JPH01132628A - Aromatic polyester - Google Patents

Aromatic polyester

Info

Publication number
JPH01132628A
JPH01132628A JP29119687A JP29119687A JPH01132628A JP H01132628 A JPH01132628 A JP H01132628A JP 29119687 A JP29119687 A JP 29119687A JP 29119687 A JP29119687 A JP 29119687A JP H01132628 A JPH01132628 A JP H01132628A
Authority
JP
Japan
Prior art keywords
mol
aromatic polyester
temperature
polymer
structural units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29119687A
Other languages
Japanese (ja)
Inventor
Hiroaki Sugimoto
杉本 宏明
Yoshitaka Obe
大部 良隆
Kazuo Hayatsu
早津 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP29119687A priority Critical patent/JPH01132628A/en
Publication of JPH01132628A publication Critical patent/JPH01132628A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an aromatic polyester satisfactorily possessing both of melt moldability and heat resistance and being capable of giving a molding having sufficiently practical mechanical properties and a high whiteness, containing three kinds of specified repeating units at a specified ratio. CONSTITUTION:This aromatic polyester contains 30-80mol% repeating structural units of formula I, 10-35mol% repeating structural units of formula III, wherein Ar1 is selected from the groups of formulas IV and V, 50-100mol% of Ar1 groups are bivalent aromatic groups of formula IV,and Ar2 is a bivalent aromatic group.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は物性に優れ、且つ、溶融成形性の良好な芳香族
ポリエステルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an aromatic polyester having excellent physical properties and good melt moldability.

〔従来の技術〕[Conventional technology]

ポリエステルを得る試みは古くから種々なされてきてい
る。例えば、ジカルボン酸とジオールとの重縮合反応で
得られるポリエステルであるポリエチレンテレフタレー
ト(以下1’−PETJと記す)は、融点が260″C
で成形性の優れた汎用ポリエステルとして知られている
。また、オキシ酸の一種であるp−とドロキシ安息香酸
を重縮合して得られるー←o −(D−c o+なる繰
返し構造単位を有する芳香族ポリエステル■ (例えば、住友化学工業■製のエコノール E−101
)のように、高結晶性で800″Cにおいても全く分解
しない極めて耐熱性に優れた特殊なポリエステルも知ら
れている。更にまた、ジカルボン酸、ジオール及びオキ
シ酸を重縮合反応させて得られるポリエステルとして、
特公昭47−47870号公報にはテレフタル酸、ヒド
ロキノン及びp−ヒドロキシ安息香酸を重縮合反応させ
て得られるポリエステルが示され。
Various attempts have been made to obtain polyester for a long time. For example, polyethylene terephthalate (hereinafter referred to as 1'-PETJ), which is a polyester obtained by the polycondensation reaction of dicarboxylic acid and diol, has a melting point of 260"C.
It is known as a general-purpose polyester with excellent moldability. In addition, an aromatic polyester having a repeating structural unit of -←o-(D-co+) obtained by polycondensation of p-, which is a type of oxyacid, and droxybenzoic acid (for example, Econol manufactured by Sumitomo Chemical Co., Ltd.) E-101
), special polyesters with high crystallinity and excellent heat resistance that do not decompose at all even at 800"C are also known.Furthermore, polyesters obtained by polycondensation reaction of dicarboxylic acids, diols, and oxyacids are also known. As polyester,
Japanese Patent Publication No. 47-47870 discloses a polyester obtained by polycondensation reaction of terephthalic acid, hydroquinone and p-hydroxybenzoic acid.

ている。ing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、成形性と耐熱性とは裏腹の関係にあると言われ
ており、これら両方の性質を良好に併せ持つがリエステ
ルは未だ知られていない。
However, moldability and heat resistance are said to be in a contradictory relationship, and although it has both of these properties well, realesters are not yet known.

すなわち、上記PETは成形性に優れるものの200℃
を越える用途には用いることができず、また、上記エコ
ノール■E−101のような芳香族ポリエステルは耐熱
性に優れるものの融点が500℃を越えるので溶融成形
性が極めて困難である。また、特公昭47−47870
号公報のポリエステルは重合時や成形時に着色し易いた
め、得られた成形品の多くは白色度の点において満足し
得るものではない。
That is, although the above PET has excellent moldability, it
Further, although aromatic polyesters such as ECONOL E-101 have excellent heat resistance, their melting point exceeds 500 DEG C., making melt moldability extremely difficult. Also, special public service No. 47-47870
Since the polyester disclosed in the publication is easily colored during polymerization and molding, most of the molded products obtained are not satisfactory in terms of whiteness.

本発明の目的は、成形性(特に溶融成形性)と耐熱性と
を良好に併せ持ちながら十分に実用性のある機械的物性
等を有し、しかも白色度の高い成形品を与える芳香族ポ
リエステルを提供することにある。
The object of the present invention is to create an aromatic polyester that has a good combination of moldability (particularly melt moldability) and heat resistance, has sufficiently practical mechanical properties, and can yield molded products with high whiteness. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは+08 CO+なる繰返し構造単位を含む
耐熱性の芳香族ポリエステルについて研究を続けてきた
。その結果、特定の単量体成分を特定の割合で重縮合反
応させることによって、優れた成形性と耐熱性とを併せ
持ちながら良好な機械的物性等を有し、しかも白色度の
高い成形品を与える芳香族ポリエステルが得られること
を知見し、本発明を完成させるに至った。
The present inventors have continued research on heat-resistant aromatic polyester containing a +08 CO+ repeating structural unit. As a result, by performing a polycondensation reaction of specific monomer components in a specific ratio, molded products with excellent moldability and heat resistance, good mechanical properties, etc., and high whiteness can be produced. The present inventors have discovered that aromatic polyesters can be obtained, and have completed the present invention.

