JPH0269518A - Production of aromatic polyester - Google Patents

Production of aromatic polyester

Info

Publication number
JPH0269518A
JPH0269518A JP22084688A JP22084688A JPH0269518A JP H0269518 A JPH0269518 A JP H0269518A JP 22084688 A JP22084688 A JP 22084688A JP 22084688 A JP22084688 A JP 22084688A JP H0269518 A JPH0269518 A JP H0269518A
Authority
JP
Japan
Prior art keywords
temperature
group
polycondensation
mol
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22084688A
Other languages
Japanese (ja)
Other versions
JP2838119B2 (en
Inventor
Hiroaki Sugimoto
杉本 宏明
Yoshitaka Obe
大部 良隆
Atsukazu Iwata
岩田 篤和
Kazuo Hayatsu
早津 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16757460&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0269518(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63220846A priority Critical patent/JP2838119B2/en
Priority to US07/400,131 priority patent/US5015723A/en
Priority to DE68928156T priority patent/DE68928156T2/en
Priority to EP89116174A priority patent/EP0357079B1/en
Publication of JPH0269518A publication Critical patent/JPH0269518A/en
Application granted granted Critical
Publication of JP2838119B2 publication Critical patent/JP2838119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title polymer having excellent heat resistance and melt moldability by subjecting an oxycarboxylic acid, a bisphenol and an aromatic dicarboxylic acid to polycondensation until the pour temperature of the reaction product reaches a given value, grinding and heating the ground material in a solid phase to a high temperature under reduced pressure. CONSTITUTION:(A) 30-80mol% compound shown by formula I (X is group shown by formula II or formula III and >=50mol% X is group shown by formula II; R1 is H, formyl, acetyl, etc.; R2 is H, 1-6C alkyl or 6-18C aryl) is blended with (B) 10-35mol% compound shown by formula IV (Ar is bifunctional aromatic group; R3 is H, acetyl or benzoyl) and (C) 10-35mol% compound shown by formula V (Ar' is bifunctional aromatic group; R4 is OH, halogen, etc.) in a reactor and subjected to polycondensation at 270-350 deg.C. When the pour temperature of the reaction product reaches a temperature which is >=240 deg.C and >=20 deg.C lower than the polycondensation temperature, contents in the reactor are recovered in a molten state, ground into <=3mm particle diameter and treated in a solid phase as it is, at 250-370 deg.C in an inert gas atmosphere or under pressure for 1-20 hours to give the aimed compound.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性に優れ、かつ溶融成形性の良好な芳香族
ポリエステルの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an aromatic polyester having excellent heat resistance and good melt moldability.

〔従来の技術〕[Conventional technology]

耐熱性ポリエステルを得る試みは古く、芳香族ジカルボ
ン酸と芳香族ジフェノールとからなる芳香族ポリエステ
ルや、芳香族オキシカルボン酸から得られる芳香族ポリ
エステルについての知見は多い。
Attempts to obtain heat-resistant polyesters have been made for a long time, and there is much knowledge about aromatic polyesters made of aromatic dicarboxylic acids and aromatic diphenols, and aromatic polyesters obtained from aromatic oxycarboxylic acids.

芳香族ポリエステルの製造法としては、懸濁重合法、界
面重合法、溶液重合法、塊状重合法などが知られている
が、前3者は後処理、例えば溶剤除去、重合体の洗浄、
排水負荷といった問題を有している。塊状重合は経済性
は好ましいが、ポリエステルの重縮合反応の平衡定数が
ポリアミドに比べて小さいため、重縮合反応を進めるた
めには反応温度を上げるか、減圧下に反応を行い、副生
ずる物質を急速に除去する方法を取る必要があった。特
に、耐熱性ポリエステルは高温での反応を要求されるた
め、安定な状態でポリマーを得ることかなかなか難しい
という問題があった。また重合時に生じる低沸点の化合
物や未反応原料がポリエステル中に残り、成形時に気化
して環境を汚染したり、成形品にした時に徐々に発生し
て製品機構を破壊したりする場合もある。
Suspension polymerization, interfacial polymerization, solution polymerization, and bulk polymerization are known methods for producing aromatic polyesters, but the former three require post-processing, such as solvent removal, polymer washing,
There are problems such as drainage load. Although bulk polymerization is economically preferable, the equilibrium constant of the polycondensation reaction of polyester is smaller than that of polyamide, so in order to proceed with the polycondensation reaction, it is necessary to raise the reaction temperature or conduct the reaction under reduced pressure to eliminate by-products. I needed to find a way to quickly remove it. In particular, since heat-resistant polyester requires reaction at high temperatures, it is difficult to obtain the polymer in a stable state. In addition, low-boiling compounds and unreacted raw materials generated during polymerization may remain in the polyester and vaporize during molding, polluting the environment, or may gradually be generated when molded products are made, destroying the product structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかる現状に鑑み、本発明の目的は耐熱性に優れ、かつ
成形性、特に溶融成形性の良好な芳香族ポリエステルを
低沸点物質の少ない均一な品質で安定に製造する方法を
提供することである。
In view of the current situation, an object of the present invention is to provide a method for stably producing an aromatic polyester having excellent heat resistance and good moldability, especially melt moldability, with uniform quality and low boiling point substances. .

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、実質的に重縮合時に、溶媒のない塊
状重縮合法により芳香族ポリエステルを製造するにあた
り、 下式(A)、CB)及び(G)で表わされる化合物を(
A)30〜80モル%、(B)10〜35モル%、及び
(C)10〜35モル%で混合して反応槽に仕込み、重
縮合させることにより、芳香族ポリエステルを製造する
方法において、該重縮合反応が270〜350℃で行わ
れ、生成した芳香族ポリエステルの流動温度が240℃
以上で、かつ重縮合温度より20℃以上低い温度に達し
た時点で、反応槽の内容物である芳香族ポリエステルを
溶融状態で回収し、3■以下の粒径の粒子に粉砕し、面
相状態のまま、250〜370℃で不活性気体雰囲気下
、又は減圧下に1〜20時間処理することを特徴とする
芳香族ポリエステルの製造法に関するものである。
That is, the present invention provides compounds represented by the following formulas (A), CB) and (G) for producing an aromatic polyester by a solvent-free bulk polycondensation method substantially during polycondensation.
A) 30 to 80 mol%, (B) 10 to 35 mol%, and (C) 10 to 35 mol% in a method for producing an aromatic polyester by mixing the mixture and charging it into a reaction tank and subjecting it to polycondensation, The polycondensation reaction is carried out at 270 to 350°C, and the flow temperature of the aromatic polyester produced is 240°C.
When the temperature reaches 20°C or more lower than the polycondensation temperature, the aromatic polyester contained in the reaction tank is recovered in a molten state, pulverized into particles with a particle size of 3 mm or less, and the surface phase is The present invention relates to a method for producing aromatic polyester, which is characterized in that the aromatic polyester is treated as it is at 250 to 370° C. in an inert gas atmosphere or under reduced pressure for 1 to 20 hours.

