JPH01132952A - Electrophoresis apparatus - Google Patents

Electrophoresis apparatus

Info

Publication number
JPH01132952A
JPH01132952A JP62290810A JP29081087A JPH01132952A JP H01132952 A JPH01132952 A JP H01132952A JP 62290810 A JP62290810 A JP 62290810A JP 29081087 A JP29081087 A JP 29081087A JP H01132952 A JPH01132952 A JP H01132952A
Authority
JP
Japan
Prior art keywords
gel
electrophoresis
film
plate
cooling plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62290810A
Other languages
Japanese (ja)
Inventor
Ken Hirohashi
広橋 憲
Kichiji Karasawa
唐沢 吉治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO MEITO KK
Original Assignee
BIO MEITO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO MEITO KK filed Critical BIO MEITO KK
Priority to JP62290810A priority Critical patent/JPH01132952A/en
Publication of JPH01132952A publication Critical patent/JPH01132952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To make it possible to prevent the deactivation and the denaturation of a sample, by forming the surface of a cooling plate in a projecting surface, and bringing the surface and a film on which gel is attached into close contact. CONSTITUTION:A film 8 is mounted on a cooling plate 2, and a cap 10 is placed. Then, a curved part 9a of a pushing part compresses both parts of the film 8 to the plate 2 so as to fix both parts. At this time, the film 8 is in close contact with a projecting surface 2a of the cooling plate 2. Both end parts 8 and 8a are immersed in buffer liquid 5. Therefore, gel 7, which is supported with the film 8 is directly in contact with the buffer liquid 5, and an electric bridge for energization is not required. When a voltage is applied to an electrode line 6, the gel 7 is energized by the buffer liquid 5 directly, and electrophoresis is started. Since the gel 7 is uniformly conducted, an electric field in the gel 7 becomes uniform. Disturbance in electrophoresis pattern is eliminated. A cooling device 3 cools the plat 2 by the energization. Joule's heat, which is generated during the electrophoresis of the gel 7, is cooled. Therefore, the deactivation and the denaturation of a sample can be prevented beforehand.

Description

【発明の詳細な説明】 「技術分野」 本発明は電気泳動装置に係り、特に冷却装置を有し、か
つ電槽を用いない恒温電気泳動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to an electrophoresis apparatus, and particularly to a constant temperature electrophoresis apparatus that has a cooling device and does not use a battery case.

「従来技術およびその問題点」 電気泳動法は、荷電した試料に電圧を印加して分析する
方法である。電気泳動法の代表的な態様としては、ガラ
ス、プラスチックフィルム等の支持体に、試料に対して
不活性な膜形成材料、例えば寒天、セルロースアセテー
ト、デンプン、シリカゲル、ポリアクリルアミド等を塗
布または流延して電気泳動担体に緩衝液をしみ込ませ、
この上に分析する試料を添加して、上記電気泳動担体(
以下ゲルと称する)の両端に直流電圧を印加する。
"Prior art and its problems" Electrophoresis is a method of analysis by applying a voltage to a charged sample. A typical embodiment of the electrophoresis method involves coating or casting a film-forming material inert to the sample, such as agar, cellulose acetate, starch, silica gel, or polyacrylamide, on a support such as glass or plastic film. to impregnate the electrophoresis carrier with buffer solution,
The sample to be analyzed is added onto this, and the electrophoresis carrier (
A DC voltage is applied to both ends of the gel (hereinafter referred to as gel).

すると、電荷を帯びた試料性の成分は、その電荷、等電
点、分子量等に応じて、ゲル中あるいはその表面を移動
する。この移動速度は、試料中の成分の性質により異な
るので、一定時間電圧を印加すると、各成分が分離され
た電気泳動パターンが得られる。
Then, the charged component of the sample moves within the gel or on its surface depending on its charge, isoelectric point, molecular weight, etc. This movement speed varies depending on the properties of the components in the sample, so by applying a voltage for a certain period of time, an electrophoresis pattern in which each component is separated can be obtained.

