JPH01133212A - Thin film magnetic head and its production - Google Patents

Thin film magnetic head and its production

Info

Publication number
JPH01133212A
JPH01133212A JP6570588A JP6570588A JPH01133212A JP H01133212 A JPH01133212 A JP H01133212A JP 6570588 A JP6570588 A JP 6570588A JP 6570588 A JP6570588 A JP 6570588A JP H01133212 A JPH01133212 A JP H01133212A
Authority
JP
Japan
Prior art keywords
core
gap
magnetic head
thin film
film magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6570588A
Other languages
Japanese (ja)
Inventor
Isao Oshima
大島 勲
Katsuo Konishi
小西 捷雄
Masakatsu Saito
斉藤 正勝
Masamichi Yamada
雅通 山田
Toshio Tsuchiya
敏雄 土屋
Mitsuo Abe
阿部 光雄
Masaaki Kurebayashi
榑林 正明
Kiyoshi Ishihara
きよし 石原
Akihito Uchimura
内村 明史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6570588A priority Critical patent/JPH01133212A/en
Publication of JPH01133212A publication Critical patent/JPH01133212A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films

Abstract

PURPOSE:To attain low cost by constituting an area opposite to a gap so as to be smaller than the section of a core substantially orthogonal to the magnetic flux of a magnetic path forming circuit, providing a slant face in a coil side face to the gap and contracting the magnetic flux. CONSTITUTION:When the area opposite to the gap of the cores 1, 2 is defined to be S1 and the sectional area of the core part of a magnetic forming circuit orthogonal with the magnetic flux of the gap opposite part to be S2, S1<S2 is obtained. When the magnetic flux excited by the coil 4 has not convex part 11', a magnetic flux convergence substantially corresponding to Cw'/Cw is attained from the rear core part 12 of a core width Cw to the front core part 11 of a core width Cw'. When it has the convex part 11', the inclination 11'd of the gap 11'e0 of the convex part is spread to a lower core spreading core part 13a, so that the magnetic flux flows correspondingly to the lower core spreading angle theta2 and the inclination angle theta1 of the slant face. Thereby, the complete magnetic flux contraction is realized in the vicinity of the gap.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、VTR等の磁気記録再生装置に使用する磁気
ヘッドに係り、特に長寿命でかつ高1g頼性の記録再生
特性を得ることのできる薄膜磁気ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic head used in a magnetic recording/reproducing device such as a VTR, and particularly to a magnetic head that has long life and high 1g reliability. This article relates to a thin film magnetic head that can be used.

〔従来の技術〕[Conventional technology]

近年磁気記録密度の向上はめざましくテープの高保磁力
化がその中でも主流の技術になりつつある。そのため、
コア材としては高飽和磁束の金属材料を用いるヘッドの
開発がめざましい。特に高周波で用いられるヘッドの場
合これを薄膜で形成する技術が主流であり、性能及び生
産面で薄膜プロセスが有望と目されている。反面薄膜ヘ
ッドでは構造的に記録時コアの飽和かおきやすくコアの
体積を含め構造上の工夫を必要とする。この点を考慮し
たコア構造として例えば特開昭56−74810号に記
載されたものがある。これは薄形で形成されたコアの面
内での磁束絞り効果を図るもので、第12図に示す様に
コア20の後端より先端に向かいコア幅が晰減し先端に
向って磁束が絞れる構造となっている。またヘッド先端
ギャップ面部分22はトラック幅を一定にする必要があ
るため少な(ともヘッド・摺動による摩耗部分に関して
はコア長手方向にコア幅を平行とせねばならず、丙申の
Xの値は零より大きな値に設定されている。また膜厚に
より磁束絞り効果を期待する例として、特公昭61−1
751号がある。これは第13図に示す様に下部コアを
コア32aとコア32の二層構造とし、ヘッド先端部で
磁束を絞り込む構造となっている。
In recent years, magnetic recording density has improved dramatically, and increasing the coercive force of tape is becoming the mainstream technology. Therefore,
The development of heads that use metal materials with high saturation magnetic flux as core materials is remarkable. Particularly in the case of heads used at high frequencies, the mainstream technology is to form them with thin films, and the thin film process is seen as promising in terms of performance and production. On the other hand, thin-film heads are structurally prone to core saturation during recording, requiring structural improvements including the volume of the core. A core structure that takes this point into consideration is described in, for example, Japanese Patent Laid-Open No. 74810/1983. This is to achieve a magnetic flux restriction effect within the plane of the thin core, and as shown in Figure 12, the core width decreases steadily from the rear end of the core 20 toward the tip, and the magnetic flux increases toward the tip. It has a structure that allows it to be squeezed. In addition, the head tip gap surface portion 22 is small because it is necessary to keep the track width constant. It is set to a value larger than zero.As an example of expecting a magnetic flux throttling effect depending on the film thickness,
There is No. 751. As shown in FIG. 13, this has a structure in which the lower core has a two-layer structure of a core 32a and a core 32, and the magnetic flux is narrowed down at the tip of the head.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし前者ではコアの断面積がヘッド先端忙向は減少す
る範囲に於ては磁束集束が図れるが、ヘッド摩耗寿命を
考慮しギャップ深さを大きくした場合、ギャップ深さの
範囲でトラック幅は一定にせねばならずこの範囲での磁
束集束効果は期待出来ない。膜厚での集束効果を狙った
後者九ついてもこの状況は類似しており膜厚が一定とな
る先端部での集束効果は朋特出来ない。従ってこれらヘ
ッドでは少な(ともコアのギャップ深さ零点での膜厚よ
り小さなギャップ深さの範囲でのみギャップ先端部コア
を飽和までドライブ可となる。これらの理由から従来の
薄膜磁気ヘッドの使用は摺動摩耗の心配の少ないシステ
ムに制限されていた。
However, in the former case, magnetic flux can be focused in the range where the core cross-sectional area decreases toward the head tip, but if the gap depth is increased considering head wear life, the track width remains constant within the gap depth range. Therefore, no magnetic flux focusing effect can be expected in this range. The situation is similar for the latter case, which aims to achieve a focusing effect based on the film thickness, and the focusing effect at the tip where the film thickness is constant cannot be determined. Therefore, with these heads, it is possible to drive the core at the tip of the gap to saturation only within a gap depth range smaller than the film thickness at the zero gap depth point of the core.For these reasons, the use of conventional thin film magnetic heads is It was limited to systems with little concern about sliding wear.