すなわち、本発明は、下式で表わされる繰返し構造単位
(A) 80〜80 モル%、(B)10〜35モル%
、及び(C) 10〜35モル%からなる芳香族ポリエ
ステルである。
That is, the present invention comprises repeating structural units represented by the following formula (A) 80 to 80 mol%, (B) 10 to 35 mol%
, and (C) an aromatic polyester consisting of 10 to 35 mol%.

+o  Art−C0−)−(A) −t 0CHICH,0CO−@=c00C3CHtO
+  (B)+C0−Ar2−CO+(C) (式中、Arl Eよ告と、(ε〔〕′ とからなる群
から選ばれ、且つ、その中の50〜100モル%が−(
今一である二価の芳香族であり、Arlは二価の芳香族
基である。) 本発明の芳香族ポリエステルは、下記(A)′、(B)
′及び(C)′で表わされる化合物を(A)’80〜8
0モル%、(B)’10〜35モル%及び(C)゛10
〜35モル%の割合で重縮合反応させることによって製
造することができる。
+o Art-C0-)-(A) -t 0CHICH,0CO-@=c00C3CHtO
+ (B)+C0-Ar2-CO+(C) (wherein ArlE is selected from the group consisting of
is a monovalent divalent aromatic group, and Arl is a divalent aromatic group. ) The aromatic polyester of the present invention has the following (A)', (B)
' and (C)' The compound represented by (A)'80-8
0 mol%, (B)'10-35 mol% and (C)'10
It can be produced by carrying out a polycondensation reaction at a ratio of ~35 mol%.

(A)’ HO−Ar、−COOH又はそのエステル形
成性誘導体 (B)IHo−cH!ch−oco−@)−cooch
ch−oH又はそのエステル形成性誘導体 (C)・HOCO−Ar、−COOH又はソノエステル
形成性誘導体 (式中、Ar、は−8←と、〔Σ唾す′  とからなる
群から選ばれ、且つ、その中の50〜100モル%が−
0−である二価の芳香族基であり、A rfiは二価の
芳香族基である。)上述の式(ハ)、@及び0で表わさ
れる各繰返し構造単位の構成割合(モル)が(A) 8
0〜80%、(B) 10〜86%及び(C) 10〜
35%であるぼりエステルからは、結晶性で耐熱性に優
れ、且つ、溶融時に光学異方性を示し成形性が良好で、
しかも白色度の高い成形品が得られる。
(A)' HO-Ar, -COOH or its ester-forming derivative (B) IHo-cH! ch-oco-@)-cooch
ch-oH or an ester-forming derivative thereof (C) HOCO-Ar, -COOH or a sonoester-forming derivative (wherein Ar is selected from the group consisting of -8← and [ΣSip', and , 50 to 100 mol% of it is -
0-, and A rfi is a divalent aromatic group. ) The constituent proportion (mol) of each repeating structural unit represented by the above formula (c), @ and 0 is (A) 8
0-80%, (B) 10-86% and (C) 10-86%
The 35% bori ester is crystalline and has excellent heat resistance, and also exhibits optical anisotropy when melted and has good moldability.
Moreover, molded products with high whiteness can be obtained.

構造単位(A)の割合が80%を越えると、ポリエステ
ル中に加熱によって溶融しない部分が存在するため成形
性が不良になり、又、80%未満ではポリエステルの結
晶性あるいは溶融時に異方性を示す特徴が失われ好まし
くなく、さら番ζ構造単位(A)のうち少なくとも50
%がへ臣Σでないと、結晶性あるいは溶融時の異方性が
減少し、成形性と物性の両面で好ましくない。構造単位
(B)及び(C)の割合が10〜35%にある時、ポリ
エステルはバランスの良い特徴を与える。
If the proportion of the structural unit (A) exceeds 80%, there will be parts in the polyester that do not melt when heated, resulting in poor moldability, and if it is less than 80%, the polyester will have poor crystallinity or anisotropy during melting. At least 50 of the straight number ζ structural units (A) are
% is not Σ, crystallinity or anisotropy during melting decreases, which is unfavorable in terms of both formability and physical properties. When the proportion of structural units (B) and (C) is between 10 and 35%, the polyester provides well-balanced characteristics.