この電気泳動法は、近年、生化学の分野では生理活性物
質のタンパク質の分析、臨床検査の分野では、血液、髄
液などの体液の分析を通じての病態の診断などに広く用
いられている。
In recent years, this electrophoresis method has been widely used in the field of biochemistry to analyze proteins that are physiologically active substances, and in the field of clinical testing to diagnose pathological conditions through analysis of body fluids such as blood and spinal fluid.

以上の電気泳動法による試料分析では、(1)電気泳動
中の試料の失活や変性防止、(2)電気泳動パターンの
再現性が重要である。
In sample analysis using the electrophoretic method described above, it is important to (1) prevent inactivation and denaturation of the sample during electrophoresis, and (2) reproducibility of the electrophoretic pattern.

まず(1)の試料の失活や変性、発生するジュール熱に
よって問題となる。電気泳動は、前述のように、ゲルの
両端に直流電圧を印加し、ゲル中に電流を流すことによ
って行なわれるが、特に近年、if気泳動時間を短縮す
るために、より高電圧をかける傾向があり、その電圧は
数kvにも達する。このため発生するジュール熱も大き
いものとなり、この熱のためにタンパク質のような試料
は、失活や変性を起こす可能性があり、起こせば、正確
な試料分析ができない。
First, the problem of (1) arises due to the deactivation and denaturation of the sample and the generated Joule heat. As mentioned above, electrophoresis is performed by applying a DC voltage to both ends of the gel and passing a current through the gel, but in recent years there has been a trend to apply higher voltages in order to shorten the electrophoresis time. The voltage reaches several kilovolts. For this reason, the generated Joule heat becomes large, and this heat can cause samples such as proteins to become inactivated or denatured, and if this happens, accurate sample analysis cannot be performed.

また、(2)の再現性に間する要因としては、ゲル中の
温度分布が一様でないこと、およびゲル中の電場の乱れ
である。ゲル中の温度分布を一様にするためには、ゲル
を一様に冷却すれば解決する。しかし、電場を一様にす
るためには、ゲルに電圧が一様に印加されなければなら
ない。従来、平面型の電気泳動装置のゲルに電圧を印加
する手段としては、炭素棒や白金線などの電気分解を起
こしにくい導体を緩?gj液に浸漬し、まず、緩衝液に
通電し、次にこの緩衝液とゲルの間は緩衝液を浸みこま
せたろ紙や多孔性のスポンジ等の塩橋を作って電気的に
結合していた。しかし、この方法だと、ろ紙やスポンジ
をゲル面に均一に接触させることは大変困難で、接触の
悪い部分は十分通電されないため、ゲル中の電場に乱れ
を生じ、その結果、泳動のパターンが乱れ、俗にウェー
ビングパターンと称される現象を呈する。また、ろ紙や
スポンジは、消耗品なので、泳動をするたびに新に用意
しなければならなく、操作が煩雑になるきらいがあった
Further, factors affecting the reproducibility of (2) are that the temperature distribution in the gel is not uniform and that the electric field in the gel is disturbed. In order to make the temperature distribution in the gel uniform, the problem can be solved by uniformly cooling the gel. However, in order to make the electric field uniform, the voltage must be uniformly applied to the gel. Conventionally, as a means of applying voltage to the gel in a planar electrophoresis device, loose conductors such as carbon rods and platinum wires that do not easily cause electrolysis have been used. Gj solution, first, electricity is applied to the buffer solution, and then a salt bridge made of filter paper or porous sponge impregnated with the buffer solution is created between the buffer solution and the gel to create an electrical connection. Ta. However, with this method, it is very difficult to bring the filter paper or sponge into uniform contact with the gel surface, and the areas with poor contact are not sufficiently energized, which causes disturbances in the electric field in the gel, and as a result, the migration pattern changes. It exhibits a phenomenon commonly referred to as a waving pattern. Furthermore, since filter paper and sponge are consumable items, new ones must be prepared each time electrophoresis is performed, which tends to make operations complicated.

