JPH01133000A - Non-planar spectrocrystal - Google Patents

Non-planar spectrocrystal

Info

Publication number
JPH01133000A
JPH01133000A JP28936687A JP28936687A JPH01133000A JP H01133000 A JPH01133000 A JP H01133000A JP 28936687 A JP28936687 A JP 28936687A JP 28936687 A JP28936687 A JP 28936687A JP H01133000 A JPH01133000 A JP H01133000A
Authority
JP
Japan
Prior art keywords
crystal
rays
spectrocrystal
ray
spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28936687A
Other languages
Japanese (ja)
Inventor
Osamu Abe
修 阿部
Asao Nakano
朝雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28936687A priority Critical patent/JPH01133000A/en
Publication of JPH01133000A publication Critical patent/JPH01133000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To take out outgoing X-ray in a constant direction while easing the setting of angle of diffraction by grinding either a first spectrocrystal or a second spectrocrystal of a channel cut spectroscope or both surface in non-planar form. CONSTITUTION:X-rays having serial spectra generated from an X-ray generator 1 perform incidence into a spectrocrystal 2, only a part of X-rays which have prescribed wave length is diffracted and the other X-rays having the other wave length are absorbed in the spectrocrystal 2. Diffracted X-rays enter into a spectrocrystal 3 and guided in a measuring device 4 after diffraction. The spectrocrystals 2, 3 are fixed on a crystal holder 5 and at the crystal holder 5 angle of diffraction is set by a rotating mechanism 7 to which a rotating angle read-out mechanism (encoder) 6 is attached. The spectrocrystals 2, 3 are cut off from a monocrystal and the crystal surface of the spectrocrystals 2, 3 is automatically maintained parallel. The position of outgoing X-ray taken out from the spectroscope can be maintained constant by grinding either the spectrocrystal 2 or the spectrocrystal 3 or both.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、駆動機構の簡略化と出射X線の出射位置の一
定化ができ、チャンネルカット分光器の光軸調整が簡素
化できる非平面分光結晶に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a non-planar structure that can simplify the drive mechanism, stabilize the exit position of the emitted X-rays, and simplify the optical axis adjustment of the channel-cut spectrometer. It concerns spectroscopic crystals.

〔従来の技術〕[Conventional technology]

近年、非晶質物質(アモルファス)の原子レベルの構造
解析に対する要求が高まりつつある。その中でも、特に
X線を用いた構造解析が注目されている。この種の解析
は、X線の波長をある範囲内で変化させ、各波長ごとに
X線透過率、蛍光X線収率あるいはX線光電子収率など
の量を測定することによってなされる。
In recent years, there has been an increasing demand for atomic-level structural analysis of amorphous materials. Among these, structural analysis using X-rays is attracting particular attention. This type of analysis is performed by varying the wavelength of X-rays within a certain range and measuring quantities such as X-ray transmittance, fluorescent X-ray yield, or X-ray photoelectron yield for each wavelength.

通常用いられるX線源としては、実験室規模では比較的
小出力強度の電子ビーム励起型X線発生装置か、あるい
は大規模なものとして大出力強度のシンクロトロン放射
光源があげられる。いずれのX線源の場合でも、得られ
るX線は連続スペクトルを有するX線であるから、所望
の波長成分のX線だけを分光する技術が必要である。
Commonly used X-ray sources include electron beam-excited X-ray generators with a relatively low output intensity on a laboratory scale, or synchrotron radiation sources with a large output intensity on a large scale. In the case of any of the X-ray sources, the obtained X-rays have a continuous spectrum, so a technique for spectrally dispersing only the X-rays of desired wavelength components is required.

測定精度の向上と取扱いの簡便化のために、高調波成分
含有率が小さく、かつ分光器から取出されたX線(出射
X線)の位置が出射X線の波長によらず、一定にできる
分光光学系の開発が急がれている。
In order to improve measurement accuracy and simplify handling, the content of harmonic components is small, and the position of the X-rays extracted from the spectrometer (outgoing X-rays) can be kept constant regardless of the wavelength of the outgoing X-rays. The development of spectroscopic optical systems is urgently needed.