上記(A)′で表わされる化合物としてp−ヒドロキシ
安息香酸、p−ホルモキシ安息香酸、p−アセトキシ安
息香酸、p−プロビロキシ安息香酸、p−ヒドロキシ安
息香酸メチル、p−ヒドロキシ安息香酸フェニル、p−
ヒドロキシ安息香酸ベンジル、p−アセトキシ安息香酸
メチル、2−ヒドロキシ−6−ナフトエ酸、2−アセト
キシ−6−ナフトエ酸、2−ヒドロキシ−6−ナフトエ
酸メチル、2−ヒドロキシ−6−ナフトエ酸フェニル、
2−アセトキシ−6−ナフトエ酸メチル等を例示するこ
とができる。
The compounds represented by (A)′ above include p-hydroxybenzoic acid, p-formoxybenzoic acid, p-acetoxybenzoic acid, p-probyloxybenzoic acid, methyl p-hydroxybenzoate, phenyl p-hydroxybenzoate, p-
Benzyl hydroxybenzoate, methyl p-acetoxybenzoate, 2-hydroxy-6-naphthoic acid, 2-acetoxy-6-naphthoic acid, methyl 2-hydroxy-6-naphthoate, phenyl 2-hydroxy-6-naphthoate,
Examples include methyl 2-acetoxy-6-naphthoate.

上記(B)′で表わされる化合物として、ビス−(β−
ヒドロキシエチル)テレフタレート、ビス−(β−アセ
トキシエチル)テレフタレート、ビス−(β−プロビロ
キシエチル)テレフタレート等を例示することができる
As the compound represented by (B)′ above, bis-(β-
Examples include hydroxyethyl) terephthalate, bis-(β-acetoxyethyl) terephthalate, and bis-(β-probyloxyethyl) terephthalate.

上記(C)′で表わされる化合物として2,6−ジカル
ボキシナフタレン、2.7−ジカルボキシナフタレン、
テレフタル酸、イソフタル酸、4.4′−ジカルボキシ
ジフェニル、1.2−ビス(4−カルボキシフェノキシ
)エタン、及びこれらジカルボン酸のメチルエステル、
フエニ(C)・で表わされる化合物を重合槽中で重縮合
反応させることによって得られる。これら化合物を重合
槽へ仕込む方式は一括方式でも分割方式でもよく、プロ
セスは回分式、連続式またはそれ等の組合せでもよい。
As the compound represented by (C)' above, 2,6-dicarboxynaphthalene, 2,7-dicarboxynaphthalene,
Terephthalic acid, isophthalic acid, 4,4'-dicarboxydiphenyl, 1,2-bis(4-carboxyphenoxy)ethane, and methyl esters of these dicarboxylic acids,
It is obtained by polycondensing a compound represented by pheni(C)· in a polymerization tank. The method of charging these compounds into the polymerization tank may be a batch method or a divided method, and the process may be a batch method, a continuous method, or a combination thereof.

本発明における重縮合反応の温度は250〜350℃が
好ましく、より好ましくは280〜s a o ”cで
ある。温度が250 ”Cより低いと反応は起こりにく
く、350°Cを越えると分解等の副反応が起こる場合
がある。多段階の反応温度を採用しても構わないし、場
合により重縮合反応系を目標の温度にまで昇温させたあ
と直ちに降温させてもよい。重縮合反応の時間は該重縮
合反応の温度において0.5〜10時間が好ましい。該
重縮合反応は常圧、減圧またはそれ等の組合せで行うこ
とができる。重縮合反応は溶媒なしでも好都合に進行す
るが、必要に応じて沸点の高い炭化水素類、エーテル類
、シリコン油、フッ素油等を溶媒として使用してもよい
The temperature of the polycondensation reaction in the present invention is preferably 250 to 350°C, more preferably 280 to 280°C. If the temperature is lower than 250°C, the reaction is difficult to occur, and if it exceeds 350°C, decomposition etc. Side reactions may occur. A multi-step reaction temperature may be used, and in some cases, the polycondensation reaction system may be heated to a target temperature and then immediately lowered. The time for the polycondensation reaction is preferably 0.5 to 10 hours at the temperature of the polycondensation reaction. The polycondensation reaction can be carried out under normal pressure, reduced pressure, or a combination thereof. The polycondensation reaction proceeds conveniently without a solvent, but if necessary, hydrocarbons with a high boiling point, ethers, silicone oil, fluorine oil, etc. may be used as a solvent.

本発明における重縮合反応は触媒なしでも好都合に進行
するが、必要に応じてスズ化合物、アンチモン化合物、
チタン化合物、ゲルマニウム化合物、リン化合物、ア主
ン化合物等を触媒として使用することができる。(A)
’、CB)’  及び(C)′で表わされる化合物の他
に安定剤、充填剤等を併用して本発明の重縮合反応を行
うこともできる。
The polycondensation reaction in the present invention proceeds conveniently without a catalyst, but if necessary, a tin compound, an antimony compound,
Titanium compounds, germanium compounds, phosphorus compounds, amine compounds, etc. can be used as catalysts. (A)
In addition to the compounds represented by ', CB)' and (C)', stabilizers, fillers, etc. can also be used in combination to carry out the polycondensation reaction of the present invention.