本発明の目的は、ギャップ近傍におい℃充分な磁束絞り
を実現し、長寿命でかつ高信頼性の記録再生特性を得る
ことを可能とした4膜磁気ヘツドを提供することKある
SUMMARY OF THE INVENTION An object of the present invention is to provide a four-film magnetic head which achieves sufficient magnetic flux restriction in the vicinity of the gap and which makes it possible to obtain long-life and highly reliable recording and reproducing characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的はギャップ対向部のギャップ面近傍のコアがギ
ャップ面より離れるに従いギャップ面と平行な面での断
面積が、順次大きくなる様に形成した突起部の、少なく
とも一部が、コアのテープ摺動面からみた後方部の広が
り部と重複する様にしたことにより達成される。突起形
状は特に薄膜から成るコアを少なくとも2回のエクチン
グ九より、ギャップ面と平行部が存在しないように形成
し、その摺動面形状がギャップ材面から一定深さまでは
略トラック幅とし、それ以後はギャップ材面から離れる
にしたがって広くなる形状にしたことにより本目的は達
成される。
The above purpose is to prevent at least a part of the protrusion, which is formed so that the cross-sectional area of the core near the gap surface of the gap opposing part gradually increases as the core moves away from the gap surface from the gap surface, from the tape surface of the core. This is achieved by making it overlap with the widening part of the rear part when viewed from the moving surface. In particular, the protrusion shape is formed by etching a core made of a thin film at least twice so that there is no part parallel to the gap surface, and the shape of the sliding surface is approximately the track width from the gap material surface to a certain depth. Thereafter, this object is achieved by forming the gap into a shape that becomes wider as it moves away from the surface of the material.

〔作用〕[Effect]

本発明では、記録時コイルで励磁された磁束は下部コア
の後部よりテープ摺動側である先端部へコア幅変化に対
応した分だけ絞り込まれ、先端部に達し磁束密度一定の
流れとなる。一方絞り途中に位置する凸部に91コア邪
の一部磁束が流れ込み、上記凸部が下部コア絞り都に重
複しない従来の場合に比較しこの分の磁束が加えられる
。さらにこの総磁束は凸部の四角錐台を通りギャップ面
に流れ、そのとき角錐の形状に応じた磁束集束が行なわ
れ、上部コアへ流れ下部コア後部へ達し上下コア接合部
を経て磁気コアを一周する。従って磁路内磁束密度の最
大値はギャップ部分となり、記録能力を損うことなく集
束比率に対応した分のギャップ深さを確保する。
In the present invention, the magnetic flux excited by the coil during recording is narrowed from the rear part of the lower core to the tape sliding side, which is the tip, by an amount corresponding to the change in core width, and reaches the tip, resulting in a flow with a constant magnetic flux density. On the other hand, a part of the magnetic flux of the 91 core flows into the convex portion located in the middle of the aperture, and this amount of magnetic flux is added compared to the conventional case where the convex portion does not overlap with the lower core aperture. Furthermore, this total magnetic flux flows through the truncated quadrangular pyramid of the convex part to the gap surface, and at that time, magnetic flux is focused according to the shape of the pyramid, flows to the upper core, reaches the rear of the lower core, passes through the upper and lower core joints, and enters the magnetic core. Go around. Therefore, the maximum value of the magnetic flux density in the magnetic path is at the gap portion, and the gap depth corresponding to the focusing ratio is ensured without impairing the recording ability.

〔実施例〕〔Example〕

以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の薄膜ヘッドを示す要部断面図、第3因
はそのテープ摺動面からみた上部および下部コアの正面
図、第1図はその下部コアの加工前の平面図、第4図は
第1図のA −A’ K沿う断面図である。同図におい
て1,2は磁性膜からなり、先端部が一定幅でそれより
後部に向げて幅が漸増するように形成された下部コア、
上部コアを示し、該両コアはギャップ5を形成している
。下部コア1は第1図に示すように平面的にみてトラッ
ク幅より大きいコア幅Uのフロントコア部11と、該コ
ア@y より大きいコア幅yのリアコア部12と、フロ
ントコア部11のギャップ深さ零の位tll A +か
らリアコア部12に向って角度#2(下部コア広がり角
ンでコア幅が広がっているコア部13からなる。そのフ
ロントコア部111Cは上方向に突出しかつコア厚りで
トラック幅と同−又は略同−のコア幅−rで四角形のギ
ャップ面11eと該ギャップ面から四方に角度11(傾
斜角]でのび該ギャップ面を形成してなる傾斜面114
〜11jを有する凸部(四角錐台)11を形成しである
。これはギャップ面に近ず(とコアの体積が  (なる
ものであれば四角錐台でなくともよい。ここで凸部11
′の一部即ちギャップ終端部に部位する傾斜rfJ11
′dは図示の如(ギャップ深さ零位置L1からコア@1
5方向忙寸法Xだけつまり下部コア1のコア幅が広(な
る広がりコア部134に重なるように広がっている。リ
アコア912には上部コア2との接合面12eと該接合
面から四方にのび該ギャップ面を形成してなる傾斜面1
2′α〜12′dを育する凸部12を形成しである。上
部コア2は下部コア1と同様に形成されている。4はコ
イル、5は絶縁層である。
FIG. 2 is a sectional view of essential parts showing the thin film head of the present invention. The third factor is a front view of the upper and lower cores seen from the tape sliding surface. FIG. 1 is a plan view of the lower core before processing. FIG. 4 is a sectional view taken along line A-A'K in FIG. 1. In the figure, 1 and 2 are made of magnetic films, and the lower core is formed so that the tip has a constant width and the width gradually increases toward the rear.
The upper core is shown, the two cores forming a gap 5. As shown in FIG. 1, the lower core 1 has a front core part 11 having a core width U larger than the track width when viewed in plan, a rear core part 12 having a core width y larger than the core @y, and a gap between the front core part 11. It consists of a core part 13 whose core width is widened at an angle #2 (lower core spread angle) from the zero depth position tll A + toward the rear core part 12.The front core part 111C protrudes upward and the core thickness A rectangular gap surface 11e with a core width -r that is the same or approximately the same as the track width, and an inclined surface 114 formed by extending from the gap surface at an angle of 11 (inclination angle) in all directions.
A convex portion (truncated quadrangular pyramid) 11 having a diameter of 11j to 11j is formed. This does not have to be a truncated square pyramid as long as it is not close to the gap plane (and the volume of the core is ).
', i.e., the slope rfJ11 located at the end of the gap.
'd is as shown (from gap depth zero position L1 to core @1
In other words, the core width of the lower core 1 is wide by the five-direction width dimension X (it is expanded so as to overlap the core portion 134). Inclined surface 1 formed by forming a gap surface
A convex portion 12 is formed to grow 2'α to 12'd. The upper core 2 is formed similarly to the lower core 1. 4 is a coil, and 5 is an insulating layer.