(A)R+O−X  C0OR* ある、R1は水素、ホルミル基、アセチル基、プロピオ
ニル基、ベンゾイル基から選ばれ、R1は水素、炭素数
1〜6のアルキル、6〜18の了り−ル基から選ばれる
。) (B)RsO−Ar  0Rs (ただしArは二価の芳香族基である。R3は水素、ア
セチル基、プロピオニル基、ベンゾイル基から選ばれる
。) (C)R,C0−Ar’  −COR。
(A) R+O-X C0OR* Yes, R1 is selected from hydrogen, formyl group, acetyl group, propionyl group, benzoyl group, R1 is hydrogen, alkyl group having 1 to 6 carbon atoms, oryl group having 6 to 18 carbon atoms selected from. ) (B) RsO-Ar 0Rs (Ar is a divalent aromatic group. R3 is selected from hydrogen, an acetyl group, a propionyl group, and a benzoyl group.) (C) R,C0-Ar'-COR.

(ただしAr’は二価の芳香族基であり、Arる。R4
は水酸基、OR,、ハロゲンから選ばれ、R,は水素、
炭素数1〜6のアルキル、6〜18のアリール基から選
ばれる。) 上述の式(A)、(B)及び(C)で表わされる化合物
を(A) 30〜80モル%、(B)10〜35モル%
、及び(C)10〜35モル%で混合し、重縮合させる
ことにより得られる芳香族ポリエステルは結晶性で、機
械的物性、耐薬品性、耐熱性に優れているといった特徴
を有している。
(However, Ar' is a divalent aromatic group, and Ar' is a divalent aromatic group. R4
is selected from hydroxyl group, OR, and halogen; R is hydrogen;
It is selected from alkyl groups having 1 to 6 carbon atoms and aryl groups having 6 to 18 carbon atoms. ) The compounds represented by the above formulas (A), (B) and (C) are (A) 30 to 80 mol% and (B) 10 to 35 mol%.
The aromatic polyester obtained by mixing 10 to 35 mol% of , and (C) and polycondensing the mixture is crystalline and has excellent mechanical properties, chemical resistance, and heat resistance. .

各化合物の更に好ましい混合割合は、(A)40〜70
モル%、(B)15〜30モル%、及び(C)15〜3
0モル%である。更に溶融状態で異方性を示すものもあ
り、良好な溶融成形性をも有する。
A more preferable mixing ratio of each compound is (A) 40 to 70
mol%, (B) 15-30 mol%, and (C) 15-3
It is 0 mol%. Furthermore, some exhibit anisotropy in the molten state and also have good melt formability.

化合物(A)の割合が80モル%を越えると、芳香族ポ
リエステル中には加熱によって溶融しない部分が存在す
る場合が多いため、溶融加工性が著しく悪くなり、また
30モル%未満では芳香族ポリエステルの結晶性が低く
、好ましくない。化50モル%を下回ると、目的の芳香
族ポリエステルの結晶性が減少して好ましくない。
When the proportion of compound (A) exceeds 80 mol%, the aromatic polyester often has a portion that does not melt when heated, resulting in significantly poor melt processability, and when the proportion of compound (A) is less than 30 mol%, the aromatic polyester has low crystallinity, which is not desirable. If it is less than 50 mol%, the crystallinity of the target aromatic polyester decreases, which is not preferable.

°化合¥l/J(B)及び(C)の割合が10〜35モ
ル%にあるとき、芳香族ポリエステルはバランスの取れ
た特徴を示す。
°Compound\l/J When the proportion of (B) and (C) is between 10 and 35 mol%, the aromatic polyester exhibits balanced characteristics.

なお仕込み時における化合物(B)と(C)のモル比は
ポリマー物性、特に熱安定性から90〜115:100
、好ましくは、100〜110:100である。
In addition, the molar ratio of compounds (B) and (C) at the time of preparation is 90 to 115:100 from the viewpoint of polymer physical properties, especially thermal stability.
, preferably 100-110:100.

式(A)で表わされる化合物の例としてはpヒドロキシ
安息香酸、p−ホルモキシ安息香酸、p−アセトキシ安
息香酸、p−プロビロキシ安息香酸、p−ヒドロキシ安
息香酸メチル、P−ヒドロキシ安息香酸プロピル、p−
ヒドロキシ安息香酸フェニル、p−ヒドロキシ安息香酸
ベンジル、p−アセトキシ安息香酸メチル、2−ヒドロ
キシ−6−ナフトエ酸、2−アセトキシ−6−ナフトエ
酸、2−ヒドロキシ−6−ナフトエ酸メチル、2−ヒド
ロキシ−6−ナフトエ酸フェニル、2−アセトキシ−6
−ナフトエ酸メチル等を挙げることができる。特に好ま
しい化合物は、p−ヒドロキシ安息香酸、及び/又はそ
のエステル形成性誘導体である。
Examples of compounds represented by formula (A) include p-hydroxybenzoic acid, p-formoxybenzoic acid, p-acetoxybenzoic acid, p-probyloxybenzoic acid, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, and p-hydroxybenzoic acid. −
Phenyl hydroxybenzoate, benzyl p-hydroxybenzoate, methyl p-acetoxybenzoate, 2-hydroxy-6-naphthoic acid, 2-acetoxy-6-naphthoic acid, methyl 2-hydroxy-6-naphthoate, 2-hydroxy -6-naphthoic acid phenyl, 2-acetoxy-6
-Methyl naphthoate and the like. Particularly preferred compounds are p-hydroxybenzoic acid and/or ester-forming derivatives thereof.

式(B)で表わされる化合物の例として、ヒドロキノン
、レゾルシン、4.4’ −ジヒドロキシジフェニル、
4.4’ −ジヒドロキシベンゾフェノン、4,4°−
ジヒドロキシジフェニルメタン、4.4°−ジヒドロキ
シジフェニルエタン、4゜4°−ジヒドロキシジフェニ
ルエーテル、2.2−ビス(4−ヒドロキシフェニル)
プロパン、4゜4°−ジヒドロキシジフェニルスルホン
、4,4−ジヒドロキシジフェニルスルフィド、2.6
−ジヒドロキシナフタレン、1,4−ジヒドロキンナフ
タレン、1.5−ジヒドロキシナフタレン、14−ジア
セトキシベンゼン、1.3−ジアセトキシベンゼン、4
,4゛ −ジプロビオニルオキシジフェニル、2.6−
ジカルボキシナフタレン等や、これらのアルキル、アリ
ール、アルコキシ、ハロゲン基の核置換体を挙げること
ができる。
Examples of the compound represented by formula (B) include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl,
4.4'-dihydroxybenzophenone, 4,4°-
Dihydroxydiphenylmethane, 4.4°-dihydroxydiphenylethane, 4°4°-dihydroxydiphenyl ether, 2.2-bis(4-hydroxyphenyl)
Propane, 4°4°-dihydroxydiphenylsulfone, 4,4-dihydroxydiphenylsulfide, 2.6
-dihydroxynaphthalene, 1,4-dihydroquinaphthalene, 1,5-dihydroxynaphthalene, 14-diacetoxybenzene, 1,3-diacetoxybenzene, 4
, 4゛-diprobionyloxydiphenyl, 2.6-
Examples include dicarboxynaphthalene and the like, and nuclear substituted products of these alkyl, aryl, alkoxy, and halogen groups.