本発明の芳香族ポリエステルの場合、その分子量を測定
する方法が未だ見出されていないか、又は見出されてい
ても測定値の精度や再現性が良好でないものがある。そ
こで、得られた芳香族ポリエステルの分子量に代えて、
熱可塑性樹脂の加熱による溶融流動性を表わすものとし
てフロー温度(後述)を採用した。フロー温度が低い樹
脂はど溶融流動性が大、つまり分子量が小の樹脂である
ことを示す。本発明の芳香族ポリエステルのフロー温度
j、t170〜880°C1好ましくは200〜300
℃である。フロー温度が170 ’C未満のものは分子
量が低く耐熱性が劣っており、成形性に問題があったり
成形品の物性が不十分であったりする。また、フロー温
度が380℃を越えるものは成形することができないこ
とが多(、高温下では熱分解の問題が生じてくる。
In the case of the aromatic polyester of the present invention, a method for measuring its molecular weight has not yet been found, or even if it has been found, the precision and reproducibility of the measured values may not be good. Therefore, instead of the molecular weight of the aromatic polyester obtained,
Flow temperature (described later) was used to represent the melt fluidity of the thermoplastic resin due to heating. A resin with a low flow temperature indicates a resin with high melt fluidity, that is, a low molecular weight. Flow temperature j of the aromatic polyester of the present invention, t170~880°C1 Preferably 200~300
It is ℃. If the flow temperature is less than 170'C, the molecular weight is low and the heat resistance is poor, resulting in problems in moldability or insufficient physical properties of the molded product. Moreover, it is often impossible to mold products with a flow temperature exceeding 380° C. (The problem of thermal decomposition occurs at high temperatures.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、上述の式(ホ)、(ハ)及び0で表わ
される繰返し構造単位を特定の割合で含む芳香族ポリエ
ステルは、成形性(特に溶融成形性)と耐熱性とを良好
に併せ持ちながら十分に実用性のある機械的物性等を有
し、しかも白色度の高い成形品を与える芳香族ポリエス
テルである。
According to the present invention, the aromatic polyester containing repeating structural units represented by the above formulas (e), (c), and 0 in a specific ratio has good moldability (particularly melt moldability) and heat resistance. It is an aromatic polyester that has sufficient practical mechanical properties and provides molded products with a high degree of whiteness.

後述する比較例1で示すように、これらの繰返し構造単
位の割合が本発明で特定された範囲外である芳香族ポリ
エステルは溶融成形することができなかった。また、従
来の技術の項で引用した特公昭47−47870号公報
に記載された型の芳香族ポリエステル(比較例2)は、
成形性と耐熱性は比較的良好であるものの350°C以
上の成形温度を必要とし、重合時および成形時に着色し
て白色度の大幅に劣った成形品しか与えなかった。
As shown in Comparative Example 1, which will be described later, an aromatic polyester in which the ratio of these repeating structural units was outside the range specified in the present invention could not be melt-molded. In addition, the aromatic polyester of the type described in Japanese Patent Publication No. 47-47870 (Comparative Example 2) cited in the section of the prior art was
Although the moldability and heat resistance were relatively good, it required a molding temperature of 350°C or higher, and although it was colored during polymerization and molding, only molded products with significantly inferior whiteness were obtained.

これに対して、本発明の実施例で得られるポリエステル
は溶融時に光学異方性を示し、350℃以下で成形する
ことができることから、成形性と耐熱性とを良好に併せ
持ちながら十分に実用性のある機械的物性等を有し、し
かも白色度の高い成形品を与える芳香族ポリエステルが
得られるのである。
On the other hand, the polyester obtained in the examples of the present invention exhibits optical anisotropy when melted and can be molded at 350°C or lower, so it has good moldability and heat resistance and is sufficiently practical. This makes it possible to obtain an aromatic polyester that has certain mechanical properties and provides molded products with a high degree of whiteness.

本発明の芳香族ポリエステルは結晶性であり、高温下で
の溶融成形時や使用時において安定で牛る1・ 本発明の芳香族ポリエステルは繊維、フィルム、各種の
形状を有するものに成形して用いることができるのみな
らず、該芳香族ポリエステルとガラス繊維、マイカ、タ
ルク、シリカ、チタン酸カリウム、ウオラストナイト、
炭酸カルシウム、石英、酸化鉄、グラファイト、炭素繊
維等とからなる組成物は機械的性質、電気的性質、耐薬
品性、耐油性に優れているので機械部品、電気・電子部
品、自動車部品等に用いることができる。
The aromatic polyester of the present invention is crystalline and stable during melt molding at high temperatures and during use. Not only can it be used, but also the aromatic polyester and glass fiber, mica, talc, silica, potassium titanate, wollastonite,
Compositions made of calcium carbonate, quartz, iron oxide, graphite, carbon fiber, etc. have excellent mechanical properties, electrical properties, chemical resistance, and oil resistance, so they are used in mechanical parts, electrical/electronic parts, automobile parts, etc. Can be used.

〔実施例〕〔Example〕

以下、本発明の実施例を示すが、本発明はこれに限定さ
れるものではない。なお、実施例中の物性測定の方法は
次の通りである。
Examples of the present invention will be shown below, but the present invention is not limited thereto. In addition, the method of measuring physical properties in Examples is as follows.

フロー温度:■島津製作所製フローテスター■CFT−
500型で測定され、4℃/分の昇温速度で加熱溶融さ
れたサンプル樹脂を10゜kq / dの荷重の下で内
径1ff、長さ10ffのノズルから押出した時に、該
溶融粘度が48.000ポイズを示す点における温度と
して表わした。
Flow temperature: ■ Shimadzu flow tester ■ CFT-
When a sample resin heated and melted at a heating rate of 4°C/min was extruded using a nozzle with an inner diameter of 1ff and a length of 10ff under a load of 10°kq/d, the melt viscosity was 48. It was expressed as the temperature at a point showing .000 poise.