ここで、コ11,2のギャップ対向部の面積を81、該
ギャップ対向部の磁束に直交する方向の磁気形成回路の
コア部の断面積82としたときSt(Sgの関係となる
ように形成しである。
Here, when the area of the gap-opposing part of the parts 11 and 2 is 81, and the cross-sectional area of the core part of the magnetic formation circuit in the direction perpendicular to the magnetic flux of the gap-opposing part is 82, it is formed so that the relationship St(Sg) is satisfied. It is.

次にコア面内の磁束集束効果について説明する。Next, the magnetic flux focusing effect within the core plane will be explained.

コイル4で励磁された磁束は凸部11がない場合、コア
@〜のリアコア部12よりコア幅廠′のフロントコア部
11へ流れ、フロントコア部11で略〜′/CW K相
当した磁束集束が図られる。一方凸部11′がある場合
には凸部のギャップ1t’eo(ギャップ深さ零位置)
の傾斜面11′dが下部コア広がりコア部13cLまで
広がっているため下部コア広がり角#2と斜面の傾斜角
#1に対応して磁束が流れ込む。フロントコア部11の
位置について81図の如くギャップ終端部21.下部コ
ア広がり開始部12フロントコア突起11の傾斜面が0
(零)Kなる所iδとし、ぶ2に対する15の位置をX
(後方を+)とする。12がムより後方に来る場合、基
板と垂直な面での断面積の最も小さい所は22とLsの
間で Cwxjで示される(dは膜厚FT−h)。一方
、11での断面積は−xd+(Tw+Cw’)x”−と
なる。
When the convex part 11 is not present, the magnetic flux excited by the coil 4 flows from the rear core part 12 of the core @~ to the front core part 11 of the core width ', and the magnetic flux is concentrated in the front core part 11 approximately equivalent to ~'/CW K. is planned. On the other hand, when there is a convex part 11', the gap of the convex part 1t'eo (gap depth zero position)
Since the inclined surface 11'd extends to the lower core spread core portion 13cL, magnetic flux flows in corresponding to the lower core spread angle #2 and the slope angle #1. Regarding the position of the front core part 11, as shown in Figure 81, the gap end part 21. The slope of the lower core expansion start part 12 and the front core protrusion 11 is 0
(Zero)K is iδ, and the position of 15 with respect to Bu2 is X
(The rear is +). When 12 is located behind M, the smallest cross-sectional area in a plane perpendicular to the substrate is between 22 and Ls and is indicated by Cwxj (d is the film thickness FT-h). On the other hand, the cross-sectional area at 11 is -xd+(Tw+Cw')x''-.

フロントコア部11がコア広がり部に重複する場合、即
ち1.zがハより前方にある場合、最小の断面積は22
の位置忙なり 裂へ翻 〜×d十     参hxで示される。Cw)xCw 
> Twであるから第2項は正である。従って12が2
sより後方にくる場合の最小所面演CWxdより太き(
なる。
In the case where the front core portion 11 overlaps the core widening portion, that is, 1. If z is in front of c, the minimum cross-sectional area is 22
The position of the translation to the busy position ~ xd 10 is indicated by hx. Cw)xCw
> Tw, so the second term is positive. Therefore 12 is 2
Thicker than the minimum surface area CWxd when coming after s (
Become.

22が11に重なる場合、即ちX=Oの時最小断面撰は
Llの位置でCw X cl + (Tw+Cw’) 
!A−となり最も良い位置と言える。上記した様に12
がAmより後方にない、即ちフロントコア部11の突起
部がコアの広がり部と重複する構造が有効である。Xl
が22より後方にある場合も全(同様である。
When 22 overlaps 11, that is, when X=O, the minimum cross-section selection is Cw X cl + (Tw+Cw') at the position of Ll.
! It becomes A-, which can be said to be the best position. As mentioned above, 12
It is effective to have a structure in which the protruding portion of the front core portion 11 overlaps with the widening portion of the core. Xl
If is after 22, all (same).