つぎに、チャンネルカット分光器の動作原理について簡
単に記す、第3図において、xLa源1から発生した連
続X線は第1分光結晶2で回折され、第2分光結晶3へ
向う、このような結晶によるX線の回折はB ragg
の法則に従うから、第1分光結晶2の結晶面間隔をdと
し、第1分光結晶2の結晶面に対するX線の入射角を0
とし、第2分光結晶3の方向へ回折されるX線の波長を
λとするとき、これらの間には、 2dsinθ=nλ         (1)が成立す
る。ここで、nはB raggの次数と呼ばれる自然数
である。上記のように分光結晶を1個だけ用いる単結晶
分光器の場合には、第1分光結晶2からの出射(回折)
X線の出射方向は、θを変えるごとに変化し、測定系の
構造を著しく制約する。また、単結晶分光器では、一般
に所望の波長のX線、すなわち(1)式でn=1の場合
の他に(1)式におけるn≧2の場合のX線が含まれ。
Next, the operating principle of the channel-cut spectrometer will be briefly described. In FIG. 3, continuous X-rays generated from the X-ray diffraction by crystal is Bragg
According to the law of
When the wavelength of the X-ray diffracted in the direction of the second spectroscopic crystal 3 is λ, 2dsinθ=nλ (1) holds between them. Here, n is a natural number called the order of Bragg. In the case of a single-crystal spectrometer that uses only one spectroscopic crystal as described above, the output (diffraction) from the first spectroscopic crystal 2
The emission direction of the X-rays changes each time θ is changed, which significantly limits the structure of the measurement system. Furthermore, a single crystal spectrometer generally includes X-rays of a desired wavelength, that is, X-rays when n≧2 in equation (1) in addition to the case where n=1 in equation (1).

測定データに系統誤差をもたらすことが多い。It often introduces systematic errors in the measurement data.

これらの欠点の一部を取除くために、第2分光結晶3が
設置されている。第1分光結晶2と第2分光結晶3との
間隔をLとし、結晶面に対するX線の入射角をθとする
とき、チャンネルカット分光器から出射するX線は、入
射X線と平行で、かつ入射X線の延長線と距離 D=2Lcosθ          (2)だけずれ
て出射される。チャンネルカット分光器から出射さ九る
X線は、常に入射X線と平行であるから、測定系の構造
に対する制約は、単結晶分光器を用いる場合に較べて著
しく緩和されるが。
In order to eliminate some of these drawbacks, a second spectroscopic crystal 3 is installed. When the distance between the first dispersing crystal 2 and the second dispersing crystal 3 is L, and the angle of incidence of the X-ray with respect to the crystal plane is θ, the X-ray emitted from the channel cut spectrometer is parallel to the incident X-ray, Moreover, it is emitted with a distance D=2Lcosθ (2) shifted from the extension line of the incident X-ray. Since the X-rays emitted from the channel-cut spectrometer are always parallel to the incident X-rays, restrictions on the structure of the measurement system are significantly relaxed compared to when a single crystal spectrometer is used.

第1分光結晶2へのX線の入射角θを変化させるごとに
、測定器の位置を(2)式にしたがって平行移動する必
要がある。
Every time the incident angle θ of the X-rays to the first spectroscopic crystal 2 is changed, the position of the measuring instrument must be translated in accordance with equation (2).