溶融異方性:加熱ステージ上に粒径250μm以下のポ
リエステル粉末を置いて、偏光下25°C/分で昇温し
で、肉眼観察により行った。
Melting anisotropy: Polyester powder with a particle size of 250 μm or less was placed on a heating stage, heated at 25° C./min under polarized light, and visually observed.

重量減少:理学電機■製の熱天秤TG−DTA標準型を
用いて、粒径250μm以下のサンプル樹脂約20岬を
空気中において昇温速度10°C/分で加熱した時の重
量の経時変化を測定した。また、この測定値から、もと
の重量に対して2.5%の重量減少率を示す温度を求め
た。
Weight loss: Change in weight over time when approximately 20 sample resins with a particle size of 250 μm or less were heated in air at a temperature increase rate of 10°C/min using a thermobalance TG-DTA standard type manufactured by Rigaku Denki ■. was measured. Further, from this measured value, the temperature at which the weight loss rate was 2.5% with respect to the original weight was determined.

引張試験: ASTM D−688に準拠し、ダンベル
型試験片を用い、試料数6、標線間距離40鰭、引張速
度5 ff /分で行った。
Tensile test: In accordance with ASTM D-688, a dumbbell-shaped test piece was used, the number of samples was 6, the distance between gauge lines was 40 fins, and the tensile rate was 5 ff/min.

熱変形温度: ASTM D−648に従い、圧力18
.6に9/dで測定した。
Heat distortion temperature: Pressure 18 according to ASTM D-648
.. Measured at 6 to 9/d.

成形品の白色度:大きさ40ffX40111の板状成
形品を用い、日本定色工業■製のデジタル色差計ND−
101−DP型により測定した。測定値は、純黒を0、
純白を100とし、酸化チタンの標準品(白色度94.
5)で補正して求めた。
Whiteness of molded product: Using a plate-shaped molded product with a size of 40ff x 40111, a digital color difference meter ND- manufactured by Nippon Seishoku Kogyo ■ was used.
Measured using Model 101-DP. The measured value is 0 for pure black,
Pure white is 100, and titanium oxide standard product (whiteness 94.
5) was corrected.

実施例1 繰返し構造単位のモル比(6):(ハ):(C)=60
:20:20の例を示す。
Example 1 Molar ratio of repeating structural units (6):(c):(C)=60
:20:20 is shown as an example.

櫛型撹拌翼を有し重合槽の槽壁と撹拌翼との間隙の小i
い重合槽にp−ヒドロキシ安息香酸828F(6,00
モル)゛、ビス−(β−ヒドロキシエチル)テレフタレ
ート508F(2,00モル)、テレフタル酸882f
(2,00モル)及び無水酢酸1128f(11,00
モル)を仕込んだ。
It has comb-shaped stirring blades and the gap between the tank wall of the polymerization tank and the stirring blade is small.
p-hydroxybenzoic acid 828F (6,000
mol)゛, bis-(β-hydroxyethyl) terephthalate 508F (2,00 mol), terephthalic acid 882f
(2,00 mol) and acetic anhydride 1128f (11,00 mol)
Mol) was prepared.

内容物を窒素雰囲気下で撹拌しながら昇温し、140℃
で還流させながら2時間、アセチル化反応を行った。こ
の反応物を一部サンプリングし、メタノールに溶解して
液体クロマトグラフで分析(カラム: waters社
製マイクロボンダパックC18、キャリヤー溶媒:メタ
ノール/水=2/l  vol比)したところ、出発原
料であるp−ヒドロキシ安息香酸とビス−(β−ヒドロ
キシエチル)テレフタレートのヒドロキシル体はいずれ
も検出されなかった。
The contents were heated to 140°C while stirring under a nitrogen atmosphere.
The acetylation reaction was carried out for 2 hours while refluxing. A portion of this reaction product was sampled, dissolved in methanol, and analyzed by liquid chromatography (column: Microbondapak C18 manufactured by Waters, carrier solvent: methanol/water = 2/l vol ratio), and it was found that it was the starting material. Neither hydroxyl forms of p-hydroxybenzoic acid nor bis-(β-hydroxyethyl) terephthalate were detected.

アセチル化後、さらに、撹拌しながら徐々に昇温し80
0°Cで80分間、315°Cで80分間、そして更に
4.9torrの減圧下815°Cで2時間重合させた
。この間に、アセチル化反応時の遊離酢酸や過剰無水酢
酸及び重縮合反応によって副生ずる酢酸を留去し続けた
。系を冷却してから白色の反応物を取り出した。これを
粉砕機で粒径1ff以下の粒子に粉砕した後、ロータリ
ーキルン中280°Cで8時間減圧乾燥し、目的物であ
るポリマー1,535y(理論収1に対して96.0%
)を粉末状で得た。
After the acetylation, the temperature was gradually raised to 80°C while stirring.
Polymerization was carried out at 0°C for 80 minutes, at 315°C for 80 minutes, and further at 815°C for 2 hours under reduced pressure of 4.9 torr. During this time, free acetic acid and excess acetic anhydride during the acetylation reaction and acetic acid by-produced during the polycondensation reaction were continued to be distilled off. After the system was cooled, a white reaction product was removed. This was pulverized into particles with a particle size of 1ff or less using a pulverizer, and then dried under reduced pressure in a rotary kiln at 280°C for 8 hours.
) was obtained in powder form.

