JPH01134434A - Optical bistable element - Google Patents

Optical bistable element

Info

Publication number
JPH01134434A
JPH01134434A JP62292022A JP29202287A JPH01134434A JP H01134434 A JPH01134434 A JP H01134434A JP 62292022 A JP62292022 A JP 62292022A JP 29202287 A JP29202287 A JP 29202287A JP H01134434 A JPH01134434 A JP H01134434A
Authority
JP
Japan
Prior art keywords
superconductor
resistance
photodiode
optical
optical bistable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62292022A
Other languages
Japanese (ja)
Inventor
Masafumi Kiguchi
雅史 木口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62292022A priority Critical patent/JPH01134434A/en
Publication of JPH01134434A publication Critical patent/JPH01134434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To put a superlattice p-i-n photodiode (SEED) in faster operation by using a circuit or element which is constituted by using a DC current source as its power source, connecting the SEED and a superconductor thereto, and connecting a resistance in series with the superconductor. CONSTITUTION:This element consists of the SEED1 as the superlattice p-i-n photodiode with GaAs/GaAlAs superlattice structure in an (i) layer, Y-Ba-Cu-O superconductor 2, DC stabilized current source 3, and resistance 4. Therefore, the resistance and serial resistance in the normal conduction state of the superconductor are reduced. Consequently, the SEED1 is put in fast operation even with a low light input and the arithmetic speed and switching speed are increased even with low light input.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信、光コンピユータ分野に係り。[Detailed description of the invention] [Industrial application field] The present invention relates to the fields of optical communications and optical computers.

特に光スィッチや、光論理演算に好適な光双安定素子に
関する。
In particular, the present invention relates to optical bistable elements suitable for optical switches and optical logic operations.

〔従来の技術〕[Conventional technology]

従来を超格子を用いたフォトダイオードの光双安定動作
については、アプライド、フィジックス。
For information on optical bistable operation of photodiodes using conventional superlattices, see Applied Physics.

レター45.(1984年)第13頁から第15頁(A
ppl、 Phys、 Lett、 45 t PP、
 13 15)において論じられている。
Letter 45. (1984) pp. 13-15 (A
ppl, Phys, Lett, 45t PP,
13 15).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術はS elf −electro −op
tic −effect−device (以下5EE
Dと略す。)と命名されている。5EEDの動作速度は
RC時定数で決まり、弱い入射光で動作させるためには
、Rを大きくする必要があり、動作速度が遅くなってし
まうという問題があった。
The above conventional technology is self-electro-op.
tic-effect-device (hereinafter 5EE
Abbreviated as D. ) is named. The operating speed of the 5EED is determined by the RC time constant, and in order to operate with weak incident light, it is necessary to increase R, which poses a problem that the operating speed becomes slow.

本発明の目的は、5EEDをより高速動作させることに
ある。
An object of the present invention is to operate the 5EED at higher speed.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、電源に直流電流源を用い、これに超格子型
p−i−nフォトダイオード(S E E D)と、超
伝導体を並列接続し、更に超伝導体と直列に抵抗を接続
した回路或は素子を用いることにより達成される。
The above purpose uses a DC current source as a power source, connects a superlattice type pin photodiode (SEED) and a superconductor in parallel, and then connects a resistor in series with the superconductor. This can be achieved by using circuits or elements that

本発明の特徴は、i層に超格子構造を有するp −i 
−nフォトダイオードと超伝導体を並列に接続し、直流
定電流電源をこれに直列に接続し。
The feature of the present invention is that the i-layer has a superlattice structure.
-N photodiode and superconductor are connected in parallel, and a DC constant current power source is connected in series.

フォトダイオードに逆バイアスをかけた光双安定素子に
−ある。超伝導体には直列に抵抗を接続することが好ま
しい、超伝導体には温度制御器を設けることが好ましい
、超伝導体には電流値可変の定電流電源を含む回路を別
に接続することが好ましい。
This is an optical bistable device in which a photodiode is reverse biased. It is preferable to connect a resistor in series to the superconductor, it is preferable to provide a temperature controller to the superconductor, and it is preferable to separately connect a circuit including a constant current power supply with a variable current value to the superconductor. preferable.

5EEDのiWに空乏層が広がるためには、逆バイアス
をある電圧Vreach、例えば2v以上かけてやる必
要がある。これ以下の電圧では動作速度は非常に遅くな
るaIg≦工。のとき■r≧V reachとする為に
は超伝導体に直列に抵抗rを入れておくとよい。抵抗値
は、 IBr≧V reachとなる範囲でなるべく小さい方
が良い。
In order to spread the depletion layer in the iW of 5EED, it is necessary to apply a reverse bias of a certain voltage Vreach, for example, 2V or more. If the voltage is lower than this, the operating speed will be very slow. ■In order to satisfy r≧V reach, it is recommended to insert a resistor r in series with the superconductor. The resistance value is preferably as small as possible within the range of IBr≧V reach.