このようなことを改良する目的でゲルを弧状の凹面に載
置してゲルの両端を直接緩衝液に接触させる装置も開示
されている。しかし、ゲルを載置するプレートが弧状の
凹面なので、この凹面プレートを冷却することは、構造
上非常に困難となり、また取り扱いも不便になるため冷
却機能を組み込むことは実質上不可能である。
In order to improve this problem, an apparatus has been disclosed in which a gel is placed on an arcuate concave surface and both ends of the gel are brought into direct contact with a buffer solution. However, since the plate on which the gel is placed has an arcuate concave surface, it is structurally very difficult to cool this concave plate, and it is also inconvenient to handle, so it is virtually impossible to incorporate a cooling function.

「発明の目的」 本発明の目的は、試料の失活や変性が起きにくく、泳動
パターンの乱れのない再現性の高い結果が得られる恒温
を気泳動装置を提供することにある。
``Object of the Invention'' An object of the present invention is to provide a constant temperature air phoresis device that is less likely to cause deactivation or denaturation of a sample and that can provide highly reproducible results without disrupting the electrophoresis pattern.

「発明の概要」 本発明は、ゲルを載置するプレートが冷却機能を備え、
プレート表面が弧状の凸面をなしているので、載置した
ゲルの両末端が直接電極棒の浸漬している緩衝液に触れ
て、緩衝液より直接ゲルに通電される仕組みを持ったこ
とを特徴としてる。
"Summary of the Invention" The present invention provides that the plate on which the gel is placed has a cooling function,
Since the plate surface has an arcuate convex surface, both ends of the gel placed on it directly touch the buffer solution in which the electrode rod is immersed, and the gel is electrically energized directly from the buffer solution. I'm doing it.

このようにすると、プレートが弧状の凸面をなしている
ので冷却機構を容易に組み込むことができる。また、こ
のようにすると、プレートが冷却機能を持ったため、電
気泳動中に発生するジュール熱を相殺することができる
ので、試料の失活や変性が起きない、また、ゲルを一様
に冷却するためには、冷却プレートの熱容量を発生する
ジュール熱に対し十分大きくとれば解決できる。
In this case, since the plate has an arcuate convex surface, a cooling mechanism can be easily incorporated. In addition, since the plate has a cooling function, the Joule heat generated during electrophoresis can be offset, so the sample will not be deactivated or denatured, and the gel will be cooled uniformly. This problem can be solved by making the heat capacity of the cooling plate sufficiently large compared to the Joule heat generated.

ゲルを載置する冷却プレートの表面は弧状の凸面をなし
、その上にaiしたゲルが冷却プレートの表面に密着し
て湾曲をなし、そのゲルの両端は直接電極棒の浸漬して
いる緩衝液に触れるため、緩衝液より直接ゲルに通電さ
れる。従って、従来のように、緩衝液とゲルの間を電気
的に接続する電橋が不要となり、その結果、ゲルは均一
に通電されてゲル中の電場は均一になり、泳動パターン
の乱れがなくなる。
The surface of the cooling plate on which the gel is placed has an arcuate convex surface, and the gel placed on it is in close contact with the surface of the cooling plate, forming a curve, and both ends of the gel are directly connected to the buffer solution in which the electrode rod is immersed. Since the gel is in contact with the gel, electricity is applied directly to the gel from the buffer solution. Therefore, unlike in the past, there is no need for an electric bridge that electrically connects the buffer solution and the gel, and as a result, the gel is uniformly energized, the electric field in the gel is uniform, and the migration pattern is not disturbed. .