このポリマーはキシレン、テトラヒドロフラン、クロロ
ホルム、フェノールとテトラクロルエタンとの6:4(
体積)混合物、及びm−クレゾールにそれぞれ不溶であ
った。
This polymer consists of xylene, tetrahydrofuran, chloroform, phenol and tetrachloroethane in a 6:4 ratio (
volume) mixture, and m-cresol, respectively.

このポリマーのフロー温度は288°Cであり、325
°C以上で溶融異方性が観察された。
The flow temperature of this polymer is 288°C and 325°C.
Melting anisotropy was observed above °C.

また、理学電機株製のX線回折装置RAD−C型による
広角X線回折の測定から結晶性であることが認められた
。このポリマーは800°Cまで重量減少を示さず、も
との重量に対して2.5%の重1減少率を示す温度は4
20°C′t−あった。
Furthermore, it was confirmed that it was crystalline by wide-angle X-ray diffraction measurement using an X-ray diffractometer RAD-C model manufactured by Rigaku Denki Co., Ltd. This polymer shows no weight loss up to 800°C, and the temperature at which it shows a weight loss of 2.5% relative to the original weight is 4.
It was 20°C't-.

このポリマー600fと直径18μm、平均長さ50μ
mのガラス繊維400f とからなる混合物は810°
Cで良好に造粒することができ、ペレットを得た。この
ペレットは住友重機械工業■製の射出成形機ネオマット
ON 47 / 28によりシリンダー温度840°C
で良好に射出成形することができ、試験片を得た。試験
片は引張強度1,060に9/d1弾性率5.I X 
10 kq/d1熱変形温度20B”C。
This polymer has a diameter of 600 f, a diameter of 18 μm, and an average length of 50 μm.
A mixture consisting of 400f of glass fibers of 810°
It was possible to granulate well with C, and pellets were obtained. These pellets were molded using a Neomat ON 47/28 injection molding machine manufactured by Sumitomo Heavy Industries ■ at a cylinder temperature of 840°C.
The injection molding process was successfully carried out, and a test piece was obtained. The test piece has a tensile strength of 1,060 and a modulus of elasticity of 9/d1 of 5. IX
10 kq/d1 heat distortion temperature 20B”C.

白色度82であった。The whiteness was 82.

実施例2 繰返し構造単位のモル比(ハ):(B):(C)=60
: 20 : 20の例を示す。
Example 2 Molar ratio of repeating structural units (c): (B): (C) = 60
: 20 : 20 example is shown.

実施例1と同様にしてp−ヒドロキシ安息香酸552f
(4,00モル)、2−ヒドロキシ−6−ナフトエ酸8
76f(2,00モル)、ビス−(β−ヒドロキシエチ
ル)テレフタレート508f(2,00モル)、テレフ
タル酸882f(2,00モル)および無水酢酸1.1
28f(11,00モル)を仕込み、実施例1と同条件
下でアセチル化反応及び重縮合反応を行い白色反応物を
取り出した。これを粉砕機で粒径1ff以下の粒子に粉
砕した後、ロータリーキルン中235°Cで8時間減圧
乾燥し、目的物であるポリマー1,688f(理論収量
に対して95.5%)を粉砕状で得た。
p-hydroxybenzoic acid 552f in the same manner as in Example 1
(4,00 mol), 2-hydroxy-6-naphthoic acid 8
76f (2,00 mol), bis-(β-hydroxyethyl) terephthalate 508f (2,00 mol), terephthalic acid 882f (2,00 mol) and acetic anhydride 1.1
28f (11,00 mol) was charged, and an acetylation reaction and a polycondensation reaction were performed under the same conditions as in Example 1, and a white reaction product was taken out. This was pulverized into particles with a particle size of 1ff or less using a pulverizer, and then dried in a rotary kiln at 235°C under reduced pressure for 8 hours to obtain the target polymer 1,688f (95.5% of the theoretical yield) in pulverized form. I got it.

このポリマーは実施例1と同じ溶剤にそれぞれ不溶であ
った。ポリマーのフロー温度は275℃であり、315
°C以上で溶融異方性が観察された。さらに広角X線回
折から結晶性であることが認められた。このポリマーは
800°Cまで重量減少を示さず、もとの重量に対して
2.5%の重am少率を示す温度は415℃であった。
This polymer was insoluble in each of the same solvents as in Example 1. The polymer flow temperature is 275°C and 315°C.
Melting anisotropy was observed above °C. Furthermore, wide-angle X-ray diffraction confirmed that it was crystalline. This polymer showed no weight loss up to 800°C, and the temperature at which it reached a weight fraction of 2.5% relative to the original weight was 415°C.

また、このポリマーとガラス繊維とを用いて、実施例1
と同様にして350°Cで射出成形することによって得
られたところの試験片は、引張強度990klj/d、
弾性率4.7×10&す/ci、熱変形温度195°C
1白色度81であった。
Further, using this polymer and glass fiber, Example 1
A test piece obtained by injection molding at 350°C in the same manner as above had a tensile strength of 990klj/d,
Elastic modulus 4.7×10&s/ci, heat distortion temperature 195°C
1 whiteness was 81.