下部コア1のフロント部11の凸部を除(チーブ摺動方
向の断面積をSs、同フロント部11の下部コア広がり
開始tI(sj12Ii1上の断面積を84としたとき
5s(S4の関係となるように形成しである。
The convex part of the front part 11 of the lower core 1 is removed (the cross-sectional area in the sliding direction of the front part 11 is Ss, and the lower core spreading start tI of the front part 11 is 5s (5s when the cross-sectional area on sj12Ii1 is 84). It is formed as follows.

第5 図K Tw= 5Qμs、Gd = 20%as
、FT = 25μm、  h=5μ馬、 #+=50
. #z=45°KLXt−変化させた場合のヘッド性
能デーを示す。横軸はXの値、縦軸は記録電流値及びヘ
ッド出力としたときの実験結果である。同図において、
X23μmをこえると再生出力、記鎌′1流とも変化は
少ないが、O<X<3μでは急激に出力は低下し、記録
電流は増加する。Xく0では記録電流の最適値は検出さ
れず電流の増加にかかわらず出力は低いレベルに落着く
。この結果はX > 3であれば記録性能に問題がない
ことX < 3以降は劣化が始まり、X < Oでは実
用不可であることを示している。従来例のヘッドはxく
OK相当する。しかしこの場合でもギャップ深さQdを
小さくすれば、記録の能力アップが図れることは言うま
でもない。実験条件はテープの保持力=650エールス
テッド走行系VH8VTR,、周仮数1庵z (波長5
.8μm〕ヘッドギャップ深さ30μmである。
Figure 5 K Tw = 5Qμs, Gd = 20%as
, FT = 25 μm, h = 5 μm, #+=50
.. The head performance data when #z=45°KLXt- is changed is shown. The horizontal axis is the value of X, and the vertical axis is the experimental result when the recording current value and head output are taken. In the same figure,
When X exceeds 23 μm, there is little change in both the reproduction output and the recording current, but when O<X<3 μm, the output decreases rapidly and the recording current increases. At X0, the optimum value of the recording current is not detected and the output settles at a low level regardless of the increase in current. This result shows that if X > 3, there is no problem with the recording performance, if X < 3 or later, deterioration begins, and if X < O, it is not practical. The conventional head corresponds to x OK. However, even in this case, it goes without saying that recording performance can be improved by reducing the gap depth Qd. The experimental conditions were: tape holding force = 650, Oersted running system VH8VTR, circumference mantissa 1z (wavelength 5
.. 8 μm] Head gap depth is 30 μm.

第6図〜第8因は本発明の薄膜磁気ヘッドのフロントコ
アの突起部の別の実施例を示す図である。
FIGS. 6 to 8 are diagrams showing other embodiments of the protrusion of the front core of the thin film magnetic head of the present invention.

第6図はヘッド摺動面の正面図、第7図は磁路長方向の
ヘッド断面図、第8図は下部コア形状の斜視図であって
、6は基板、1は下部コア、2必はヘッドギャクプ形成
部、5a、5bは非磁性絶縁材、34はギャップ材、2
は上部コア、8は保護膜、7は保護板、4はコイルであ
る。
6 is a front view of the head sliding surface, FIG. 7 is a sectional view of the head in the magnetic path length direction, and FIG. 8 is a perspective view of the shape of the lower core, where 6 is a substrate, 1 is a lower core, and 2 is a sectional view of the head in the magnetic path length direction. 5a and 5b are non-magnetic insulating materials; 34 is a gap material; 2
is an upper core, 8 is a protective film, 7 is a protective plate, and 4 is a coil.

第6図において、上部コア2の摺動面形状はギャップ材
34の面を離れるに従って絶縁材5aにつげた角度lを
もって直線上に広くなる扇状で、しかもその上部コア幅
の最大幅L1と、角度!で作った絶縁材、5aのスルー
ホールの上面の幅L2との関係が、L1≦L2であるよ
うに形成する。また、下部コア1の摺動面形状は、第8
図に斜視図で示したように、少なくともギャップ形成部
を以下のように2段に形成する。すなわち、第6図、第
8図より、ギャップ材34から一定深さtマまでは角度
α1(第1の角度)、tlからt2まではα2(第3の
角度)、それ以後は初期テーパ角r(第2の角度)が、
α1〉α2)0.α2くr、α1er なる関係を満たすように、ギャップ材54の面から離れ
るにしたがって、下部コア幅が広がるように形成する。
In FIG. 6, the shape of the sliding surface of the upper core 2 is a fan shape that widens in a straight line with an angle l to the insulating material 5a as it leaves the surface of the gap material 34, and the maximum width L1 of the upper core width. angle! The insulating material made of 5a is formed so that the relationship with the width L2 of the upper surface of the through hole is L1≦L2. In addition, the shape of the sliding surface of the lower core 1 is
As shown in the perspective view in the figure, at least the gap forming portion is formed in two stages as follows. That is, from FIGS. 6 and 8, the angle α1 (first angle) is from the gap material 34 to a certain depth t, the angle α2 (third angle) from tl to t2, and the initial taper angle thereafter. r (second angle) is
α1〉α2)0. The lower core width is formed to increase as it moves away from the surface of the gap material 54 so as to satisfy the relationship α2cr, α1er.

換言すれば、下部コア1のフロント部のギャップ近傍の
コア断面MR8rβ8はギャップ面より離れるに従って
大きくなるように形成する。
In other words, the core cross section MR8rβ8 near the gap in the front portion of the lower core 1 is formed so as to become larger as the distance from the gap surface increases.

2のように、下部コアのt2の部分をギャップ面と非平
行にしてトラック幅忙絞り込む。そして、上・下コアの
ギャップ材34と反対側の端縁はギャップ面と非平行く
なるように形成する。
2, the track width is narrowed by making the t2 portion of the lower core non-parallel to the gap surface. The edges of the upper and lower cores on the side opposite to the gap material 34 are formed so as to be non-parallel to the gap surface.