特に好ましい化合物は、ヒドロキノン、4,4′−ジヒ
ドロキシジフエニル、及び/又はそのエステル形成性誘
導体から選ばれたものである。
Particularly preferred compounds are those selected from hydroquinone, 4,4'-dihydroxydiphenyl, and/or ester-forming derivatives thereof.

式(C)で表わされる化合物の例として、テレフタル酸
、イソフタル酸、4,4゛−ジカルボキシジフェニル、
1.2−ビス(4−カルボキシフェノキシ)エタン、2
.6−ジカルボキシナフタレン、l、4−ジカルボキシ
ナフタレン、■、5ジカルボキシナフタレン、テレフタ
ル酸ジメチル、イソフタル酸ジメチル、テレフタル酸ジ
フェニル、イソフタル酸ジフェニル、テレフタル酸ジク
ロリド、イソフタル酸ジクロリド、4,4゜ジメトキシ
カルボニルジフェニル、2,6−シメチルカルポニルナ
フタレン、1,4−ジクロルカルボニルナフタレン、1
,5−ジフエノキシカルボニルナフクレンや、これらの
アルキル、アリール、アルコキシ、ハロゲン基の核置換
体を挙げることができる。
Examples of compounds represented by formula (C) include terephthalic acid, isophthalic acid, 4,4'-dicarboxydiphenyl,
1.2-bis(4-carboxyphenoxy)ethane, 2
.. 6-dicarboxynaphthalene, l,4-dicarboxynaphthalene, 5-dicarboxynaphthalene, dimethyl terephthalate, dimethyl isophthalate, diphenyl terephthalate, diphenyl isophthalate, terephthalic acid dichloride, isophthalic acid dichloride, 4,4゜dimethoxy Carbonyldiphenyl, 2,6-dimethylcarbonylnaphthalene, 1,4-dichlorocarbonylnaphthalene, 1
, 5-diphenoxycarbonylnaphculene, and nuclear substituted products of these alkyl, aryl, alkoxy, and halogen groups.

本発明の芳香族ポリエステルは上記の(A)、(B)及
び(C)で表わされる化合物からなる混合物を重合槽中
で重縮合反応させることにより得られるが、これ等化合
物の重合槽への仕込みは一括方式でも、分割方式でもよ
い。反応は不活性気体、例えば窒素雰囲気下に常圧、減
圧、又はそれ等の組合わせで行うことができ、プロセス
は回分式、連続式、又はそれ等の組み合わせを採用でき
る。
The aromatic polyester of the present invention can be obtained by subjecting a mixture of the compounds represented by (A), (B) and (C) above to a polycondensation reaction in a polymerization tank. Preparation may be done in bulk or in parts. The reaction can be carried out under an inert gas atmosphere, such as nitrogen, at normal pressure, reduced pressure, or a combination thereof, and the process can be carried out batchwise, continuously, or in a combination thereof.

なお式(A)、(B)及び(C)で表わされる化合物を
より重縮合反応し易い化合物に変える反応(例えばエス
テル化反応)を重縮合反応に先立って、該重縮合反応を
行うのとは別の、又は同一の反応槽で行った後、引き続
き重縮合反応を行うこともできる。
Note that prior to the polycondensation reaction, a reaction (for example, an esterification reaction) that changes the compounds represented by formulas (A), (B), and (C) into a compound that is more susceptible to polycondensation reactions may be carried out. It is also possible to carry out the polycondensation reaction in a different or the same reaction tank and then carry out the polycondensation reaction.

本発明における重縮合反応の温度は、270〜350℃
が好ましく、より好ましくは280〜330℃である。
The temperature of the polycondensation reaction in the present invention is 270 to 350°C
is preferable, and more preferably 280 to 330°C.

温度が270℃より低いと反応の進行が遅く、350℃
を越えると得られる重合体が着色しやすいことが多い、
多段階の反応温度を採用しても構わないし、場合により
、昇温途中で、あるいは最高温度に達したらすぐに反応
生成物である芳香族ポリエステルを溶融状態で抜出し、
回収することもできる。
When the temperature is lower than 270℃, the reaction progresses slowly, and when the temperature is lower than 350℃
If the temperature is exceeded, the resulting polymer is often prone to coloring.
A multi-step reaction temperature may be adopted, and in some cases, the aromatic polyester, which is the reaction product, may be extracted in a molten state during heating or as soon as the maximum temperature is reached.
It can also be collected.

重縮合反応の触媒として、Ge、Sn、Tt。Ge, Sn, and Tt as catalysts for polycondensation reactions.

S b s Co s M n等の化合物を用いること
もできる。
Compounds such as S b s Co s M n can also be used.

反応槽の形状は既知のものを用いることができる。縦型
の撹拌槽の場合、多段のタービン翼、パドル翼や、ダブ
ルヘリカル翼が好ましく、横型の撹拌槽では、l軸、又
は2輪の撹拌軸に垂直に、種々の形状の翼、例えばレン
ズ翼、眼鏡翼、長円平板翼等が設置されているものがよ
い、また翼にねじれを付けて、撹拌性能や送り機構を向
上させたものもよい。
A known shape of the reaction tank can be used. In the case of a vertical stirring tank, multi-stage turbine blades, paddle blades, or double helical blades are preferred; in the case of a horizontal stirring tank, blades of various shapes, such as lenses, are installed perpendicularly to the l-axis or the two-wheeled stirring shaft. It is preferable to have blades, spectacle blades, oblong flat plate blades, etc. It is also good to have twists on the blades to improve the stirring performance and feeding mechanism.

反応槽の加熱は熱媒、気体、電気ヒーターにより行うが
、均一加熱という目的で撹拌軸、翼、邪魔板等も加熱す
ることが好ましい。
The reaction tank is heated by a heating medium, gas, or electric heater, but it is preferable to also heat the stirring shaft, blades, baffle plates, etc. for the purpose of uniform heating.

反応槽が多段に分かれていたり、仕切られている場合に
は、最終の部分の反応温度が本発明でいうところの重縮
合温度である。
When the reaction tank is divided into multiple stages or partitioned, the reaction temperature at the final stage is the polycondensation temperature as defined in the present invention.

重縮合反応の時間は反応条件等により適宜決められるべ
きであるが、該反応温度において0. 5〜5時間が好
ましい。
The time for the polycondensation reaction should be appropriately determined depending on the reaction conditions, etc., but at the reaction temperature 0. 5 to 5 hours is preferred.