本発明に使用されるゲルを載置するプレートはアルミニ
ュームや銅などの熱伝導性の良い材料より成り、表面は
エポキシ樹脂、ふっ素樹脂、アクリル樹脂、あるいはセ
ラミックのような電気絶縁体で覆われており、ゲル中を
流れるに流がプレート側に流れないようになっている。
The plate on which the gel used in the present invention is placed is made of a material with good thermal conductivity such as aluminum or copper, and the surface is covered with an electrical insulator such as epoxy resin, fluorine resin, acrylic resin, or ceramic. This prevents the flow through the gel from flowing toward the plate.

表面の形状は、前述したように弧状の凸面をなしている
。その曲率半径は操作性を妨げぬ限り任意に逼べるが、
一般に用いるゲルの泳動方向の長さに対して、その長さ
以下が望ましい。また二のプレートの下部には冷却装置
が付いている。
The surface has an arcuate convex shape as described above. The radius of curvature can be increased arbitrarily as long as it does not impede operability.
The length is preferably equal to or less than the length of a commonly used gel in the migration direction. There is also a cooling device attached to the bottom of the second plate.

本発明に用いられる冷却装置としては、すべての公知の
方法を用いることができるが、好ましくは、サーモモジ
ュールを利用した電子式冷却装置が適している。
Although all known methods can be used as the cooling device used in the present invention, an electronic cooling device using a thermo module is preferably suitable.

本発明で用いるゲルは、通常ポリエステル等のフィルム
でできた担体に保持されている。従って、このようなゲ
ルをプレートにそのまま密着させることはフィルムに弾
性があり困難である。そこで、これをプレートに密着さ
せる押えが必要となる。
The gel used in the present invention is usually held on a carrier made of a film such as polyester. Therefore, it is difficult to adhere such a gel to a plate as it is because the film is elastic. Therefore, a presser is required to hold it tightly against the plate.

この押えは電気絶縁性の弾性体でできていることが必要
で、電気絶縁性がないとゲル中を流れる電流が短絡する
危険がある。また、形状としては、プレートの凸面に沿
うような弧状であり、プレート面より少し小さな曲率半
径を持ち、これをゲルに押し付けることにより、押えの
弾力でゲルをプレートに密着させる。また、その他の形
状としては、細長い平板の弾性体を押し曲げたときに生
ずる弾性を利用して押さえる平板状のものもあげられる
。これら弾性体の材質としては、ポリピロピレン、硬質
ポリエチレン等のプラスチックを挙げることができる。
This presser foot must be made of an electrically insulating elastic material; if it is not electrically insulating, there is a risk that the current flowing through the gel will short-circuit. Further, the shape is an arc along the convex surface of the plate, and has a radius of curvature slightly smaller than the plate surface, and by pressing this against the gel, the gel is brought into close contact with the plate by the elasticity of the presser foot. In addition, other shapes include a flat plate shape that is pressed by utilizing the elasticity generated when a long and thin flat elastic body is pressed and bent. Examples of the material for these elastic bodies include plastics such as polypropylene and hard polyethylene.

この押えは電気泳動装置の本体より独立して設けること
が可能であるが、好ましくは電気泳動装置の蓋と一体に
なっており、蓋を閉めることによってこの押えが働き、
ゲルをプレートに密着させる仕組みとなっていることが
望ましい。
Although this presser foot can be provided independently from the main body of the electrophoresis device, it is preferably integrated with the lid of the electrophoresis device, and the presser foot works when the lid is closed.
It is desirable to have a mechanism that brings the gel into close contact with the plate.

[実施例コ 以下、図示の実施例によって本発明をさらに詳しく説明
する。
[Examples] The present invention will be explained in more detail below with reference to illustrated examples.

第1図は本発明に係わる電気泳動装置概要の透視図であ
り、第2図はI −I’  断面の断面図であり、本体
ケースl内の中央部に冷却プレートが固定されている。
FIG. 1 is a perspective view of an outline of an electrophoresis device according to the present invention, and FIG. 2 is a sectional view taken along the line I-I', in which a cooling plate is fixed to the center of the main body case l.