上部コア2、下部コア1とをこのような形状とすること
Kより、コアの膜厚方向に磁束を効果的に絞ることがで
きる。また、ギャップ深さを太き(する目的で、下部コ
ア厚を大きくした場合、後で製造方法において説明する
ように、)ラクク幅は急峻なテーパ角α1の一定深さ内
で規定されるため高精度化が容易に達成できる。しかも
、角度α1で急峻にトラックl! Twに絞った部分(
1,の部分)に、初期角rで広がる部分との間を、角度
tt2でギャップ面と非平行に傾斜させた部分(t2の
部分)でつなげたことKよって、擬似ギャップの発生も
抑えられる。
By forming the upper core 2 and the lower core 1 into such a shape, the magnetic flux can be effectively narrowed in the thickness direction of the core. In addition, because the gap depth is increased (if the lower core thickness is increased for the purpose of increasing the thickness, as will be explained later in the manufacturing method), the width is defined within a certain depth of the steep taper angle α1. High precision can be easily achieved. Moreover, the track l is steep at angle α1! The part focused on Tw (
The generation of a pseudo gap can also be suppressed by connecting the part 1) with the part that widens at the initial angle r by a part tilted non-parallel to the gap plane at an angle tt2 (part t2). .

第91f!;Jは本発明による薄膜磁気ヘッド別の実施
例を示すものであり、第9図は第7図に相当するヘッド
断面図で少なくともコイル4の一部を突起内忙埋込んだ
例を上げているが、突起の中は非磁性絶縁材だけで埋め
込んで、コイル導体は第一実施例と同様に形成してもよ
い。
91st f! J shows another embodiment of the thin film magnetic head according to the present invention, and FIG. 9 is a cross-sectional view of the head corresponding to FIG. However, the inside of the protrusion may be filled with only non-magnetic insulating material and the coil conductor may be formed in the same manner as in the first embodiment.

本実施例によれば、前記実施例同様の効果以外に次のよ
うな効果がある。
According to this embodiment, in addition to the effects similar to those of the previous embodiment, there are the following effects.

角度α1が急峻であることから、この部分での上・下コ
ア間の磁束の1洩を低減でき、ヘッド効率を改善できる
Since the angle α1 is steep, leakage of magnetic flux between the upper and lower cores at this portion can be reduced, and head efficiency can be improved.

また、突起内にコイルを埋め込む場合、急峻な角度α1
と、ゆるい角度α2の2段テーパとすることをてよって
、コイルを形成できる空間を広げることができ、コイル
巻線の低抵抗化あるいは巻数の増加が可能になるなどの
効果がある。
In addition, when embedding a coil in a protrusion, a steep angle α1
By making use of the two-stage taper with a gentle angle α2, the space in which the coil can be formed can be expanded, and there are effects such as lowering the resistance of the coil winding or increasing the number of turns.

第10図1”) 、 lb)は本発明による?V膜磁気
ヘッドめ更に別の実施例を示すヘッド摺′IJh面の正
面図である。
FIG. 10 is a front view of the head sliding surface IJh showing still another embodiment of the ?V film magnetic head according to the present invention.

同図において、下部コア1は前記実施例におけるギャッ
プ形成部およびリアの接続部の突起を除いて基板6に褪
め込み、第6図における非磁性絶縁材sbl最小限の厚
さに形成する。
In the figure, the lower core 1 is sunk into the substrate 6 except for the gap forming part and the rear connecting part protrusion in the previous embodiment, and is formed to have the minimum thickness of the non-magnetic insulating material sbl in FIG.

本実施例固有の効果としては、非磁性P!禰材5bで厚
さを薄く、かつ、小部分にのみ形成すればよいため工程
短縮、基板のそり減少による精度向上や後工程での熱処
理による膜の剥離防止に効果がある。
As an effect unique to this embodiment, non-magnetic P! Since the thickness of the shielding material 5b is small and it only needs to be formed in a small portion, it is effective in shortening the process, improving precision by reducing warpage of the substrate, and preventing peeling of the film due to heat treatment in a post-process.

次に、第6図〜第8図に示した実施例の製造方法を説明
する。
Next, a manufacturing method of the embodiment shown in FIGS. 6 to 8 will be explained.

第11図は前記実施例(第10図(b))の製造方法の
1例を説明する工程図である。
FIG. 11 is a process diagram illustrating an example of the manufacturing method of the embodiment (FIG. 10(b)).

以下、各工8(a)〜(りの順に説明する。Hereinafter, each step 8(a) to (ri) will be explained in order.

(cL)  基板6に’F部ココア埋込むための縛ある
いは下部コア形状の穴をイオンミリングやグイシングツ
−等により形成する。この加工では、テーパ角を次工程
の磁性膜の磁気特性に悪影響を及ぼさない角度に余裕を
もって設定する。
(cL) A hole in the shape of a tie or lower core for embedding the 'F section cocoa is formed in the substrate 6 by ion milling, guising tooling, or the like. In this processing, the taper angle is set with a margin that does not adversely affect the magnetic properties of the magnetic film in the next step.

(b)  下部コア用磁性d 1’をスパッタリングで
形成する。
(b) Form the magnetic layer d1' for the lower core by sputtering.

(C)  イオンミリング忙より磁性膜を下部コア形状
ニバターニングして、下部コア1を形成する。
(C) During ion milling, the magnetic film is patterned into a lower core shape to form the lower core 1.