本発明において重要であるのは重縮合反応により得られ
るポリエステルの流動温度が240℃以上で、かつ重縮
合温度より20℃以上低い点である。更に好ましくは得
られるポリエステルの流動温度が260℃以上で、かつ
重縮合温度より25℃以、上低いことが好ましい、流動
温度が240℃以上ないと、ポリエステルの分子量が十
分でなく、成形加工上、物性上問題がある。固相重合を
施す場合、ポリエステル同士の融着や副生物が大量に生
じ、経済的にも好ましくない、流動温度が重縮合温度に
近いと、ポリエステルの粘度が高(なり、回収が難しく
なるばかりか、撹拌混合性も悪くなり、不均一加熱のた
め、ポリマーの熱安定性に悪影響を及ぼす。
What is important in the present invention is that the flow temperature of the polyester obtained by the polycondensation reaction is at least 240°C and at least 20°C lower than the polycondensation temperature. More preferably, the flow temperature of the obtained polyester is 260°C or higher and 25°C or more lower than the polycondensation temperature. If the flow temperature is not 240°C or higher, the molecular weight of the polyester is insufficient and the molding process is difficult. , there are problems with physical properties. When performing solid phase polymerization, polyesters fuse together and a large amount of by-products are produced, which is economically undesirable.If the flow temperature is close to the polycondensation temperature, the viscosity of the polyester becomes high (and recovery becomes difficult). Otherwise, stirring and mixing properties deteriorate, and the thermal stability of the polymer is adversely affected due to non-uniform heating.

ポリエステルを溶融状態で取出すのは不活性気体雰囲気
中が好ましいが、水分が少なければ空気中でも良い。
It is preferable to take out the polyester in a molten state in an inert gas atmosphere, but it may also be taken out in air if the moisture content is low.

溶融状態でポリエステルを取出す機構としては押出機、
ギヤポンプが考えられるが、単なるパルプだけでも良い
、取出されたものは、目的に応じて、ストランドカッタ
ー、シートカッター、粉砕機等で細かくすることができ
る。
Mechanisms for extracting polyester in a molten state include an extruder,
A gear pump is considered, but it may also be just pulp. Depending on the purpose, the extracted material can be pulverized using a strand cutter, sheet cutter, pulverizer, etc.

溶融粘度に大きな変化を与えない前提で、重縮合系に溶
媒、滑剤、安定剤、添加剤を加えておくこともできる。
A solvent, a lubricant, a stabilizer, and an additive may be added to the polycondensation system on the premise that the melt viscosity does not change significantly.

溶融状態で回収された芳香族ポリエステルはそのままで
も使用できるが、未反応原料を除去したり、物性を上げ
る意味から本発明に基づいた固相重合が望ましい。
Although the aromatic polyester recovered in a molten state can be used as it is, solid phase polymerization based on the present invention is desirable from the standpoint of removing unreacted raw materials and improving physical properties.

得られた芳香族ポリエステルを機械的に粉砕し、3■以
下、好ましくは0.5m以下の粒径の粒子にし、固相状
態のまま、250〜370℃で不活性気体雰囲気下、又
は減圧下に1〜20時間処理することが好ましい、更に
好ましくは、最高温度で2〜10時間処理することが良
い。
The obtained aromatic polyester is mechanically pulverized into particles with a particle size of 3 mm or less, preferably 0.5 m or less, and is crushed in a solid state at 250 to 370°C under an inert gas atmosphere or under reduced pressure. It is preferable to carry out the treatment at the highest temperature for 1 to 20 hours, more preferably at the highest temperature for 2 to 10 hours.

粒子の粒径が3111m以上になると、表面層と内部と
の間で、重合速度、未反応原料や反応の結果新たに生じ
た副生物の拡散時間が異なることから、分子量分布を広
げたり、除去すべきものを十分除去できていないなど、
物性上の問題を生じ、好ましくない。
When the particle size of the particles exceeds 3111 m, the polymerization rate and diffusion time of unreacted raw materials and new by-products generated as a result of the reaction differ between the surface layer and the interior, so it is difficult to widen the molecular weight distribution or remove them. Things like not being able to remove enough things that should be done, etc.
This is not preferable because it causes problems in physical properties.

固相重合時の昇温速度、処理温度は芳香族ポリエステル
粒子を融着させないように選ぶ必要がある。融着を起こ
した場合、表面積が減少し、重縮合反応や低沸点物除去
が遅くなり、好ましくない。
The heating rate and treatment temperature during solid phase polymerization must be selected so as not to fuse the aromatic polyester particles. When fusion occurs, the surface area decreases and polycondensation reactions and removal of low-boiling substances become slow, which is not preferable.

固相重合の処理温度としては融着させないで、250〜
370℃で不活性気体雰囲気下、又は減圧下に処理する
ことが効果的である。この温度範囲以下の温度では反応
が遅く、時間がかかり、不経済であり、370℃以上で
は分解反応が起こり、好ましくない、雰囲気としては、
不活性気体か減圧がよ(、減圧も外部から洩れ込む気体
は不活性気体にするべきである。空気、特に酸素が存在
すると、ポリエステルが酸化され、物性低下、着色が起
こり良くない、不活性気体とごては窒素、水素、ヘリウ
ム、アルゴン、炭酸ガスから選ばれるものである。アン
モニア、アミン、水草気はポリエステルの分解を引き起
こすため好ましくない。
The treatment temperature for solid phase polymerization is 250~250℃ without fusion.
It is effective to perform the treatment at 370° C. under an inert gas atmosphere or under reduced pressure. At temperatures below this temperature range, the reaction is slow, time-consuming, and uneconomical; at temperatures above 370°C, decomposition reactions occur, which is not desirable.
It is recommended to use an inert gas or reduced pressure (in case of reduced pressure, the gas leaking from the outside should be an inert gas.If air, especially oxygen, is present, the polyester will be oxidized, resulting in a decrease in physical properties and coloring, which is not good.) The gas and trowel are selected from nitrogen, hydrogen, helium, argon, and carbon dioxide. Ammonia, amines, and waterweed are undesirable because they cause decomposition of the polyester.

固相重合の装置としては既知の乾燥機、反応機、混合機
、電気炉等を用いることができる。
Known dryers, reactors, mixers, electric furnaces, etc. can be used as equipment for solid phase polymerization.

〔実施例〕 以下、本発明の実施例を示すが、本発明はこれにより限
定されるものではない。
[Example] Examples of the present invention will be shown below, but the present invention is not limited thereto.

なおポリエステルの流動温度とは溶融流動性を表わす指
標であり、その測定方法としては毛細管型レオメータ−
(■島津製作所製フローテスターCFT−51O0型)
で測定され、4℃/分の昇温速度で加熱溶融されたサン
プル樹脂を100kg/ctの荷重の下で、内径lll
l11、長さ10+nmのノズルから押出した時に、該
溶融粘度が48..000ポイズを示す点における温度
として表わされる。
The flow temperature of polyester is an index representing the melt fluidity, and its measurement method is a capillary rheometer.
(■ Shimadzu Flow Tester CFT-51O0 model)
The sample resin was heated and melted at a heating rate of 4°C/min, and the inner diameter
l11, the melt viscosity is 48. .. It is expressed as the temperature at a point indicating 000 poise.