分光器から取出される出射X線の位置を、第1分光結晶
2への入射角θを変化させても一定に保ち続けるには、
第4図に示すような2結晶分光器を用いるのが通例であ
る。しかしこの場合には、第2結晶のX方向位置を数1
0.程度の精度で、かつ第2分光結晶の角度と数角度秒
の精度で制御しなければならず、大掛りな駆動装置を必
要とじていた。なお、上記装置に関係する文献としては
、レビュー・オブ・サイエンティフィック・インスツル
メンツ(Rev、 Sci、  In5tr、)、53
 、Qユ、(1982年)第22頁から第33頁が挙げ
られる。
In order to keep the position of the emitted X-rays taken out from the spectrometer constant even if the incident angle θ to the first spectroscopic crystal 2 is changed,
It is customary to use a two-crystal spectrometer as shown in FIG. However, in this case, the position of the second crystal in the X direction is
0. It had to be controlled with a certain level of accuracy and within several angle seconds of the angle of the second spectroscopic crystal, and a large-scale driving device was required. In addition, as a literature related to the above-mentioned device, Review of Scientific Instruments (Rev, Sci, In5tr,), 53
, Q. Yu, (1982) pp. 22-33.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、連続X線から単色X線を得る際に、第
1分光結晶の結晶面と第2分光結晶の結晶面とが常に平
行であり、駆動機構が簡単なチャンネルカット分光器で
は1分光器から取出される出射X線の位置が、入射X線
の第1分光結晶の結晶面への入射角θを変化させるごと
に変化し、該変化に追従するように測定器の位置を変化
させなければならないという問題があった。また、分光
器からの出射X線の位置を不変に保つことを主目的とし
た2結晶分光器では、第2分光結晶の位置を制御し、か
つ、第2分光結晶の結晶面を第1分光結晶の結晶面に平
行にするための機構を配設する必要があり、駆動機構が
複雑になるという問題があった。
In the above conventional technology, when obtaining monochromatic X-rays from continuous X-rays, the crystal plane of the first dispersing crystal and the crystal plane of the second dispersing crystal are always parallel, and in a channel-cut spectrometer with a simple driving mechanism, one The position of the emitted X-rays taken out from the spectrometer changes each time the incident angle θ of the incident X-rays to the crystal plane of the first spectroscopic crystal changes, and the position of the measuring instrument is changed to follow this change. The problem was that it had to be done. In addition, in a two-crystal spectrometer whose main purpose is to keep the position of the emitted X-rays unchanged, the position of the second dispersing crystal is controlled, and the crystal plane of the second dispersing crystal is set to the first dispersing crystal. It is necessary to provide a mechanism for parallelizing the crystal plane of the crystal, which poses a problem in that the drive mechanism becomes complicated.

本発明の目的は、チャンネルカット分光器のように、簡
便な駆動機構だけで分光器より取出される出射X線が、
入射角に影響されず常に一定の方向に取出せる、非平面
チャンネルカット分光器を得ることにある。
The purpose of the present invention is to ensure that the output X-rays extracted from the spectrometer with only a simple drive mechanism, such as a channel-cut spectrometer, are
The object of the present invention is to obtain a non-planar channel cut spectrometer that can always be taken out in a fixed direction without being affected by the incident angle.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、チャンネルカット分光器において、第1分
光結晶および第2分光結晶の一方あるいは両方の表面を
、非平面形状に研削することにより達成される。
The above object is achieved by grinding the surface of one or both of the first analyzing crystal and the second analyzing crystal into a non-planar shape in the channel cut spectrometer.

〔作用〕[Effect]