素子を設計するにあたり、vnは超伝導材料とその体積
を選ぶことにより所望の値を得ることができる。ICは
超伝導体の臨界電流密度Jcと断面積によるのでどちら
かで調整すればよい、°J0は温度により変化するので
、温度制御器により超伝導体の温度を制御すればJcを
うまく選ぶことができる。又、温度制御は安定動作のた
めにも有効である。更に、双安定の動作点を選ぶために
は、超伝導体に副回路で直流電流を流せばよい、電流バ
イアスをかけることにより、相転移をおこすIgを変化
庭せることができるため、このバイアス電流値を調節す
ることにより、双安定動作点を選ぶことができる。
When designing a device, a desired value of vn can be obtained by selecting the superconducting material and its volume. IC depends on the critical current density Jc and cross-sectional area of the superconductor, so you can adjust either of them. °J0 changes depending on the temperature, so if you control the temperature of the superconductor with a temperature controller, you can choose Jc well. Can be done. Temperature control is also effective for stable operation. Furthermore, in order to select the bistable operating point, it is sufficient to flow a direct current through the superconductor in a subcircuit.By applying a current bias, the Ig that causes the phase transition can be varied; By adjusting the current value, the bistable operating point can be selected.

〔作用〕[Effect]

定電流源出力を■。、5EEDの光電流をIPとすると
、超伝導体を流れる電流I8はI、=IO−IP となる、5EEDへの入射光強度が弱くTpが小さい時
、■8は大きくなり、Is>Ic(Icは超伝導体の臨
界電流)となるようにしておくと、この状態で超伝導体
は常伝導状態にあり両端に電圧vnを発生する。超伝導
体に直列に抵抗rを接続しておくと、5EEDの逆バイ
アス電圧はv r= v n+ I B rとなる。入
射光強度を増すと■2が増しI、が減少する。I8≦I
Cとなると超伝導体は超伝導状態に転移し、電圧降下は
無くなり、5EEDの逆バイアス電圧はvr=Igrと
なり急減する。vrが低くなると、光電変換効率は高く
なるため、益々IPが増加しI8が減少する。更にvl
が低いほど、5EEDの透過率は低くなる。この正帰還
のために入射光強度に対し透過光強度は双安定を示す。
■ Constant current source output. , If the photocurrent of 5EED is IP, then the current I8 flowing through the superconductor is I, =IO-IP.When the intensity of light incident on 5EED is weak and Tp is small, ■8 becomes large, and Is>Ic( Ic is the critical current of the superconductor), and in this state the superconductor is in a normal conduction state and generates a voltage vn at both ends. If a resistor r is connected in series with the superconductor, the reverse bias voltage of the 5EED becomes v r = v n + I B r. When the intensity of the incident light is increased, (2) increases and I decreases. I8≦I
At C, the superconductor transitions to a superconducting state, the voltage drop disappears, and the reverse bias voltage of the 5EED becomes vr=Igr and rapidly decreases. As vr decreases, photoelectric conversion efficiency increases, so IP increases and I8 decreases. Furthermore vl
The lower the 5EED, the lower the transmittance of the 5EED. Because of this positive feedback, the transmitted light intensity exhibits bistable property with respect to the incident light intensity.

微小電流変化により超伝導体は大きく抵抗値が変化し、
大きな電圧変化を得ることができる。よって超伝導体の
常伝導状態での抵抗やrを小さくすることができる。こ
のため、RC時定数は小さくなり、動作速度は速くなる
A superconductor's resistance value changes greatly due to a small change in current,
Large voltage changes can be obtained. Therefore, the resistance and r of the superconductor in the normal conduction state can be reduced. Therefore, the RC time constant becomes smaller and the operating speed becomes faster.

〔実施例〕〔Example〕

実施例1゜ 以下、本発明の一実施例を第1図により説明する。i層
にGaAs/GaAQAs超格子構造を有するp−1−
nフォトダイオードであるところの5EED1と、Y−
Ba−Cu−0系超伝導体2と、直流定電流源3と、抵
抗4とより成る。
Embodiment 1 Hereinafter, one embodiment of the present invention will be explained with reference to FIG. p-1- with GaAs/GaAQAs superlattice structure in i-layer
5EED1, which is an n photodiode, and Y-
It consists of a Ba-Cu-0 based superconductor 2, a DC constant current source 3, and a resistor 4.

5EED lは公知の方法(アプライド、フィジックス
、レター、44 (1984)pp、16−pp、18
に開示されている方法)にて作製した。
5EED l is a known method (Applied Physics Letters, 44 (1984) pp, 16-pp, 18
It was produced using the method disclosed in ).