比較例1 繰越し構造単位のモル比(9):■:(C)=84:8
:8の例を示す。
Comparative Example 1 Molar ratio of carryover structural units (9):■:(C)=84:8
: Shows an example of 8.

実施例1と同様にしてp−、ヒドロキシ、安息香酸1,
159N(8,40モル)、ビス−(β−ヒドロキシエ
チル)テレフタレート208f (Q、 80モル)、
テレフタル酸188y(0,80モル)及び無水酢酸1
,128y(11,00モル)を仕込んだ。
p-, hydroxy, benzoic acid 1,
159N (8,40 mol), bis-(β-hydroxyethyl) terephthalate 208f (Q, 80 mol),
Terephthalic acid 188y (0.80 mol) and acetic anhydride 1
, 128y (11,00 mol) were charged.

実施例1と同条件下でアセチル化反応及び重縮合反応を
行い、淡黄色の反応物を取り出した。これを粒径1ff
以下の粒子に粉砕したZ・ (理論収量に対して94.6%)を粉末!得た。
Acetylation and polycondensation reactions were carried out under the same conditions as in Example 1, and a pale yellow reaction product was taken out. This has a particle size of 1ff.
Powder Z・ (94.6% of the theoretical yield) crushed into the following particles! Obtained.

このポリマーは400℃においても溶融せず、成形する
ことができなかった。
This polymer did not melt even at 400°C and could not be molded.

比較例2 ビス−(β−ヒドロキシエチル)テレフタレートを用い
る以外は実施例1と同様にして、従来の技術の項で引用
した特公昭47−47870号公報に記載された型の芳
香族ポリエステルを合成した。
Comparative Example 2 An aromatic polyester of the type described in Japanese Patent Publication No. 47-47870 cited in the prior art section was synthesized in the same manner as in Example 1 except that bis-(β-hydroxyethyl) terephthalate was used. did.

すなわち、p−ヒドロキシ安息香酸828F(6,00
モル)。ヒドロキノン281F(2,10モル)、テレ
フタル酸882f(2,00モル)及び無水酢酸1,1
23f(11,00モル)を仕込み、実施例1と同条件
下でアセチル化反応及び重縮合反応を行い淡黄褐色の反
応混合物を取出した。これを粉砕機で粒径1fl以下の
粒子とした後、ロータリーキルン中245°Cで8時間
減圧乾燥し、目的物であるポリマー1,1729(理論
収量に対して98.1%)を粉末状で得た。
That is, p-hydroxybenzoic acid 828F (6,00
mole). Hydroquinone 281F (2,10 mol), terephthalic acid 882F (2,00 mol) and acetic anhydride 1,1
23f (11,00 mol) was charged, and acetylation and polycondensation reactions were carried out under the same conditions as in Example 1, and a light yellowish brown reaction mixture was taken out. This was crushed into particles with a particle size of 1 fl or less using a pulverizer, and then dried under reduced pressure in a rotary kiln at 245°C for 8 hours to obtain the target polymer 1,1729 (98.1% of the theoretical yield) in powder form. Obtained.

このポリマーのフロー温度は870℃であり、広角X線
回折から結晶性であることが認められた。このポリマー
は350℃まで重量減少を示さず、もとの重量に対して
2.5%の重量減少率を示す温度は461°Cであった
The flow temperature of this polymer was 870° C., and wide-angle X-ray diffraction showed that it was crystalline. This polymer showed no weight loss up to 350°C, and the temperature at which it showed a weight loss rate of 2.5% relative to the original weight was 461°C.

また、このポリマーを用いたこと、及び335°Cで射
出成形したこと以外は実施例1と同じにして得られたポ
リマーとガラス繊維とからなる試験片は、引張強度1.
070に97cd 。
Further, a test piece made of a polymer and glass fiber obtained in the same manner as in Example 1 except that this polymer was used and injection molding was performed at 335°C had a tensile strength of 1.
97cd at 070.

弾性率5.8 X 10  kg/d1熱変形温度26
7℃、白色度62であり、特に白色度は実施例1.2及
び8に比べて劣っていた。
Elastic modulus 5.8 x 10 kg/d1 Heat distortion temperature 26
The temperature was 7° C. and the whiteness was 62, and the whiteness was particularly inferior to Examples 1.2 and 8.

実施例8 繰返し構造単位のモル比(6):(B):(Q=60:
20:20の例を示す。
Example 8 Molar ratio of repeating structural units (6):(B):(Q=60:
An example of 20:20 is shown.

p−ヒドロキシ安息香酸828f(6,00モル)、ビ
ス−(β−ヒドロキシエチル)テレフタレート508g
(2,00モル)、2゜6−ジカルボキシナフタレン4
82 F(2,00モル)及び無水酢酸1,1289(
11,00モル)を仕込み、実施例1と同条件下でアセ
チル化反応及び重縮合反応を行い白色反応物を取り出し
た。これを1ff以下の粒子に粉砕した後、ロータリ−
キルン中240°C1’4時間減圧乾燥し、目的物であ
るポリマー1,521f(理論収量に対して95.8F
)を粉末状で得た。
p-hydroxybenzoic acid 828f (6,00 mol), bis-(β-hydroxyethyl) terephthalate 508g
(2,00 mol), 2゜6-dicarboxynaphthalene 4
82 F (2,00 mol) and acetic anhydride 1,1289 (
11,00 mol) was charged, and an acetylation reaction and a polycondensation reaction were performed under the same conditions as in Example 1, and a white reaction product was taken out. After pulverizing this into particles of 1ff or less,
Dry in a kiln at 240°C under reduced pressure for 4 hours to obtain the desired polymer 1,521f (95.8F based on the theoretical yield).
) was obtained in powder form.