この冷却プレート2は、アルミニュウムや銅などの熱伝
導性の良好な材料からなり、表面2aが弧状の凸面に形
成され、エポキシ樹脂、アクリル樹脂、ふっ素樹脂、或
はセラミックのような電気絶縁体で被覆されている。
The cooling plate 2 is made of a material with good thermal conductivity such as aluminum or copper, and the surface 2a is formed into an arcuate convex surface, and is made of an electrical insulator such as epoxy resin, acrylic resin, fluororesin, or ceramic. Covered.

3は、冷却プレート2の下部に設けられたサーモモジュ
ール等の冷却装置であり、冷却プレート2を効率良く冷
却できるようにしである。4は、緩衝液5を収納した容
器であり、前記冷却プレート20両縁に沿って若干下方
に配設されている。
3 is a cooling device such as a thermo module provided at the lower part of the cooling plate 2, and is designed to efficiently cool the cooling plate 2. Reference numeral 4 denotes a container containing a buffer solution 5, which is disposed along both edges of the cooling plate 20 slightly below.

6は、前記緩衝液5に浸漬して容器4の内に配設された
電極棒であり、炭素棒や白金線などの導体で形成されて
いる。7は、ゲルであり、ポリエステル等のフィルム8
上に設けられ、このフィルム8は前記冷却プレート20
表面2aに押さえ9によって密着状態に載置される。こ
の押え9は、前記本体ケース1の蓋10の背面側に一対
取り付けられ、電気絶縁性の弾性体で形成されて湾曲部
9aを有し、この湾曲部の曲率半径は前記冷却プレート
2の凸面2aの曲率半径より若干小さく設定されている
Reference numeral 6 denotes an electrode rod that is immersed in the buffer solution 5 and placed inside the container 4, and is made of a conductor such as a carbon rod or a platinum wire. 7 is a gel, and a film 8 of polyester or the like
This film 8 is provided on the cooling plate 20.
It is placed in close contact with the surface 2a by a presser 9. A pair of presser feet 9 are attached to the back side of the lid 10 of the main body case 1, and are made of an electrically insulating elastic material and have a curved portion 9a, and the radius of curvature of this curved portion is the same as that of the convex surface of the cooling plate 2. The radius of curvature is set slightly smaller than the radius of curvature of 2a.

本発明による電気泳動装置は上記のように構成され、前
記フィルム8を冷却プレート2の上に載置して蓋IOを
すると、押えの湾曲部9aがフィルム8の両測部を冷却
プレート2に圧着固定することができる。このとき、フ
ィルム8は冷却プレートの凸面2aに密着し、両端部8
aは前記緩衝液5中に浸漬される。従って、フィルム8
に担持されているゲル7は、緩衝液5に直接接触するこ
とになり、従来のような通電用の電槽が不要となる。
The electrophoresis apparatus according to the present invention is constructed as described above, and when the film 8 is placed on the cooling plate 2 and the lid IO is closed, the curved part 9a of the presser foot pushes both measuring parts of the film 8 onto the cooling plate 2. Can be fixed by crimping. At this time, the film 8 is in close contact with the convex surface 2a of the cooling plate, and both ends 8
a is immersed in the buffer solution 5. Therefore, film 8
The gel 7 supported on the buffer solution 5 comes into direct contact with the buffer solution 5, and a conventional electrical container is not required.

前記電極線6に電圧を印加すると、緩衝液5より直接ゲ
ル7に通電されて電気泳動が開始されるが、この場合ゲ
ル7は均一に通電されるので、ゲル中の電場は均一にな
り、泳動パターンの乱れがなくなる。
When a voltage is applied to the electrode wire 6, the gel 7 is energized directly from the buffer solution 5 and electrophoresis is started. In this case, the gel 7 is energized uniformly, so the electric field in the gel becomes uniform. Disturbances in migration patterns are eliminated.

