JPH01133026A - Optical parts - Google Patents

Optical parts

Info

Publication number
JPH01133026A
JPH01133026A JP29101787A JP29101787A JPH01133026A JP H01133026 A JPH01133026 A JP H01133026A JP 29101787 A JP29101787 A JP 29101787A JP 29101787 A JP29101787 A JP 29101787A JP H01133026 A JPH01133026 A JP H01133026A
Authority
JP
Japan
Prior art keywords
layer
superconducting
optical
crystal
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29101787A
Other languages
Japanese (ja)
Inventor
Yoshihiro Mori
義弘 森
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29101787A priority Critical patent/JPH01133026A/en
Publication of JPH01133026A publication Critical patent/JPH01133026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size of optical parts by forming at least one layer of spiral thin films which are coated with insulating layers and consist of a superconducting material on the side faces of a magneto-optical crystal and generating a magneto-optical effect by the magnetic field generated when electric current is passed to the thin films. CONSTITUTION:The superconducting layer 202 is formed on the side faces of the yttrium-garnet (YIG) crystal 201. The layer 202 is worked to a spiral shape. The insulating layer 203 consisting of SiO2 and the superconducting layer 204 consisting of the same material as the material of the layer 202 are then successively formed thereon. However, the end part of the insulating layer 203 is partially removed in order to conduct the superconducting layers 202, 204. The superconducting layer 204 is then worked to a spiral shape and finally, the insulating layer 206 is formed. Polarizers 102, 103 are disposed to the YIG crystal 101 formed with the superconducting coils along the optical axis thereof so that light can pass the same only from the left to the right. Since the need for using a permanent magnet is thereby eliminated, the size of the optical parts is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信、光計測等に用いられる、光アイソレ
ータ等の磁気光学結晶を用いた光学部品に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to optical components using magneto-optic crystals, such as optical isolators, used in optical communication, optical measurement, and the like.

従来の技術 近年の光通信、光計測等の技術において、光分波器、波
長フィルター等に代表される光学部品は必要不可欠の物
である。中でも、光アイソレータや磁界センサー等の磁
気光学結晶を用いた素子は、光の入射方向によらずその
偏波面を進行方向に対して同じ方向に回転させるという
ユニークな機能を持つため、大変重要である。第3図に
従来の光アイソレータの1例(例えば、シブカワ、イワ
ムラ、カツイ、ハヤシらによるエレクトロニクス・レタ
ーズ、第13号第24巻、721頁〜722頁、197
7年)の断面図を示す。図中1はイツトリウムと鉄かの
酸化物から成るガーネット結晶(以下、YIG結晶と記
す。)であり、永久磁石2により、磁界が印加されるた
めにファラデー効果と呼ばれる光学的異方性が生じ光の
偏波面が回転する。この回転角は、磁界の強度と、YI
G結−高中の光路長で決まり、今は45度回転するよう
に設定しである。この時、偏光子6で選ばれた偏波面を
持つ光は他の偏光子7に入射するが、この偏光子7の角
度を調節することにより出射光110入射光10に対す
る強度の損失は約1ないし2デシベル程度に抑えること
ができる。一方、上記のような設定をした時に逆方向か
ら入射光12を入射させると、偏光子Tにより選択され
た偏波成分を持つ光はYIG結晶を通過する際に偏光子
5を通過できる偏光方向と垂直になるように偏光面が回
転する。よって出射光13の光強度は大変小さく、入射
光12と比べると損失は約3oデシベルにもなる。以上
が光アイソレータの動作原理である。
2. Description of the Related Art In recent technologies such as optical communication and optical measurement, optical components such as optical demultiplexers and wavelength filters are indispensable. Among these, devices using magneto-optic crystals, such as optical isolators and magnetic field sensors, are extremely important because they have the unique function of rotating the plane of polarization in the same direction as the direction of travel, regardless of the direction of light incidence. be. An example of a conventional optical isolator is shown in FIG.
7 years) is shown. In the figure, 1 is a garnet crystal (hereinafter referred to as YIG crystal) made of yttrium and iron oxides, and due to the application of a magnetic field by a permanent magnet 2, an optical anisotropy called the Faraday effect occurs. The plane of polarization of light rotates. This rotation angle depends on the strength of the magnetic field and YI
It is determined by the optical path length of the G connection and high school, and is currently set to rotate by 45 degrees. At this time, the light with the plane of polarization selected by the polarizer 6 enters another polarizer 7, but by adjusting the angle of this polarizer 7, the loss in intensity of the output light 110 relative to the input light 10 is approximately 1 It can be suppressed to about 2 to 2 decibels. On the other hand, when the above settings are made and the incident light 12 is made to enter from the opposite direction, the light having the polarization component selected by the polarizer T will have a polarization direction that allows it to pass through the polarizer 5 when passing through the YIG crystal. The plane of polarization is rotated so that it is perpendicular to Therefore, the light intensity of the emitted light 13 is very small, and the loss is about 30 decibels compared to that of the incident light 12. The above is the operating principle of the optical isolator.