超伝導体は、臨界温度が87にである。超伝導体は液体
窒素を用いたタライオスタット内に入れ1、温度コント
ローラにより80にとした。抵抗4は15Ωとし、定電
流源出力は150mAとした。
Superconductors have a critical temperature of 87°C. The superconductor was placed in a taliostat using liquid nitrogen, and the temperature was set to 80°C using a temperature controller. The resistance 4 was 15Ω, and the constant current source output was 150mA.

超伝導体が常伝導状態に転移したときの抵抗値は約35
0であった。第2図に入射光パワーPinと、透過光パ
ワーP outの特性を示す、入射光パワーPin=4
0μWを動作点として選ぶことにより良好な光双安定が
得られる。スイッチング特性は図3に示すように約1n
sを得る。従来法では、この光入力条件では約20μs
要していき、尚、光源には半導体レーザを用い、受光器
にはp−1−nフォトダイオードを用いている。
The resistance value when a superconductor transitions to a normal conduction state is approximately 35
It was 0. Figure 2 shows the characteristics of the incident light power Pin and the transmitted light power Pout, where the incident light power Pin=4
Good optical bistability can be obtained by selecting 0 μW as the operating point. The switching characteristics are approximately 1n as shown in Figure 3.
get s. In the conventional method, it takes about 20 μs under this optical input condition.
In short, a semiconductor laser is used as a light source, and a p-1-n photodiode is used as a light receiver.

実施例2゜ 実施例1と同様の系で、温度を85Kに設定した場合は
、第4図のようになる。このように温度により動作点を
変える事が可能である。
Example 2 In a system similar to Example 1, but with the temperature set at 85K, the result is as shown in FIG. 4. In this way, it is possible to change the operating point depending on the temperature.

実施例3゜ 本発明の別の実施例を第5図により説明する。Example 3゜ Another embodiment of the present invention will be described with reference to FIG.

超伝導体に、直流定電流源5を付加した以外は。Except that a DC constant current source 5 was added to the superconductor.

第1図と同じである。直流定電流源5の電流値を5μA
にしたときの特性を図6に示す、第2図と比較すると、
光双安定動作点が低入力側に変わっていることが解る。
Same as Figure 1. The current value of DC constant current source 5 is 5 μA.
Figure 6 shows the characteristics when
It can be seen that the optical bistable operating point has shifted to the low input side.

このように電流値を適当に選ぶことにより、双安定動作
点を所望の位置に設定することができる。又、温度制御
をしない場合等、動作点がドリフトする場合、この電流
値を制御することにより動作点を安定化させることがで
きるという効果がある。
By appropriately selecting the current value in this manner, the bistable operating point can be set at a desired position. Furthermore, when the operating point drifts, such as when temperature control is not performed, controlling this current value has the effect of stabilizing the operating point.

なお、上記実施例に用いる超伝導材料としては、一般式
が(REx−x2Mxa)Cu03−)’で表わされる
酸素欠損型ペロブスカイト構造や、K 2 NiF 4
型構造のものが利用できる。ここで、REはLa、Y、
Sr、Wb、Lu、Tm、Dy。
The superconducting materials used in the above examples include an oxygen-deficient perovskite structure whose general formula is (REx-x2Mxa)Cu03-)', and K 2 NiF 4
Type structures are available. Here, RE is La, Y,
Sr, Wb, Lu, Tm, Dy.

Sc、Ce、Pr、Nd、Sm、Eu、Gd。Sc, Ce, Pr, Nd, Sm, Eu, Gd.

Tb、l−1o、Er1等の元素あるいはそれらの任意
の組み合わせを1MはBa、Sr、Ca、に等の元素あ
るいはそれらの任意の組み合わせを表わす。
1M represents elements such as Tb, l-1o, Er1, etc. or any combination thereof; 1M represents elements such as Ba, Sr, Ca, etc., or any combination thereof;

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低い光入力でもSET’:Dを高速動
作させることができるので、低光入力でも演算速度、ス
イッチング速度が上がるという効果がある。更に、温度
やバイアス電流により動作速度を変えることなく動作点
を変化させることができるので、システムへの適用範囲
が広がる。
According to the present invention, since SET':D can be operated at high speed even with a low optical input, there is an effect that the calculation speed and switching speed are increased even with a low optical input. Furthermore, since the operating point can be changed depending on temperature or bias current without changing the operating speed, the range of application to the system is expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路構成図、第2図は第1
図の構成の素子の温度80にでの入射光パワーと透過光
パワーのヒステリシス特性曲線図、第3図はその動作特
性、第4図は第1図の構成の素子の温度86にでの入射
光パワーと透過光パワーのヒステリシス特性曲線図、第
5図は本発明の一実施例の回路構成図、第6図はそのヒ
ステリシス特性曲線である。 1・・・5EED、2・・・超伝導体、3・・・直流定
電流源、4・・・抵抗、5・・・直流定電流源。 ′!J20 入身寸九量  FcrL(μW) 第3図 葉41 入身丁九]1  とin  (μW) 第を図 入射先+ F(ス(μWジ
FIG. 1 is a circuit diagram of one embodiment of the present invention, and FIG.
A hysteresis characteristic curve diagram of the incident optical power and transmitted optical power of the element with the configuration shown in the figure at a temperature of 80 degrees, Figure 3 shows its operating characteristics, and Figure 4 shows the element with the configuration shown in Figure 1 at an incident temperature of 86 degrees. FIG. 5 is a circuit configuration diagram of an embodiment of the present invention, and FIG. 6 is a hysteresis characteristic curve of the optical power and transmitted light power. 1...5EED, 2...Superconductor, 3...DC constant current source, 4...Resistor, 5...DC constant current source. ′! J20 Input dimension 9 quantity FcrL (μW) Fig. 3 leaf 41 Input dimension 9] 1 and in (μW) No.