前記冷却装置3は、通電により冷却プレート2を冷却す
る作用をなし、この結果ゲル7のi′li気泳動中に発
生するジュール熱を冷やすので、試料の失活や変性を未
然に防止し、正確な試料分析を実施することが可能とな
る。
The cooling device 3 has the function of cooling the cooling plate 2 by applying electricity, and as a result cools the Joule heat generated during i'li aerophoresis of the gel 7, thereby preventing deactivation and denaturation of the sample, It becomes possible to perform accurate sample analysis.

[発明の効果] 以上説明したように、本発明によれば、冷却プレートの
表面を弧状の凸面に形成したので、その凸面にゲルを付
着させたフィルムを密着させると、ゲルの両端部が緩衝
液に浸漬されてゲルに直接電気的接続がなされ、従来の
ような電槽が不要になるとともに、ゲルに均一の電圧を
かけてゲル中の電場の乱れを防止する等の優れた効果を
奏する。
[Effects of the Invention] As explained above, according to the present invention, the surface of the cooling plate is formed into an arcuate convex surface, so when a film on which gel is adhered is closely attached to the convex surface, both ends of the gel are buffered. It is immersed in a liquid and electrically connected directly to the gel, eliminating the need for a conventional battery case, and has excellent effects such as applying a uniform voltage to the gel and preventing disturbances in the electric field within the gel. .

また、冷却プレートの下部に冷却装置を設けたので、電
気泳動中に発生するジュール熱を速やかに除去し、熱に
よる試料の失活や変性を防止することができ、高電圧を
かけて電気泳動時間を短縮することも可能である。
In addition, a cooling device is installed at the bottom of the cooling plate, which quickly removes Joule heat generated during electrophoresis and prevents sample deactivation and denaturation due to heat. It is also possible to shorten the time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示す概要の斜視図、第2図
は第1図の1−1’  線に沿う断面図、第3図は、従
来例の概略斜視図である。 l・・・本体ケース  2・・・冷却プレート3・・・
冷却装置   4・・・容器 5・・・緩衝液    6・・・電極棒7・・・ゲル 
    8・・・フィルム9・・・押さえ   lO・
・・蓋 11・・・塩橋 特許出願人  株式会社  バイオメイト第1図 第2図
FIG. 1 is a schematic perspective view showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line 1-1' in FIG. 1, and FIG. 3 is a schematic perspective view of a conventional example. l... Main body case 2... Cooling plate 3...
Cooling device 4... Container 5... Buffer solution 6... Electrode rod 7... Gel
8...Film 9...Holder lO・
... Lid 11 ... Shiobashi Patent Applicant Biomate Co., Ltd. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)電気泳動担体を載置するプレートの表面が、載置
した電気泳動担体の両端で電圧を印加する緩衝液に直接
接触するように弧状の凸面をなし、かつ、このプレート
に冷却装置が具備されていることを特徴とする恒温電気
泳動装置。
(1) The surface of the plate on which the electrophoretic carrier is placed is an arcuate convex surface so as to be in direct contact with the buffer solution that applies voltage at both ends of the electrophoretic carrier placed on it, and the plate is equipped with a cooling device. A constant temperature electrophoresis apparatus comprising:
(2)冷却プレートに載置した電気泳動担体が冷却プレ
ートに密着するように電気絶縁性の弾性体よりなる電気
泳動担体の押えを具備したことを特徴とする特許請求範
囲第(1)項記載の恒温電気泳動装置。
(2) Claim (1) characterized in that the electrophoretic carrier is provided with an electrophoretic carrier presser made of an electrically insulating elastic material so that the electrophoretic carrier placed on the cooling plate is brought into close contact with the cooling plate. thermostatic electrophoresis device.
(3)電気泳動担体の押えが電気泳動装置の蓋に装着さ
れていることを特徴とする特許請求範囲第(2)項記載
の恒温電気泳動装置。
(3) A thermostatic electrophoresis apparatus according to claim (2), characterized in that a presser for the electrophoresis carrier is attached to a lid of the electrophoresis apparatus.
JP62290810A 1987-11-18 1987-11-18 Electrophoresis apparatus Pending JPH01132952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290810A JPH01132952A (en) 1987-11-18 1987-11-18 Electrophoresis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290810A JPH01132952A (en) 1987-11-18 1987-11-18 Electrophoresis apparatus