また本発明におけるポリエステルは結晶性のため、均一
に溶解しうる溶媒がなかったりして、分子量測定が困難
であるものが多く、分子量の目安として流動温度を用い
て議論する。
Furthermore, since the polyester in the present invention is crystalline, it is often difficult to measure the molecular weight because there is no solvent in which it can be uniformly dissolved, so the discussion will be based on the flow temperature as a guideline for molecular weight.

光学異方性の測定は加熱ステージ上に置かれた粒径25
0μm以下のサンプル樹脂粉末を偏光下25’C/分で
昇温しで肉眼観察により行った。
Measurement of optical anisotropy was performed using a particle size of 25 mm placed on a heating stage.
A sample resin powder of 0 μm or less was heated at 25'C/min under polarized light and visually observed.

重量減少は理学電機■製の熱天秤TG−DTA標準型を
用いて、粒径250μm以下のサンプル樹脂約20mg
を空気中において昇温速度10℃/分で加熱した時の重
量の経時変化を測定した。
The weight reduction was performed using a thermobalance TG-DTA standard model manufactured by Rigaku Denki ■, and approximately 20 mg of sample resin with a particle size of 250 μm or less was measured.
was heated in air at a temperature increase rate of 10° C./min, and the change in weight over time was measured.

またこの測定値から、もとのitに対して2.5%の重
M減少率を示す温度を求めた。
Further, from this measured value, the temperature at which the weight M decrease rate was 2.5% with respect to the original IT was determined.

成形品の引張試験はASTM  D−638に準拠し、
ダンベル型試験片を用い、試料数6、標線開路#40I
IIII+、引っ張り速度5ma+/分で行った。
Tensile testing of molded products was conducted in accordance with ASTM D-638.
Using a dumbbell-shaped test piece, number of samples: 6, marked line open circuit #40I
III+ at a pulling speed of 5 ma+/min.

熱変形温度はASTM  D−648に従い、18.6
kg/CTAの圧力下に測定した。成形品の白色度は大
きさ40mX40mmの板状成形品を用い、日本重色工
業■製のデジタル色差計ND−101−DPにより測定
した。測定値は、純黒をO1純白を100とし、酸化チ
タンの標準品(白色度94.5)で補正して求めた。
Heat distortion temperature is 18.6 according to ASTM D-648.
Measured under a pressure of kg/CTA. The whiteness of the molded product was measured using a plate-shaped molded product with a size of 40 m x 40 mm using a digital color difference meter ND-101-DP manufactured by Nihon Heavy Industries Ltd. The measured value was determined by setting pure black to O1 and pure white to 100, and correcting it with a standard titanium oxide product (whiteness 94.5).

実施例1 3段パドル翼を有し、かつ重合槽の槽壁と撹拌翼との間
隙の小さい重合槽にp−アセトキシ安息香酸1,152
g (6,40モル)、4.4ジアセトキシジフ工ニル
491g (1,82モル)及び4,4°−ジカルボキ
シジフェニル436g(1,80モル)を仕込んだ、内
容物を窒素ガス雰囲気下に撹拌しながら200℃から1
℃/分の速度で昇温し、320 ’Cで2時間20分重
合させた。
Example 1 1,152 p-acetoxybenzoic acid was placed in a polymerization tank having three-stage paddle blades and a small gap between the tank wall and the stirring blade.
g (6,40 mol), 491 g (1,82 mol) of 4.4 diacetoxydiphenyl, and 436 g (1,80 mol) of 4,4°-dicarboxydiphenyl were charged, and the contents were placed under a nitrogen gas atmosphere. 1 from 200℃ while stirring
The temperature was raised at a rate of °C/min, and polymerization was carried out at 320'C for 2 hours and 20 minutes.

この間に重縮合反応によって副生ずる酢酸を留去し続け
た。重合途中でポリマーをサンプリングし、その流動温
度を測定した。320℃で1時間での流動温度が260
℃で、2時間で282℃であった。
During this time, acetic acid produced as a by-product due to the polycondensation reaction was continued to be distilled off. The polymer was sampled during the polymerization, and its flow temperature was measured. Flow temperature in 1 hour at 320℃ is 260℃
The temperature was 282°C in 2 hours.

重合槽の下部にあるバルブを開け、窒素雰囲気下の取出
し箱にポリエステルを抜出した。ポリエステルは溶融状
態で容易に抜出すことができ、反応槽を後で分解してみ
たが槽壁やバルブ部にポリエステルは殆ど付着していな
かった。得られたポリエステルの収量は1,462g 
(理論収量に対して99.2%)であった。
A valve at the bottom of the polymerization tank was opened, and the polyester was taken out into a takeout box under a nitrogen atmosphere. The polyester could be easily extracted in a molten state, and when the reaction tank was later disassembled, almost no polyester was found to be attached to the tank walls or valve section. The yield of the obtained polyester was 1,462g.
(99.2% of the theoretical yield).

取出したポリエステルを粉砕機で平均粒径1ffIIn
以下の粒子に粉砕した後、流動温度を測定したところ、
290℃であり、325℃以上の78融状態で光学異方
性が観察された。
The taken out polyester is milled to an average particle size of 1ffIIn.
After grinding into the following particles, the flow temperature was measured.
The temperature was 290°C, and optical anisotropy was observed in the 78 melting state of 325°C or higher.

平均粒径1鵬以下のポリエステル粒子を内容量122の
ステンレス製ロータリーキルンに仕込み、窒素雰囲気下
に室温から200℃まで1時間で上げ、200℃から2
70℃まで4時間がけて上げ、270℃で3時間保持し
た後、取出した。固相重合での重量減少は1.1%であ
った。
Polyester particles with an average particle size of 1 ㎜ or less were placed in a stainless steel rotary kiln with an internal capacity of 122 mm, heated from room temperature to 200°C in 1 hour under a nitrogen atmosphere, and then heated from 200°C to 200°C.
The temperature was raised to 70°C over 4 hours, and the temperature was kept at 270°C for 3 hours, and then taken out. The weight loss during solid phase polymerization was 1.1%.

このポリマー粉末はキシレン、テトラヒ)’117ラン
、クロロホルム、フェノールとテトラクロルエタンとの
6:4混合物(体積)、及びm−クレゾールにそれぞれ
不沓容であった。このポリマーの流動温度は337℃で
あった。広角X線回折の結果、結晶性であることが確め
られた。このポリマ−は300℃まで重量減少を示さず
、元の重量に対して1. 0%の重1減少率を示す温度
は445℃であり、500℃でも2%以下の減量しかな
かった。
The polymer powder was insoluble in xylene, tetrachloroethane, chloroform, a 6:4 mixture (by volume) of phenol and tetrachloroethane, and m-cresol. The flow temperature of this polymer was 337°C. As a result of wide-angle X-ray diffraction, it was confirmed that it was crystalline. This polymer shows no weight loss up to 300°C and has a weight loss of 1. The temperature at which weight 1 reduction rate was 0% was 445°C, and even at 500°C, the weight loss was less than 2%.

った。It was.