(d)  非磁性絶縁材5b(例えば5i02. Id
hOs等)をスパッタリングや蒸着等で形成した後、研
摩しく平坦化する。この場合、研摩は基板表面がでる前
に停止してもよい。
(d) Non-magnetic insulating material 5b (for example 5i02.Id
hOs, etc.) is formed by sputtering, vapor deposition, etc., and then polished and planarized. In this case, polishing may be stopped before the substrate surface is exposed.

te)  下部コア1、非磁性I/I!縁材5bおよび
基板6をエツチングして、トラック幅制御やフロントお
よびリア部に突起を形成し、第8図、あるいは第4図に
示した形状を作る。この時のエツチングはイオンミリン
グを使い、適当なビーム入射角でエツチングすることに
より、第6図、第8図等に示したテーパ角α1およびα
2の部分を同時に形成できる。例えば発明者の実験によ
れば、磁性膜にCo−Nb−Zr膜を用い、ビーム入射
角を55°に設定した場合、α1およびα2は、それぞ
れ約80°、45°とすることができた。
te) Lower core 1, non-magnetic I/I! The edge material 5b and the substrate 6 are etched to control the track width and to form protrusions on the front and rear parts to create the shape shown in FIG. 8 or 4. Etching at this time uses ion milling and etching at an appropriate beam incidence angle, resulting in taper angles α1 and α shown in Figures 6 and 8.
Two parts can be formed at the same time. For example, according to the inventor's experiments, when a Co-Nb-Zr film was used as the magnetic film and the beam incidence angle was set at 55°, α1 and α2 could be set to approximately 80° and 45°, respectively. .

この突起形成工程後に、ギャップ面と平行な部分ができ
ないように、前工程でコア幅を決めるわけであるが、非
磁性材5bに磁性膜よりエツチング速度の早い材料を選
定することによって、このコア幅の仕様を緩くすること
ができる。例えば、コア材がCo−Nb−Zr g 、
非磁性材5b KSiOz膜を用いた場合、上述の斜め
でのエツチング速度比(Sing−、/Co−Nb−Z
r)は約13であり、平行部ができKくくなる。
After this protrusion formation step, the core width is determined in the previous step so that there is no part parallel to the gap surface, but by selecting a material with a faster etching rate than the magnetic film for the non-magnetic material 5b, this core Width specifications can be made more relaxed. For example, the core material is Co-Nb-Zr g ,
When using the non-magnetic material 5b KSiOz film, the above-mentioned oblique etching speed ratio (Sing-, /Co-Nb-Z
r) is about 13, which makes it difficult for parallel parts to form.

<r>  非磁性絶縁層、コイルおよび再度非磁性絶縁
層を形成後、研摩によりギャップ形成面3をつ(る。こ
の時の研摩は(e)のt′1の厚さ内であれば、どこで
停止してもよいため、量産性がよい。
<r> After forming the nonmagnetic insulating layer, the coil, and the nonmagnetic insulating layer again, the gap forming surface 3 is polished.If the polishing at this time is within the thickness of t'1 in (e), Since it can be stopped anywhere, it is suitable for mass production.

(ω 2層コイルの場合には、第2コイル、非磁性絶縁
層5aを形成し、ギャップ形成面3および9アコア接続
部12にスルーホールをあける。
(ω In the case of a two-layer coil, a second coil and a non-magnetic insulating layer 5a are formed, and through holes are made in the gap forming surface 3 and the 9-acoa connecting portion 12.

(h)  非磁性材から成るギャップ材34を形成する
(h) Form the gap material 34 made of a non-magnetic material.

(i)  磁性膜をスパッタリングで成膜し、イオンミ
リングによりバターニングして、非磁性絶縁層58にあ
げたフロントのスルーホールのテーパ部分に上部コア2
を形成する。このエツチングは、所定のボストベークを
行なったフオトレジス)fマスク材として、適切なビー
ム入射角で行なうことによって、端部の曲面化をはかり
、コンタ−効果低減や保護膜8のステップカバレジを良
(することができる。
(i) A magnetic film is formed by sputtering, buttered by ion milling, and the upper core 2 is placed in the tapered part of the front through hole raised in the nonmagnetic insulating layer 58.
form. This etching is performed using a photoresist mask material that has undergone a predetermined post-baking process at an appropriate beam incidence angle to curve the edges, reduce the contour effect, and improve the step coverage of the protective film 8. be able to.

以上のような工程によりて、前記実施例の断面形状を有
するヘッドを作ることができる。
Through the steps described above, a head having the cross-sectional shape of the embodiment described above can be manufactured.

この工程の中で(→の溝あるいは穴の深さ罠より実施例
に挙げた異なった摺動面形状になる。また、最後の実施
例の他の1つ(第10図(cL) )は、第11図の工
程を次のように変えれば製造できる。
In this process, the shape of the sliding surface becomes different from the depth trap of the groove or hole shown in the example. Also, the other one of the last example (Fig. 10 (cL)) , can be manufactured by changing the process shown in FIG. 11 as follows.

すなわち、(b)の後で、研JIIKより平坦化し、先
にトラック幅を制御したギャップ形成面3を作る((e
)に相当)。次に再度エツチングによりギャップ面と平
行な下部コア部分を除去する。次に非磁性絶縁材を形成
し、研摩により平坦化する。これで(f)に相当すると
ころまででき、以下は同様である。
That is, after (b), the gap forming surface 3 is made flat by JIIK and the track width is controlled first ((e
). Next, the lower core portion parallel to the gap plane is removed by etching again. Next, a non-magnetic insulating material is formed and flattened by polishing. This completes the process corresponding to (f), and the same goes for the rest.

以上、各実施例により説明したように1本発明によれば
、磁性膜形成時の下地の形状を磁気特性がペストの形状
に設定できる特徴もある。
As described above with reference to the embodiments, one of the features of the present invention is that the shape of the base when forming the magnetic film can be set to have a pest shape with magnetic properties.