本発明の分光結晶では、1つの単結晶から切り出した1
組の分光結晶を用いているため、第1分光結晶の結晶面
と第2分光結晶の結晶面とは、自動的に平行に保たれて
いる。したがって、従来の2結晶分光器で必要としてい
た3系統の駆動機構を、1つの駆動機構だけで回折角の
設定が行えるようにすることができる。また、第1分光
結晶と第2分光結晶とのうち、一方あるいは両方の表面
を非平面に研削することによって、分光器から取出され
る出射X線の位置を一定に保つことができる。
In the spectroscopy crystal of the present invention, one
Since a set of spectroscopic crystals is used, the crystal plane of the first spectroscopic crystal and the crystal plane of the second spectroscopic crystal are automatically kept parallel. Therefore, the diffraction angle can be set using only one drive mechanism, instead of the three systems of drive mechanisms that were required in the conventional two-crystal spectrometer. Further, by grinding one or both surfaces of the first spectroscopic crystal and the second spectroscopic crystal to a non-planar surface, the position of the emitted X-rays taken out from the spectrometer can be kept constant.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による非平面分光結晶の一実施例を用い
た分光器の構成図、第2図は上記実施例の形状を示す図
で、(a)は正面図、(b)は側面図である。第1図に
おいて、X線発生源1から発生した連続スペクトルを有
するX線は、第1分光結晶2に入射し、その一部、すな
わちB raggの式(1)を満足する波長を有するX
線だけが回折し。
Fig. 1 is a block diagram of a spectrometer using an embodiment of a non-planar spectroscopic crystal according to the present invention, and Fig. 2 is a diagram showing the shape of the above embodiment, where (a) is a front view and (b) is a side view. It is a diagram. In FIG. 1, X-rays having a continuous spectrum generated from an X-ray source 1 are incident on a first spectroscopic crystal 2, and a part of the X-rays, that is, an X-ray having a wavelength satisfying Bragg's equation (1)
Only the lines are diffracted.

他の波長成分をもつX線は上記第1分光結晶2に吸収さ
れる。上記回折したX線は第2分光結晶3に入射し1回
折したのち測定装置4に導かれる。
X-rays having other wavelength components are absorbed by the first spectroscopic crystal 2. The diffracted X-rays enter the second spectroscopic crystal 3, undergo one diffraction, and then are guided to the measuring device 4.

上記第1分光結晶2および第2分光結晶3は、結晶ホル
ダ5に固定され、上記結晶ホルダ5は回転角読取機構(
エンコーダ)6が付会された回転機構7によって回折角
θが設定される0本実施例では、上記回転機構6の回転
中心が第1分光結晶2の回折面7の中心に設定しである
0分光結晶の形状は第2図(a)および(b)に示すと
おりである。第2分光結晶3の回折面8は第2図に示す
座標系において。
The first spectroscopic crystal 2 and the second spectroscopic crystal 3 are fixed to a crystal holder 5, and the crystal holder 5 has a rotation angle reading mechanism (
In this embodiment, the rotational center of the rotational mechanism 6 is set at the center of the diffraction surface 7 of the first spectroscopic crystal 2. The shape of the spectroscopic crystal is as shown in FIGS. 2(a) and (b). The diffraction surface 8 of the second spectroscopic crystal 3 is in the coordinate system shown in FIG.

x(’P)=L/5in(W)         (3
)z (y)=−L/cos(y)        (
4)T≦45@ に研削してあり1本実施例ではL=20鳳■である。
x('P)=L/5in(W) (3
)z (y)=-L/cos(y) (
4) It is ground to T≦45@, and in this example, L=20.

第1図において、上記分光器に対するX線の入射角を4
5度以下の角度であるθに設定するとき、第1分光結晶
2によって回折されたX線は、第2分光結晶3の回折表
面上の点 X(θ)=L/5in(θ)(5) 2(θ)−L/cos(θ)(6) に照射される。したがって、第2分光結晶3によって回
折され測定器に導かれるX線と、入射X線の延長線との
間の距離りは I)=J x(θ)”+z(θ)”X5in(2の=2
L  (7)になり、θに無関係、すなわち一定になる
In Figure 1, the angle of incidence of X-rays on the spectrometer is set to 4.
When setting θ to be an angle of 5 degrees or less, the X-rays diffracted by the first spectroscopic crystal 2 are reflected at the point X(θ)=L/5in(θ)(5 ) 2(θ)-L/cos(θ) (6). Therefore, the distance between the X-ray diffracted by the second spectroscopic crystal 3 and guided to the measuring instrument and the extension line of the incident X-ray is I)=J x(θ)"+z(θ)"X5in(2 =2
L (7), which is independent of θ, that is, constant.