発明が解決しようとする問題点 ところが上記した構成によれば、十分な強度の磁界を発
生させるためには、YIG結晶に比べ数倍から10数倍
の体積の永久磁石が必要となり、光アイソレータの小型
化をはばんでいた。この問題点は光アイソレータに限ら
ず、磁気光学結晶を用いる光学部品全般にわたる問題で
ある。
Problems to be Solved by the Invention However, according to the above configuration, in order to generate a magnetic field of sufficient strength, a permanent magnet with a volume several to ten times as large as that of a YIG crystal is required, and the optical isolator is It was preventing miniaturization. This problem is not limited to optical isolators, but applies to all optical components using magneto-optic crystals.

問題点を解決するための手段 かかる問題点を解決するため、本発明は円柱或いは角柱
状の磁気光学結晶の中心線に沿って光を入射させる構成
において、前記磁気光学結晶の側面に絶縁層で覆われ、
かつ超電導物質から成る少なくとも一層の螺旋状の薄膜
を形成し、前記薄膜に電流分流すことにより生じる磁界
により磁気光学効果を起こさしめることを特徴とする光
学部品を提供するものである。
Means for Solving the Problems In order to solve the problems, the present invention provides a configuration in which light is incident along the center line of a cylindrical or prismatic magneto-optic crystal, and an insulating layer is provided on the side surface of the magneto-optic crystal. covered,
The present invention also provides an optical component characterized in that at least one spiral thin film made of a superconducting material is formed, and a magneto-optic effect is caused by a magnetic field generated by shunting current through the thin film.

作用 上記した構成によれば、永久磁石は使わずに済むので光
学部品の寸法を縮小できる。また、超電導物質を用いる
ので、出荷時に電流を生じさせておけばその後半永久的
に電流が流れ続けるので、常設の電源等は一切不要であ
る。
Effect: According to the above-mentioned configuration, the size of the optical component can be reduced because no permanent magnet is required. Furthermore, since a superconducting material is used, if a current is generated at the time of shipment, the current will continue to flow permanently after that, so there is no need for a permanent power source.

実施例 第1図は光アイソレータを例にとった、本発明による一
実施例の断面図である。101は側面に超電導物質から
成る螺旋状の薄膜(以下、超電導コイルと呼ぶ)が形成
されたYIG結晶である。
Embodiment FIG. 1 is a sectional view of an embodiment of the present invention, taking an optical isolator as an example. Reference numeral 101 is a YIG crystal on which a spiral thin film (hereinafter referred to as a superconducting coil) made of a superconducting substance is formed on the side surface.

このYIG結晶に対し図中−点鎖線で記した光軸に沿っ
て、左から右にのみ光が通、過てきるように偏光子10
2 、103が配置されている。超電導コイル付YIG
結晶101の製造方法を第2図の断面図を用いて説明す
る。まず体)図のようにYIG結晶201の側面に超電
導層202をスパッタ法等により形成する。用いる超電
導物質は例えばストロンチウムドープのY+  Ba、
 Cu50.−δである。この層201を精密旋盤を用
いて(b)図のように螺旋状に加工する。破線は螺旋の
形状を示している。次に5in2から成る絶縁層203
と、202と同じ材料から成る超電導層204とを順次
スパッタ法により形成する。但し、超電導層202.2
04を導通させるため、絶縁層203の端部は(C)図
に示したように部分的に除去しである。次に精密旋盤に
より超電導層204を螺旋状に加工し、最後に絶縁層2
06を形成する。破線はこの螺旋の状態を示す(d)。
A polarizer 10 is installed so that light passes through this YIG crystal only from left to right along the optical axis indicated by the dotted chain line in the figure.
2, 103 are arranged. YIG with superconducting coil
A method for manufacturing the crystal 101 will be explained using the cross-sectional view of FIG. First, as shown in the figure, a superconducting layer 202 is formed on the side surface of a YIG crystal 201 by sputtering or the like. The superconducting material used is, for example, strontium-doped Y+ Ba,
Cu50. −δ. This layer 201 is processed into a spiral shape using a precision lathe as shown in FIG. The dashed line indicates the shape of the spiral. Next, an insulating layer 203 consisting of 5in2
and a superconducting layer 204 made of the same material as 202 are sequentially formed by sputtering. However, superconducting layer 202.2
In order to make the insulating layer 203 conductive, the end portion of the insulating layer 203 is partially removed as shown in FIG. Next, the superconducting layer 204 is processed into a spiral shape using a precision lathe, and finally the insulating layer 204 is processed into a spiral shape.
Form 06. The dashed line shows this spiral state (d).

このようにして作られた超電導コイルは電気的に閉ルー
プになっている。よって一箇所を断線して電源をつない
で直流電流を流し、断線箇所を超電導物質で修復すると
、コイルには電流が流れ続けるのでYIG結晶中に定常
磁界205が印加されることになる。偏波面の回転角は
、YIG結晶の長さとコイルに流れる電流の量とコイル
の巻き数によって決まる。
The superconducting coil created in this way has an electrically closed loop. Therefore, if a wire is broken at one point, a power supply is connected, a direct current is applied, and the broken wire is repaired using a superconducting material, the current continues to flow through the coil, and a steady magnetic field 205 is applied to the YIG crystal. The rotation angle of the polarization plane is determined by the length of the YIG crystal, the amount of current flowing through the coil, and the number of turns of the coil.

