other polymers and process for preparing the same
JPH0113486B2 (en)
JPS6121144A (en) Polypropylene sheet
JPS62121707A (en) Production of alpha-olefin random copolymer
CA2647562C (en) Functionalized polypropylene-based polymers
JPH0376325B2 (en)
US3435017A (en) Isotactic polymers of butene-1
US3923759A (en) Process for the preparation of isobutylene/beta-pinene copolymers
JP2818273B2 (en) Molding method for syndiotactic polypropylene
JP3984290B2 (en) Polypropylene polymer resins made from highly active catalysts having a wide heat-processed window and articles made therefrom
WO1993020133A2 (en) Polymeric stabilizers for polyolefins
JPS61243842A (en) Polypropylene composition
US3140277A (en) Four-component catalyst for polymerizing olefins containing a mixture of metals, a halogen, and amides
JPH0558020B2 (en)
US3632670A (en) Process for modifying polymers