本実施例によると、ただ1つの駆動機構だけで回折角の
設定を行うことができ、かつ、出射X線の位置を一定に
保つことができるため、経費削減と工数低減の効果があ
る。また、第1分光結晶2と第2分光結晶3との結晶面
は常に平行であるため1通常の2結晶分光器と比較して
、光軸の調整、特にあおり角の調整を大幅に簡易化でき
るという効果もある。
According to this embodiment, the diffraction angle can be set using only one drive mechanism, and the position of the emitted X-rays can be kept constant, resulting in cost reduction and man-hour reduction. In addition, since the crystal planes of the first dispersing crystal 2 and the second dispersing crystal 3 are always parallel, it is much easier to adjust the optical axis, especially the tilt angle, compared to a normal two-crystal spectrometer. There is also the effect that it can be done.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による非平面分光結晶は、単一の単
結晶から研削したチャンネルカット分光器の非平面分光
結晶において、X線発生装置から発生する入射X線ビー
ム上に第1分光結晶を配設し、上記第1分光結晶による
回折X線上に第2分光結晶を配設し、上記第1分光結晶
および第2分光結晶の一方あるいは両方の表面を、非平
面に形成したことにより、上記第1および第2分光結晶
の結晶面が常に平行であることから、回折角の設定が容
易に行えるだけでなく、従来の2結晶分光器では1回折
角の設定に必要としていた3系統の駆動機構が、ただ1
つの駆動機構で可能になり、分光器から取出される・単
色X線の出射位置を一定に保つことができるため、光軸
の調整力を容易であす、分光器の製造コストを低減する
ことができる。
As described above, the non-planar spectroscopic crystal according to the present invention is a non-planar spectroscopic crystal for a channel-cut spectrometer that is ground from a single single crystal, and the first spectroscopic crystal is placed on an incident X-ray beam generated from an X-ray generator. A second dispersing crystal is disposed on the X-ray diffracted by the first dispersing crystal, and one or both surfaces of the first dispersing crystal and the second dispersing crystal are formed into a non-flat surface. Since the crystal planes of the first and second spectroscopic crystals are always parallel, it is not only easy to set the diffraction angle, but also three systems of drive are required to set one diffraction angle with conventional two-crystal spectrometers. There is only one mechanism
This is possible with two drive mechanisms, and the output position of monochromatic X-rays taken out from the spectrometer can be kept constant, making it easy to adjust the optical axis and reducing the manufacturing cost of the spectrometer. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による非平面分光結晶の一実施例を用い
た分光器の構成図、第2図は上記実施例の形状を示す図
で、(a)は正面図、(b)は側面図、第3図はチャン
ネルカット分光器の原理を示す図、第4図は2結晶分光
器の動作を示す図である。 1・・・X線発生装置!2・・・第1分光結晶3・・・
第2分光結晶 代理人弁理士  中 村 純之助 第1図 第2図 I:X線溌催想買   2−才1分υ台晶   3;才
2徐老、皓晶第3図 第4図
Fig. 1 is a block diagram of a spectrometer using an embodiment of a non-planar spectroscopic crystal according to the present invention, and Fig. 2 is a diagram showing the shape of the above embodiment, where (a) is a front view and (b) is a side view. 3 are diagrams showing the principle of a channel-cut spectrometer, and FIG. 4 is a diagram showing the operation of a two-crystal spectrometer. 1...X-ray generator! 2...First spectroscopic crystal 3...
2nd Spectroscopic Crystal Representative Patent Attorney Junnosuke Nakamura Figure 1 Figure 2 Figure I: X-ray inspiration purchase 2-year-old 1 minute υ table crystal 3;

Claims (1)