また、上記した薄膜磁気ヘッドは隣接トラックに一部重
ね書きする装置に搭載すると有効である。
Further, the above-mentioned thin film magnetic head is effective when installed in a device that partially overwrites adjacent tracks.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、厚い磁性膜を用
い、ギャップ近傍において充分な磁束絞1を実現すると
ともにトラック幅の高精度化を達成できるので、摩耗寿
命のためのギャップ深さの確保とそれKよる記録能力の
低下という相反する要求を同時に満足でき、従来一部耐
摩性の心配のないシステムにだけ利用されていた薄膜ヘ
ッドがVTR等テープ摺動タイプのシステムへの適応も
可能となりそれらの高画質化は言うまでもなく、クエへ
工程による量産効果も期待でき、低廉化にも寄与できる
効果がある。
As explained above, according to the present invention, by using a thick magnetic film, it is possible to achieve sufficient magnetic flux restriction 1 in the vicinity of the gap and to achieve high accuracy in track width. It can simultaneously satisfy the conflicting demands of security and the resulting decline in recording performance, and the thin-film head, which was conventionally used only in systems where wear resistance was not a concern, can now be applied to tape-sliding type systems such as VTRs. Therefore, it goes without saying that these images will have higher image quality, but the mass production process can also be expected to be effective, and this will also have the effect of contributing to lower costs.

【図面の簡単な説明】[Brief explanation of the drawing]

8g1図は本発明の薄膜磁気ヘッドの下部コアを模式的
に示した平面図、第2図は本発明の薄膜磁気ヘッドの要
部断面図、第3図はその正面図、第4図は第1図のA−
A KGう断面図、第5図は本発明の説明に供する特性
図、flEb図〜第8図は本発明の詳細な説明図であっ
て、第6図は摺動面の正面図、第7図は磁路長方向の断
面図、第8図は下部コア形状を示す斜視図、帛9図は本
発明の別実施例を示す図で、磁路長方向の断面図、第1
0図は本発明の他の実施例のヘッド摺動面の正面図、1
11図は本発明の薄膜ヘッドの製造方法を説明するため
の工程図、第12図、第13図は従来の磁気ヘッドの説
明にコア上面を供する平面図、要部断面図である。 符号の説明 1・・・下部コア、   2・・・上部コア、6・・・
ギャップ、   4・・・コイル、6・・・基板、  
   11・・・フロントコア部、11・・・凸部、 
    12・・・リアコア部。 箒 I Z 第 2 回 83 回 /−m−下部コア 2−0.上音Pコア 3−・ギ讐・、フ・ 第 、5″ ■ ゝ、 χ−−− 第 6 Z 党 7 回 第 8 区 第9図 集 10  回 (α) 第 !I @ 第 tz  ’Fi1 n 纂 73  m −9/
Fig. 8g1 is a plan view schematically showing the lower core of the thin film magnetic head of the present invention, Fig. 2 is a sectional view of essential parts of the thin film magnetic head of the present invention, Fig. 3 is a front view thereof, and Fig. 4 is a plan view schematically showing the lower core of the thin film magnetic head of the present invention. A- in Figure 1
A KG sectional view, FIG. 5 is a characteristic diagram for explaining the present invention, flEb to FIG. 8 are detailed explanatory views of the present invention, FIG. 8 is a perspective view showing the shape of the lower core, and FIG. 9 is a view showing another embodiment of the present invention.
Figure 0 is a front view of the head sliding surface of another embodiment of the present invention.
FIG. 11 is a process diagram for explaining the method of manufacturing a thin film head of the present invention, and FIGS. 12 and 13 are a plan view and a cross-sectional view of a main part showing the top surface of a core for explaining a conventional magnetic head. Explanation of symbols 1...Lower core, 2...Upper core, 6...
Gap, 4... Coil, 6... Board,
11...Front core part, 11...Convex part,
12... Rear core part. Broom I Z 2nd 83rd/-m-Lower Core 2-0. Upper sound P core 3-・gien・,fu・th,5″ ■ ゝ、χ−−− 6th Z party 7th 8th ward 9th drawing collection 10th (α) th!I @th tz 'Fi1 n string 73 m -9/

Claims (1)