Publications (1)

Publication Number Publication Date
JPH01132952A true JPH01132952A (en) 1989-05-25

Family

ID=17760775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290810A Pending JPH01132952A (en) 1987-11-18 1987-11-18 Electrophoresis apparatus

Country Status (1)

Country Link
JP (1) JPH01132952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068951A1 (en) * 2001-02-28 2002-09-06 Kabushiki Kaisya Advance Subminiature electrophoresis device
JP2006266875A (en) * 2005-03-24 2006-10-05 Jokoh Co Ltd Simplified electrophoretic device
WO2009127911A1 (en) * 2008-04-14 2009-10-22 Hafid Mezdour Apparatus and method for non immersed gel electrophoresis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068951A1 (en) * 2001-02-28 2002-09-06 Kabushiki Kaisya Advance Subminiature electrophoresis device
JP2006266875A (en) * 2005-03-24 2006-10-05 Jokoh Co Ltd Simplified electrophoretic device
WO2009127911A1 (en) * 2008-04-14 2009-10-22 Hafid Mezdour Apparatus and method for non immersed gel electrophoresis
US20110024293A1 (en) * 2008-04-14 2011-02-03 Hafid Mezdour Apparatus and method for non immersed gel electrophoresis
JP2011517782A (en) * 2008-04-14 2011-06-16 フォレクシー Apparatus and method for non-immersive electrophoresis

Similar Documents

Publication Publication Date Title
EP0291063A2 (en) Electroblotting apparatus and method for transferring specimens from a polyacrylamide electrophoresis or like gel onto a membrane
US4061561A (en) Automatic multiple-sample applicator and electrophoresis apparatus
JP3882484B2 (en) Electrophoresis method, electrophoresis apparatus and capillary array
JP2780929B2 (en) Apparatus and method for measuring thermal conductivity
US5637203A (en) Platform for conducting electrophoresis, and electrophoresis plate for use with the platform
FR2598227B1 (en) METHOD FOR DETECTION AND / OR IDENTIFICATION OF A BIOLOGICAL SUBSTANCE IN A LIQUID MEDIUM USING ELECTRICAL MEASUREMENTS, AND DEVICE FOR CARRYING OUT SAID METHOD
US20210404987A1 (en) Capillary electrophoresis apparatus and thermostat
EP1828760A1 (en) Method and apparatus for the simultaneous separation of biological molecules by two dimensional electrophoresis
US5888369A (en) Apparatus for conducting electrophoresis experiments
JP3418292B2 (en) Gene analyzer
US2768948A (en) Method and apparatus for ionography
JPH01132952A (en) Electrophoresis apparatus
JPS5842423B2 (en) Denkiaidou Slide Toritsukesouchi
US4414073A (en) Supporting body cell in electrophoretic apparatus
WO1999045373A1 (en) Apparatus for producing electrophoresis gels
US4190517A (en) Electrophoresis apparatus
US5445723A (en) Blotting apparatus
JP3047141B2 (en) Parallel plate dielectric constant measuring device
EP0455955B1 (en) Transverse forced gas cooling for capillary zone electrophoresis
EP0019001B1 (en) Electrophoretically concentrating apparatus
JP5135530B2 (en) Apparatus and method for non-immersive electrophoresis
JPH01100448A (en) Gel medium for isoelectric point electrophoresis
Amess et al. Programmed cell death in sympathetic neurons: A study by two‐dimensional polyacrylamide gel electrophoresis using computer image analysis
JP2020101570A (en) Capillary electrophoresis apparatus and constant temperature bath
Murel et al. The electric field strength across isoelectric focusing gel slabs determined by an accurate and convenient method