【特許請求の範囲】[Claims] 1、単一の単結晶から研削したチャンネルカット分光器
の非平面分光結晶において、X線発生装置から発生する
入射X線ビーム上に第1分光結晶を配設し、上記第1分
光結晶による回折X線上に第2分光結晶を配設し、上記
第1分光結晶および第2分光結晶の一方あるいは両方の
表面を、非平面に形成したことを特徴とする非平面分光
結晶。
1. In a non-planar spectroscopic crystal of a channel-cut spectrometer that is ground from a single single crystal, a first spectroscopic crystal is placed on an incident X-ray beam generated from an X-ray generator, and diffraction by the first spectroscopic crystal is performed. A non-planar spectroscopic crystal, characterized in that a second spectroscopic crystal is disposed on the X-ray, and one or both of the first and second spectroscopic crystals have a non-planar surface.
JP28936687A 1987-11-18 1987-11-18 Non-planar spectrocrystal Pending JPH01133000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28936687A JPH01133000A (en) 1987-11-18 1987-11-18 Non-planar spectrocrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28936687A JPH01133000A (en) 1987-11-18 1987-11-18 Non-planar spectrocrystal

Publications (1)

Publication Number Publication Date
JPH01133000A true JPH01133000A (en) 1989-05-25

Family

ID=17742277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28936687A Pending JPH01133000A (en) 1987-11-18 1987-11-18 Non-planar spectrocrystal

Country Status (1)

Country Link
JP (1) JPH01133000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322804A (en) * 1992-05-15 1993-12-07 Hitachi Ltd Method and device for measuring reflected profile of x ray
JP2008522142A (en) * 2004-11-29 2008-06-26 ストレステック,オウ Goniometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322804A (en) * 1992-05-15 1993-12-07 Hitachi Ltd Method and device for measuring reflected profile of x ray
JP2008522142A (en) * 2004-11-29 2008-06-26 ストレステック,オウ Goniometer

Similar Documents

Publication Publication Date Title
JP2007010483A (en) X-ray beam treating device and x-ray analyzer
Borst et al. Neutron measurements with the Brookhaven crystal spectrometer
Rife et al. Upgrades and recent performance of the grating/crystal monochromator
JPH08128971A (en) Exafs measuring device
JPH01133000A (en) Non-planar spectrocrystal
Boulle et al. Miscut angles measurement and precise sample positioning with a four circle diffractometer
Ishikawa X‐ray topography with highly collimated beam at photon factory
Goulon et al. Design of an X-ray Phase-Plate Analyzer to Measure the Circular Polarization Rate of a Helical Undulator Source
Seregin et al. Experimental and Theoretical Study of the Triple-Crystal High-Resolution X-Ray Diffraction Scheme in Reciprocal Space Mapping Technique
EP0163743B1 (en) Monochromator
Ionita et al. Design for a focusing high-resolution neutron crystal diffractometer
Seely et al. Tunable hard x-ray spectrometer utilizing asymmetric planes of a quartz transmission crystal
Wilkins et al. A class of condensing-collimating channel-cut monochromators for SAXS, XRPD, and other applications
JP2925817B2 (en) 2-crystal X-ray monochromator
SU898302A1 (en) X-ray spectrometer for investigating monocrystal structural perfection
Seitz et al. A high-energy triple-axis X-ray diffractometer for the study of the structure of bulk crystals
JP2955142B2 (en) Total reflection X-ray fluorescence analyzer
Brentano et al. LIX. Precision measurements of X-ray reflexions from crystal powders. The lattice constants of zinc carbonate, manganese carbonate, and cadmium oxide
JPH0762720B2 (en) Double crystal X-ray spectrometer
Christensen et al. A versatile three/four crystal X-ray diffractometer for X-ray optical elements: Performance and applications
JP2950959B2 (en) X-ray analyzer
SU842522A1 (en) X-ray spectrometer
Cauchois X-Ray spectrography by transmission of a non-collimated beam through a curved crystal
JPH06160312A (en) X-ray evaluation apparatus
JP2616452B2 (en) X-ray diffractometer