【特許請求の範囲】 1、基板上に下部コア、ギャップ材、コイル、絶縁層、
上部コア等を積層してなる薄膜磁気ヘッド(S_2)に
おいて、前記上部、下部コアの対向によって構成される
ギャップ対向部の面積(S_1)が前記上部、下部コア
による磁路形成回路の磁束に対し略直交したコア断面程
度より小さくなるように構成し、前記コアのフロント部
のコイル側側面がギャップに対し斜面部を持ち、磁束が
絞られる構造に構成されたことを特徴とする薄膜磁気ヘ
ッド。 2、薄膜磁気ヘッドの上下部コアの少なくとも一方のコ
アのフロント部から後方に向けて末広がり、該コアの平
面的に広がり始める端部(l_2)のテープ摺動方向の
断面積(S_4)がギャップ形成部でのコア突起部を除
いた、テープ摺動方向の断面積(S_3)より大きいこ
とを特徴とする請求項1記載の薄膜磁気ヘッド。 3、ギャップ終端部に部位する下部コア突起の傾斜部分
が、下部コアの後方に向いての平面的に広がり始める端
部(l_2)が少なくとも重なっていることを特徴とす
る請求項2記載の薄膜磁気ヘッド。 4、ギャップ対向部の下部コアギャップ面がギャップ深
さ方向に平行であると共に、少なくともギャップ近傍の
コアが、ギャップ面より離れるに従い、ギャップと平行
な面での断面積が大きくなることを特徴とする請求項1
、2または3のいずれかに記載の薄膜磁気ヘッド。 5、テープ摺動面のコア断面形状で、コア側面のテーパ
形状が、ギャップ近傍が急峻な面とそれにつづく緩慢な
他の二つの面(片側計3つの面)で形成されたことを特
徴とする請求項1、2、3または4のいずれかに記載の
薄膜磁気ヘッド。 6、下部コアのギャップと平行なコア幅が、少なくとも
、ギャップから離れるに従い増大する請求項5記載の薄
膜磁気ヘッド。 7、請求項1、2、3、4、5または6のいずれかに記
載の薄膜磁気ヘッドを搭載し、一部重ね書きする機能を
有する磁気記録及び再生装置。 8、基板上に、下部コア、ギャップ材、コイル、絶縁層
、上部コア等を積層形成してなる薄膜磁気ヘッドの製造
法において、下部コアを、角度をかえた少なくとも2回
のイオンエッチング工程を経て形成したことを特徴とす
る薄膜磁気ヘッドの製造方法。
[Claims] 1. A lower core, a gap material, a coil, an insulating layer,
In a thin film magnetic head (S_2) formed by laminating upper cores, etc., the area (S_1) of the gap opposing portion formed by the opposing upper and lower cores is equal to the magnetic flux of the magnetic path forming circuit formed by the upper and lower cores. 1. A thin film magnetic head characterized in that the cross section of the thin film magnetic head is smaller than the cross section of the substantially orthogonal core, and the coil side side surface of the front part of the core has an inclined surface with respect to the gap, so that the magnetic flux is narrowed. 2. The cross-sectional area (S_4) in the tape sliding direction of the end (l_2) of the end part (l_2) of at least one of the upper and lower cores of the thin-film magnetic head that widens rearward from the front part of the core and begins to widen in a plane is the gap. 2. The thin-film magnetic head according to claim 1, wherein the thin-film magnetic head is larger than a cross-sectional area (S_3) in the tape sliding direction excluding the core protrusion at the forming portion. 3. The thin film according to claim 2, wherein the inclined portion of the lower core protrusion located at the end of the gap at least overlaps the rearward end (l_2) of the lower core that starts to widen in a plane. magnetic head. 4. The lower core gap surface of the gap-opposing part is parallel to the gap depth direction, and the cross-sectional area of the core in the plane parallel to the gap increases as the distance from the gap surface increases, at least in the vicinity of the gap. Claim 1
, 2 or 3. 5. The core cross-sectional shape of the tape sliding surface is characterized in that the tapered shape of the side surface of the core is formed by a steep surface near the gap and two other gentle surfaces (total of 3 surfaces on each side). A thin film magnetic head according to any one of claims 1, 2, 3, or 4. 6. The thin film magnetic head according to claim 5, wherein the core width parallel to the gap of the lower core increases at least as the distance from the gap increases. 7. A magnetic recording and reproducing device equipped with the thin film magnetic head according to any one of claims 1, 2, 3, 4, 5, or 6 and having a function of partially overwriting. 8. In a method for manufacturing a thin film magnetic head in which a lower core, a gap material, a coil, an insulating layer, an upper core, etc. are laminated on a substrate, the lower core is subjected to at least two ion etching steps at different angles. 1. A method for manufacturing a thin film magnetic head, characterized in that the thin film magnetic head is formed using the following steps.
JP6570588A 1987-04-10 1988-03-22 Thin film magnetic head and its production Pending JPH01133212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6570588A JPH01133212A (en) 1987-04-10 1988-03-22 Thin film magnetic head and its production

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8682587 1987-04-10
JP62-86825 1987-04-10
JP62-209226 1987-08-25
JP6570588A JPH01133212A (en) 1987-04-10 1988-03-22 Thin film magnetic head and its production

Publications (1)

Publication Number Publication Date
JPH01133212A true JPH01133212A (en) 1989-05-25

Family

ID=26406845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6570588A Pending JPH01133212A (en) 1987-04-10 1988-03-22 Thin film magnetic head and its production

Country Status (1)

Country Link
JP (1) JPH01133212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413208A (en) * 1990-04-28 1992-01-17 Tdk Corp Thin-film magnetic head
JPH076325A (en) * 1993-06-14 1995-01-10 Nec Corp Thin film magnetic head device
US6757141B2 (en) * 2002-01-18 2004-06-29 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular recording write head with a ferromagnetic shaping layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413208A (en) * 1990-04-28 1992-01-17 Tdk Corp Thin-film magnetic head
JPH076325A (en) * 1993-06-14 1995-01-10 Nec Corp Thin film magnetic head device
US6757141B2 (en) * 2002-01-18 2004-06-29 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular recording write head with a ferromagnetic shaping layer

Similar Documents

Publication Publication Date Title
US5995343A (en) Magnetic headwith specified tapered pole tip width ratio
US5349745A (en) Method of fabricating thin-film magnetic head
JP2006139898A (en) Thin-film magnetic head structure and method for manufacturing the same, and thin-film magnetic head
JP2000113412A (en) Thin film magnetic head and manufacture thereof
US6010753A (en) Thin film magnetic head with special shaped pole and manufacture method thereof
US6999275B2 (en) Thin film magnetic head having partial insulating layer formed on bottom pole layer through gap layer and method of manufacturing the same
JPH01133212A (en) Thin film magnetic head and its production
JPS6118250B2 (en)
US7360301B2 (en) Method of manufacturing a thin film magnetic head
US6067703A (en) Method for fabricating a combined thin film magnetic head
JPH0785289B2 (en) Method of manufacturing magnetic head
US4811142A (en) Magnetic head for vertical magnetic recording and method of producing same
JPS60157711A (en) Thin film magnetic head
US6597534B1 (en) Thin-film magnetic head suitable for narrower tracks and preventing write fringing and method for making the same
US7248436B2 (en) Thin film magnetic head and method of manufacturing the same
JP4490579B2 (en) Inductive thin film magnetic head and manufacturing method thereof
JP2001195707A (en) Thin-film magnetic head and method for manufacturing the same
JPH03205607A (en) Thin-film magnetic head and production thereof
JPS6247812A (en) Thin film magnetic head
JPH04221410A (en) Magnetic head
JP2595013B2 (en) Thin film magnetic head
JPH01133211A (en) Thin film magnetic head and its production
JP2725878B2 (en) Thin film magnetic head
JPH03225611A (en) Production of thin-film magnetic head
JPH01119911A (en) Thin film magnetic head