このポリエステル600gと直径13μm、平均長さ5
0μmのガラス繊維400gとからなる混合物は350
℃で良好に造粒することができ、ペレットを得た。この
ペレットは住友重機械工業■製の射出成形機ネオマット
N47/28によりシリンダー温度355℃で良好に射
出成形することができ、試験片を得た。得られた試験片
は引張強度1,210kg/d、弾性率7.2X10’
kg/cd、熱変形温度283℃、白色度72であった
600g of this polyester, diameter 13μm, average length 5
A mixture consisting of 400 g of 0 μm glass fiber is 350
It was possible to granulate well at ℃, and pellets were obtained. This pellet could be successfully injection molded using an injection molding machine Neomat N47/28 manufactured by Sumitomo Heavy Industries Ltd. at a cylinder temperature of 355° C., and a test piece was obtained. The obtained test piece had a tensile strength of 1,210 kg/d and an elastic modulus of 7.2X10'
kg/cd, heat distortion temperature of 283° C., and whiteness of 72.

比較例1 実施例1において320℃での重縮合を更に2時間続け
たところ、撹拌負荷が異常に大きくなり、撹拌が停止し
た。この時のポリエステルの流動温度は311℃であり
、反応槽から抜出すことができなかった。
Comparative Example 1 When the polycondensation at 320° C. in Example 1 was continued for an additional 2 hours, the stirring load became abnormally large and the stirring was stopped. The flow temperature of the polyester at this time was 311°C, and it could not be extracted from the reaction tank.

比較例2 実施例1において重縮合温度が320″Cに達した時点
で実施例1と同様にしてポリエステルの抜出しを行った
。このときのポリエステルの流動温度は226℃であっ
た。
Comparative Example 2 When the polycondensation temperature reached 320"C in Example 1, polyester was extracted in the same manner as in Example 1. The flow temperature of the polyester at this time was 226"C.

こ′のポリマーは250℃までで1.7%の重量減少を
示し、元の重量に対して2.5%の重量減少率を示す温
度は277℃であった。
This polymer showed a weight loss of 1.7% up to 250°C, and the temperature at which it showed a weight loss rate of 2.5% with respect to the original weight was 277°C.

このポリエステルをIs以下に粉砕し、実施例1と同じ
装置、同じ条件で固相重合したが、全体が再溶融してお
り、流動温度も240 ’Cと必要な分子量まで上がっ
ていなかった。また、昇温速度を遅くし、12時間かけ
て200℃から270℃まで上げ、270℃で3時間保
持した後、取出した。
This polyester was pulverized to less than Is and subjected to solid phase polymerization using the same equipment and under the same conditions as in Example 1, but the entire product had been remelted and the flow temperature had not risen to the required molecular weight of 240'C. In addition, the temperature was increased from 200°C to 270°C over 12 hours by slowing the rate of temperature rise, and after being held at 270°C for 3 hours, it was taken out.

試料は粉体のままで融着はなかったが、固相重合での重
N減少が6.8%と多かった。
Although the sample remained as a powder and there was no fusion, the loss of heavy N during solid phase polymerization was as high as 6.8%.

ポリエステルの流動温度は331℃であった。The flow temperature of the polyester was 331°C.

この処理後のポリマー600gと直径13μm、平均長
さ50μmのガラス繊維400gとからなる混合物の造
粒を350″Cで行ったが、実施例1に比べてストラン
ドの吐出が不安定であり、問題であった。
After this treatment, a mixture consisting of 600 g of polymer and 400 g of glass fibers with a diameter of 13 μm and an average length of 50 μm was granulated at 350″C, but the discharge of the strands was unstable compared to Example 1, causing problems. Met.

比較例3 実施例1における溶融状態で取出したポリエステルその
ままの熱分析を行ったところ、250℃までは重量減少
を示さなかったが、元の重量に対して1.0%の重量減
少率を示す温度は395℃であり、2.5%の重量減少
率を示す温度は412℃であった。このことから実施例
1の処理を施すことにより、低沸点物質が除去できてい
ることが明らかである。
Comparative Example 3 A thermal analysis of the polyester taken out in the molten state in Example 1 showed no weight loss up to 250°C, but a weight loss rate of 1.0% relative to the original weight. The temperature was 395°C, and the temperature showing a weight loss rate of 2.5% was 412°C. From this, it is clear that by performing the treatment of Example 1, low boiling point substances can be removed.

実施例2 実施例1と同様にしてp−アセトキシ安息香酸720g
(41O0モル)、4,4°−ジアセトキシジフェニル
546g (21O2モル)、テレフタル酸332g 
(21O0モル)を仕込み重縮合反応させ、サンプリン
グによる反応物の流動温度が286℃になった320℃
2時間で内容物を抜出した。溶融状態で問題無く淡黄褐
色のポリエステルを回収することができた。
Example 2 720 g of p-acetoxybenzoic acid was prepared in the same manner as in Example 1.
(41O0 mol), 4,4°-diacetoxydiphenyl 546g (21O2 mol), terephthalic acid 332g
(21O0 mol) was charged and subjected to polycondensation reaction, and the flow temperature of the reactant was 320℃, which was 286℃ by sampling.
The contents were extracted after 2 hours. It was possible to recover light yellowish brown polyester in a molten state without any problems.

ポリエステルの収量は1.103g(理論収量に対して
99.2%)であった。
The yield of polyester was 1.103 g (99.2% of the theoretical yield).

このポリマーは325℃以上で溶融状態での光学異方性
が観察され、250℃まで重量減少を示さず、元の重量
に対して2.5%の重量減少率を示す温度は410℃で
あった。
Optical anisotropy in the molten state of this polymer was observed above 325°C, and it did not show any weight loss up to 250°C, and the temperature at which it showed a weight loss rate of 2.5% relative to the original weight was 410°C. Ta.

このポリエステルを粉砕機で平均粒径1mm以下の粒子
に粉砕した後、実施[1と同じ装置、同じ条件で固相重
合処理を行った。固相重合での重量減少は0.9%であ
り、流動温度は336℃であった。
After pulverizing this polyester into particles having an average particle size of 1 mm or less using a pulverizer, solid phase polymerization treatment was performed using the same equipment and under the same conditions as in Example [1]. The weight loss during solid state polymerization was 0.9%, and the flow temperature was 336°C.

このポリマーは実施例1と同じ溶媒にそれぞれ不溶であ
った。このポリマーは広角X線回折から結晶性であるこ
とが認められた。
This polymer was insoluble in each of the same solvents as in Example 1. This polymer was found to be crystalline by wide-angle X-ray diffraction.

このポリマーは300℃まで重量減少を示さず、元の重
量に対して1.0%の重量減少率を示す温度は455℃
であり、500℃でも2%以下の減量しかなかった。
This polymer shows no weight loss up to 300°C, and the temperature at which it shows a weight loss rate of 1.0% relative to the original weight is 455°C.
Even at 500°C, the weight loss was less than 2%.

このポリマーを用いたこと以外は実施例1と同じにして
このポリマーとガラス繊維とを混合し、造粒し、355
 ’Cで射出成形した。造粒性及び成形性は良く、試験
片の引張強度1 、 180kg/cイ、弾性率6. 
9 X 10’kg/cd、熱変形温度285℃1白色
度72であった。
This polymer and glass fibers were mixed and granulated in the same manner as in Example 1 except that this polymer was used.
Injection molded with 'C. The granulation and moldability are good, the tensile strength of the test piece is 1.180 kg/cm, and the elastic modulus is 6.
9.times.10'kg/cd, heat distortion temperature: 285.degree. C., whiteness: 72.