尚、本実施例では超電導コイルを2層構造としたが、1
層あるいは3層以上でもなんら問題はない。また、本実
施例は光アイソレータを例にとったが、本発明は光アイ
ソレータに限定されるものではない。
In this example, the superconducting coil has a two-layer structure, but one
There is no problem with a layer or three or more layers. Furthermore, although this embodiment takes an optical isolator as an example, the present invention is not limited to optical isolators.

発明の効果 本発明によれば、永久磁石が不要となるため、部品点数
が減り、アセンブリ工程が簡略化できる。
Effects of the Invention According to the present invention, since permanent magnets are not required, the number of parts can be reduced and the assembly process can be simplified.

また、超電導物質をコイルに用いるため、大電流が流せ
るので強い磁界を発生させることができる。
Furthermore, since a superconducting material is used for the coil, a large current can be passed through it, and a strong magnetic field can be generated.

またコイルの巻き数を増やすことにより容易に磁界を強
くすることができる。
Furthermore, the magnetic field can be easily strengthened by increasing the number of turns of the coil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電子部品の構造を示す断面
図、第2図は第1図中の超電導コイル付YIG結晶の製
造工程を示す断面図、第3図は従来の電子部品の構造を
示す断面図である。 101・・・・超電導コイル付YIG結晶、102゜1
03・・・・・偏光子、104,105・・−・・YI
(、結晶保持台、106.107  ・・・偏光子保持
台、108・・・・保持台。
FIG. 1 is a cross-sectional view showing the structure of an electronic component according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the manufacturing process of the YIG crystal with superconducting coil in FIG. 1, and FIG. 3 is a conventional electronic component. FIG. 101...YIG crystal with superconducting coil, 102゜1
03...Polarizer, 104,105...YI
(, crystal holder, 106.107... polarizer holder, 108... holder.

Claims (1)

【特許請求の範囲】[Claims] 光が横切らない主面上に超電導物質から成る少なくとも
一層の螺旋状の第1の薄膜と、前記第1の薄膜の表面を
覆う絶縁体から成る少なくとも一層の第2の薄膜とが形
成された磁気光学結晶を含み、前記第1の薄膜に電流を
流した時に生ずる磁界の方向が前記磁気光学結晶中を通
過する光の進向方向に平行である光学部品。
A magnetic field comprising at least one spiral first thin film made of a superconducting material and at least one second thin film made of an insulator covering the surface of the first thin film on a main surface through which light does not pass. An optical component including an optical crystal, wherein the direction of a magnetic field generated when a current is passed through the first thin film is parallel to the direction of propagation of light passing through the magneto-optic crystal.
JP29101787A 1987-11-18 1987-11-18 Optical parts Pending JPH01133026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29101787A JPH01133026A (en) 1987-11-18 1987-11-18 Optical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29101787A JPH01133026A (en) 1987-11-18 1987-11-18 Optical parts

Publications (1)

Publication Number Publication Date
JPH01133026A true JPH01133026A (en) 1989-05-25

Family

ID=17763377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29101787A Pending JPH01133026A (en) 1987-11-18 1987-11-18 Optical parts

Country Status (1)

Country Link
JP (1) JPH01133026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341235A (en) * 1990-04-18 1994-08-23 Shin-Etsu Chemical Co., Ltd. Optical isolator and method for preparing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341235A (en) * 1990-04-18 1994-08-23 Shin-Etsu Chemical Co., Ltd. Optical isolator and method for preparing same

Similar Documents

Publication Publication Date Title
US6545795B2 (en) Magneto-optical member and optical isolator using the same
US8068387B2 (en) Magneto-optical device
JP2697354B2 (en) Manufacturing method of optical isolator
WO1996025683A1 (en) Optical isolator
JPS5478153A (en) Light isolator
JPH01133027A (en) Optical parts
JP3493119B2 (en) Faraday rotation angle variable device
JPH01133026A (en) Optical parts
US5111330A (en) Optical isolators employing wavelength tuning
JPH0289207A (en) Thin-film magnetic device having vertical anisotropy
JPS60200225A (en) Faraday rotator
CN101356470A (en) Magneto-optical device
US3381138A (en) Parametron element using ferromagnetic thin film
US4442414A (en) Magneto-optical phase-modulating devices
JPH0311303A (en) Optical circulator
US2891224A (en) Non-reciprocal wave transmission
JPS59197013A (en) Faraday rotor
Shirasaki et al. Bistable optical switch using a yttrium‐iron‐garnet crystal with phase matching films
JP3764825B2 (en) Optical attenuator
JP2567697B2 (en) Faraday rotation device
JPS63298216A (en) Isolator
JPS6236324Y2 (en)
JPH01261616A (en) Optical isolator
JPH1184330A (en) Polarizing switching element and optical shutter
JPS6126019A (en) Optical isolator