Claims (1)

【特許請求の範囲】 1、i層に超格子構造を有するp−i−nフォトダイオ
ードと超伝導体を並列に接続し、直流定電流電源をこれ
に直列に接続し、フォトダイオードに逆バイアスをかけ
たことを特徴とする光双安定素子。 2、超伝導体と直列に抵抗を接続したことを特徴とする
特許請求の範囲第1項記載の光双安定素子。 3、超伝導体に温度制御器を設けたことを特徴とする特
許請求の範囲第1項または第2項記載の光双安定素子。 4、超伝導体に電流値可変の定電流電源を含む回路を別
に接続したことを特徴とする特許請求の範囲第1項〜第
3項のいずれかに記載の光双安定素子。
[Claims] 1. A pin photodiode having a superlattice structure in the i-layer and a superconductor are connected in parallel, a DC constant current power source is connected in series, and the photodiode is reverse biased. An optical bistable element characterized by multiplication. 2. The optical bistable device according to claim 1, characterized in that a resistor is connected in series with the superconductor. 3. The optical bistable device according to claim 1 or 2, characterized in that the superconductor is provided with a temperature controller. 4. The optical bistable device according to any one of claims 1 to 3, characterized in that a circuit including a constant current power supply with a variable current value is separately connected to the superconductor.
JP62292022A 1987-11-20 1987-11-20 Optical bistable element Pending JPH01134434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292022A JPH01134434A (en) 1987-11-20 1987-11-20 Optical bistable element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292022A JPH01134434A (en) 1987-11-20 1987-11-20 Optical bistable element

Publications (1)

Publication Number Publication Date
JPH01134434A true JPH01134434A (en) 1989-05-26

Family

ID=17776520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292022A Pending JPH01134434A (en) 1987-11-20 1987-11-20 Optical bistable element

Country Status (1)

Country Link
JP (1) JPH01134434A (en)

Similar Documents

Publication Publication Date Title
US5952683A (en) Functional semiconductor element with avalanche multiplication
JPH01134434A (en) Optical bistable element
Grave et al. A Monolithic Integration of a Resonant Tunneling Diode and a Quantum Well Semiconductor Laser
US5663572A (en) Optical functional semiconductor element
US4459495A (en) Josephson current regulator
JP2906713B2 (en) Method for obtaining multiple stability of optical element
KR100588612B1 (en) Tunneling diode logic ic using monostable bistable transition logic element with a cml input gate
JP3198169B2 (en) Light unstable device
JP2797512B2 (en) Optical multistable element
JPS63124584A (en) Photo transistor
Wang et al. A ZnSe/ZnCdSe quantum well symmetric self-electro-optic effect device operating in the blue-green region
JP3145138B2 (en) All-optical optical nonlinear element
JP2749744B2 (en) Semiconductor optical differentiator
WO2023119142A1 (en) Superconducting bipolar thermoelectric memory and method for writing a superconducting bipolar thermoelectric memory
Forsmann et al. Thermo-optical SEED devices: External control of nonlinearity, bistability and switching behaviour
Terzioglu et al. Margins and yield in superconducting circuits with gain
Kurata et al. A novel optical bistability device consisting of resonant tunneling diode and quantum stark modulator: Experimental demonstration
Bernstein et al. Effect of a uniform magnetic field on the IV curves of SFFTs
JP4126367B2 (en) Oxide high-temperature superconducting Josephson flux line device and control method of Josephson flux line flow voltage in the device
Rhoderick Low temperature storage elements
JPS62211713A (en) Josephson regulator
JPS6317570A (en) Phototransistor
JPH04291508A (en) Josephson oscillation circuit and josephson logic circuit
Perera et al. Spontaneous oscillations and triggered pulsing in GaAs/InGaAs multiquantum well structures
Choi et al. Logical and relational operations of optical bistable devices operating without external bias