実施例3 実施例1と同じ反応槽にp−ヒドロキシ安息香酸607
g(4,40モル)、テレフタル酸ジクロリド406g
 (21O0モル)、反応媒体としてのキシレン1.8
1を仕込み、窒素雰囲気下に激しく撹拌しなから120
 ”Cで1時間、130“Cで1時間、140℃で4時
間反応させた。反応で副生ずる塩化水素はカセイソーダ
水溶液で中和した。反応率は92%であった。このあと
、2,6ジヒドロキシナフタレン323g (21O2
モル)と無水酢酸224g (2,20モル)を仕込み
、140 ’Cで4時間アセチル化反応を行った。
Example 3 In the same reaction tank as in Example 1, p-hydroxybenzoic acid 607
g (4.40 mol), 406 g of terephthalic acid dichloride
(2100 mol), xylene 1.8 as reaction medium
1 and stir vigorously under a nitrogen atmosphere.
The reaction was carried out for 1 hour at 130°C, 1 hour at 130°C, and 4 hours at 140°C. Hydrogen chloride produced as a by-product in the reaction was neutralized with an aqueous solution of caustic soda. The reaction rate was 92%. After this, 323g of 2,6 dihydroxynaphthalene (21O2
mol) and 224 g (2.20 mol) of acetic anhydride were charged, and an acetylation reaction was carried out at 140'C for 4 hours.

昇温速度2℃/分で320℃まで昇温し、キシレン、無
水酢酸、酢酸を除去し、実質的に無溶媒で重縮合を行っ
た。途中のサンプリングで内容物の2i!L動温度が2
75℃になってから20分後に反応槽底部のバルブを開
けたところ、問題なく、ポリエステルを抜出すことがで
きた。取出したポリエステルの流動温度は282℃であ
った。
The temperature was raised to 320°C at a heating rate of 2°C/min, xylene, acetic anhydride, and acetic acid were removed, and polycondensation was performed substantially without solvent. 2i of contents by sampling on the way! L dynamic temperature is 2
When the valve at the bottom of the reaction tank was opened 20 minutes after the temperature reached 75°C, the polyester could be extracted without any problem. The flow temperature of the polyester taken out was 282°C.

ポリエステルの収量はlLOOg(理論収量に対して9
9.3%)であったゆ このポリマーは330℃以上で溶融状態での光学異方性
が観察され、250℃まで重量減少を示さず、元の重量
に対して2.5%の重量減少率を示す温度は425 ’
Cであった。
The yield of polyester is lLOOg (9% compared to the theoretical yield).
Yuko's polymer, which was 9.3%), exhibited optical anisotropy in the molten state at temperatures above 330°C, and showed no weight loss up to 250°C, resulting in a weight loss of 2.5% relative to the original weight. The temperature indicating the rate is 425'
It was C.

このポリエステルを粉砕機で平均粒径1皿以下の粒子に
粉砕した後、厚さ約10+nmでステンレス製容器に仕
込み、電気炉に入れて、窒素雰囲気下に室温から200
 ’Cまで1時間で上げ、200℃から270℃まで2
時間かけて上げ、270℃から360℃まで3時間かけ
て上げ、360℃で3時間保持した後、取出した。固相
重合での重量減少は3.6%であり、得られたポリエス
テルの流動温度は395℃であった。
After pulverizing this polyester into particles with an average particle size of 1 dish or less using a pulverizer, the polyester was placed in a stainless steel container with a thickness of approximately 10+ nm, placed in an electric furnace, and heated from room temperature to 200 nm under a nitrogen atmosphere.
'C in 1 hour, 200℃ to 270℃
The temperature was raised from 270°C to 360°C over 3 hours, and the temperature was maintained at 360°C for 3 hours before being taken out. The weight loss during solid phase polymerization was 3.6%, and the flow temperature of the resulting polyester was 395°C.

このポリマーは実施例1と同し溶媒にそれぞれ不溶であ
った。このポリマーは広角X&i+回折から結晶性であ
ることが認められた。
This polymer, as in Example 1, was insoluble in each solvent. This polymer was found to be crystalline from wide angle X&i+ diffraction.

このポリマーは300℃まで重fK少を示さず、元の重
量に対して1.0%の重量減少率を示す温度は485℃
であった。
This polymer does not show a decrease in fK up to 300°C, and the temperature at which it shows a weight loss rate of 1.0% relative to the original weight is 485°C.
Met.

このポリマーを用いたこと以外は実施例1と同様にして
このポリマーとガラス繊維とを混合し、360“Cで造
粒し、370℃で射出成形した。造粒性および成形性は
良く、試験片の引張強度1 050 kg/cJ、弾性
率5 、 4 X 10 ’kg/ci、熱変形温度3
21 ’C1白色度71であった。
This polymer and glass fiber were mixed in the same manner as in Example 1 except that this polymer was used, granulated at 360"C, and injection molded at 370"C. Pelletability and moldability were good, and the test Tensile strength of piece 1 050 kg/cJ, modulus of elasticity 5, 4 x 10' kg/ci, heat distortion temperature 3
21'C1 whiteness was 71.

実施例4 実施例1と同じ反応槽にp−アセトキシ安息香酸576
g (3,20モル)、2−アセトキシ6−ナフトエ酸
644g (2,80モル)、14−ジアセトキシ−2
メチルベンゼン 426g(21O5gモル)、テレフ
タル酸 332g(21O0モル)を仕込み、内容物を
窒素ガス雲囲気下に撹拌しながら200℃から167分
の速度で昇温し、310℃で2時間50分重合させた。
Example 4 P-acetoxybenzoic acid 576 was added to the same reaction tank as Example 1.
g (3,20 mol), 2-acetoxy-6-naphthoic acid 644 g (2,80 mol), 14-diacetoxy-2
426 g of methylbenzene (5 g mol of 21O) and 332 g of terephthalic acid (0 mol of 21O) were charged, and the contents were heated at a rate of 167 minutes from 200°C while stirring under a nitrogen gas cloud, and polymerized at 310°C for 2 hours and 50 minutes. I let it happen.

この間に重縮合反応によって副生する酢酸を留去し続け
た0重合途中でポリマーをサンプリングし、その流動温
度を測定した。310℃で1時間での流動温度が242
℃で、2時間で261 ’Cで、2時間30分で272
“Cであった。そこで、重合槽の下部にあるバルブを開
け、窒素雰囲気下の取出し箱にポリエステルを抜出した
。ポリエステルは溶融状態で容易に抜出すことができた
During this period, acetic acid produced as a by-product of the polycondensation reaction was continued to be distilled off. During the polymerization, a sample of the polymer was taken, and its flow temperature was measured. Flow temperature in 1 hour at 310℃ is 242
°C, 261'C in 2 hours, 272'C in 2 hours 30 minutes
Therefore, the valve at the bottom of the polymerization tank was opened and the polyester was extracted into a removal box under a nitrogen atmosphere.The polyester was easily extracted in a molten state.