このプリマーは実施例1と同じ溶剤にそれぞれ不溶であ
った。このポリマーのフロー温度は290°Cであり、
840 ’C以上で溶融異方性が観察された。また広角
X線回折から結晶性であることが認められた。このポリ
マーは800″Cまで重量減少を示さず、もとの重量に
対して2.5%の重量減少率を示す温度は420℃であ
った。
The primers were insoluble in the same solvents as in Example 1. The flow temperature of this polymer is 290°C;
Melting anisotropy was observed above 840'C. Furthermore, it was confirmed by wide-angle X-ray diffraction that it was crystalline. This polymer showed no weight loss up to 800''C, and the temperature at which it showed a weight loss of 2.5% relative to the original weight was 420°C.

また、このポリマーを用いたこと以外は実施例1と同じ
にして得られたポリマーとガラス繊維とからなる試験片
は、引張強度980kli/d1弾性率4.7 X 1
0  kl/14.熱変形温度208°C1白色度88
であった。
A test piece made of a polymer and glass fiber obtained in the same manner as in Example 1 except for using this polymer had a tensile strength of 980 kli/d1 and an elastic modulus of 4.7 x 1.
0 kl/14. Heat distortion temperature 208°C1 Whiteness 88
Met.

Claims (1)

【特許請求の範囲】 下式で表わされる繰返し構造単位(A)80〜80モル
%、(B)10〜35モル%及び(C)10〜35モル
%からなる芳香族ポリエステル。 ■O−Ar_1−CO■(A) ▲数式、化学式、表等があります▼(B) ■CO−Ar_2−CO■(C) (式中、Ar_1は▲数式、化学式、表等があります▼
と▲数式、化学式、表等があります▼とからなる群から
選ばれ、且つ、その中の50〜100モル%が▲数式、
化学式、表等があります▼である二価の芳香族基であ り、Ar_2は二価の芳香族基である。)
[Scope of Claims] An aromatic polyester consisting of repeating structural units represented by the following formula (A) 80 to 80 mol%, (B) 10 to 35 mol%, and (C) 10 to 35 mol%. ■O-Ar_1-CO■(A) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(B) ■CO-Ar_2-CO■(C) (In the formula, Ar_1 is ▲There are mathematical formulas, chemical formulas, tables, etc.▼
and ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and 50 to 100 mol% of them are ▲mathematical formulas,
There are chemical formulas, tables, etc. ▼ is a divalent aromatic group, and Ar_2 is a divalent aromatic group. )
JP29119687A 1987-11-18 1987-11-18 Aromatic polyester Pending JPH01132628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29119687A JPH01132628A (en) 1987-11-18 1987-11-18 Aromatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29119687A JPH01132628A (en) 1987-11-18 1987-11-18 Aromatic polyester

Publications (1)

Publication Number Publication Date
JPH01132628A true JPH01132628A (en) 1989-05-25

Family

ID=17765701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29119687A Pending JPH01132628A (en) 1987-11-18 1987-11-18 Aromatic polyester

Country Status (1)

Country Link
JP (1) JPH01132628A (en)

Similar Documents

Publication Publication Date Title
JP2830279B2 (en) Liquid crystal polyester resin composition with improved fluidity
JP3969171B2 (en) Liquid crystalline polyester and method for producing the same
KR0171195B1 (en) Flame retardant liquid crystal polyester composition, process for preparation thereof and an injection molded article composed thereof
US4894427A (en) Aromatic polyester-polyorganosiloxane block copolymer
EP0396955B1 (en) Liquid crystal polyester resin composition improved in fluidity
JP2830118B2 (en) Aromatic polyester and method for producing the same
US20210024687A1 (en) Aromatic liquid crystal polyester, aromatic liquid crystal polyester composition, and molded article
JPH02127424A (en) Production of aromatic polyester
JP2533328B2 (en) Aromatic polyester
JPH01132628A (en) Aromatic polyester
JPH04130131A (en) Easily processable, wholly aromatic polyester
JPH0269518A (en) Production of aromatic polyester
JP2629265B2 (en) Liquid crystal polyester resin composition
JP3499023B2 (en) Copolyester and polyester resin composition
KR960002954B1 (en) Polyester which exhibits melt anisotropy
JP2838118B2 (en) Method for producing aromatic polyester
JP2794812B2 (en) Method for producing aromatic polyester
JPH0251523A (en) Aromatic polyester
JP2845444B2 (en) Molded product with weld
JPH0684472B2 (en) Copolymerized polyesteramide composition containing inorganic filler
US5677392A (en) Reinforced composite resin material and method for its production
JPH01138226A (en) Aromatic polyester
CN115449061A (en) Wholly aromatic liquid crystal polyester resin and preparation method and application thereof
JP2023109329A (en) Liquid crystal polyester resin, method for producing the same, liquid crystal polyester resin composition, and molded article composed of the same
JPH0372559A (en) Polyester resin composition improved in crystallinity and fluidity