ポリエステルの収量は1,357g (理論収量に対し
て99.2%)であり、流動温度は279℃であった。
The yield of polyester was 1,357 g (99.2% of the theoretical yield) and the flow temperature was 279°C.

このポリマーは320℃以上で溶融状態での光学異方性
が観察され、250″Cまで重量減少を示さず、元の重
量に対して2.5%の重量減少率を示す温度は435℃
であった。
This polymer exhibits optical anisotropy in the molten state at temperatures above 320°C, shows no weight loss up to 250"C, and the temperature at which it shows a weight loss rate of 2.5% relative to the original weight is 435°C.
Met.

このポリエステルを粉砕機で平均粒径1M以下の粒子に
粉砕した後、実施例1と同じ装置、同し条件で固相重合
処理を行った。固相重合での重量減少は1.5%であり
、流動温度は337℃であった・ このポリマーは実施例1と同じ溶媒にそれぞれ不溶であ
り、広角X線回折から結晶性であることが確かめられた
This polyester was pulverized into particles having an average particle size of 1M or less using a pulverizer, and then subjected to solid phase polymerization using the same apparatus and under the same conditions as in Example 1. The weight loss during solid-state polymerization was 1.5%, and the flow temperature was 337°C. The polymer was insoluble in the same solvents as in Example 1, and wide-angle X-ray diffraction showed that it was crystalline. It was confirmed.

このポリマーは300℃まで重量減少を示さず、元の重
量に対して1.0%の重量減少率を示す温度は480℃
であり、500℃でも2%以下の減量しかなかった。
This polymer shows no weight loss up to 300°C, and the temperature at which it shows a weight loss rate of 1.0% relative to the original weight is 480°C.
Even at 500°C, the weight loss was less than 2%.

このポリマーを用いたこと以外は実施例1と同様にして
このポリマーとガラス繊維とを混合し、造粒し、350
℃で射出成形した。造粒性および成形性は良く、試験片
の引張強度1,400kg/cj11弾性率8.3 X
 10’kg/cd、熱変形温度280℃、白色度73
であった。
This polymer and glass fibers were mixed and granulated in the same manner as in Example 1 except that this polymer was used.
Injection molded at ℃. The granulation and moldability are good, and the tensile strength of the test piece is 1,400 kg/cj11 and the modulus of elasticity is 8.3
10'kg/cd, heat distortion temperature 280℃, whiteness 73
Met.

〔発明の効果〕〔Effect of the invention〕

本発明により、低沸点物質の少ない均一で良質な芳香族
ポリエステルを安定に製造することができる。
According to the present invention, it is possible to stably produce a uniform, high-quality aromatic polyester containing few low-boiling substances.

本発明により得られる芳香族ポリエステルは繊維、フィ
ルム、各種の形状を存するものに成形して用いることが
できるのみならず、ポリエステルとガラス繊維、マイカ
、タルク、シリカ、チタン酸カリウム、ウオラストナイ
ト、炭酸カルシウム、石英、酸化鉄、グラファイト、炭
素繊維等とからなる組成物は機械的性質、電気的性質、
耐薬品性、耐油性に優れているので、機械部品、電気、
電子部品、自動車部品に用いることができる。
The aromatic polyester obtained by the present invention can be used not only by forming it into fibers, films, and various shapes, but also polyester and glass fiber, mica, talc, silica, potassium titanate, wollastonite, The composition consisting of calcium carbonate, quartz, iron oxide, graphite, carbon fiber, etc. has mechanical properties, electrical properties,
It has excellent chemical and oil resistance, so it can be used for mechanical parts, electrical,
It can be used for electronic parts and automobile parts.

Claims (1)

【特許請求の範囲】 下式(A)、(B)及び(C)で表わされる化合物を(
A)30〜80モル%、(B)10〜35モル%、及び
(C)10〜35モル%で混合して反応槽に仕込み、重
縮合させることにより、芳香族ポリエステルを製造する
方法において、該重縮合反応が270〜350℃で行わ
れ、生成した芳香族ポリエステルの流動温度が240℃
以上で、かつ重縮合温度より20℃以上低い温度に達し
た時点で、反応槽の内容物である芳香族ポリエステルを
溶融状態で回収し、3mm以下の粒径の粒子に粉砕し、
固相状態のまま、250〜370℃で不活性気体雰囲気
下、又は減圧下に1〜20時間処理することを特徴とす
る芳香族ポリエステルの製造法。 (A)R_1O−X−COOR_2 (ただしXは▲数式、化学式、表等があります▼及び▲
数式、化学式、表等があります▼から選ばれ、その内の
50モル%以上が▲数式、化学式、表等があります▼で
ある。R_1は水素、ホルミル基、アセチル基、プロピ
オニル基、ベンゾイル基から選ばれ、R_2は水素、炭
素数1〜6のアルキル、6〜18のアリール基から選ば
れる。) (B)R_3O−Ar−OR_3 (ただしArは二価の芳香族基である。R_3は水素、
アセチル基、プロピオニル基、ベンゾイル基から選ばれ
る。) (C)R_4CO−Ar’−COR_4 (ただしAr’は二価の芳香族基であり、Ar’の内の
50モル%以上が▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼、及び/又は▲数式
、化学式、表等があります▼である。R_4は水酸基、
OR_5、ハロゲンから選ばれ、R_5は水素、炭素数
1〜6のアルキル、6〜18のアリール基から選ばれる
。)
[Scope of Claims] Compounds represented by the following formulas (A), (B) and (C) are
A) 30 to 80 mol%, (B) 10 to 35 mol%, and (C) 10 to 35 mol% in a method for producing an aromatic polyester by mixing the mixture and charging it into a reaction tank and subjecting it to polycondensation, The polycondensation reaction is carried out at 270 to 350°C, and the flow temperature of the aromatic polyester produced is 240°C.
When the temperature reaches the temperature above and 20°C or more lower than the polycondensation temperature, the aromatic polyester contained in the reaction tank is recovered in a molten state and pulverized into particles with a particle size of 3 mm or less,
A method for producing an aromatic polyester, which comprises treating the aromatic polyester in a solid state at 250 to 370°C under an inert gas atmosphere or under reduced pressure for 1 to 20 hours. (A) R_1O-X-COOR_2 (However, X includes ▲mathematical formula, chemical formula, table, etc.▼ and ▲
There are mathematical formulas, chemical formulas, tables, etc.▼, and more than 50 mol% of them are ▲There are mathematical formulas, chemical formulas, tables, etc.▼. R_1 is selected from hydrogen, a formyl group, an acetyl group, a propionyl group, and a benzoyl group, and R_2 is selected from hydrogen, an alkyl group having 1 to 6 carbon atoms, and an aryl group having 6 to 18 carbon atoms. ) (B) R_3O-Ar-OR_3 (However, Ar is a divalent aromatic group. R_3 is hydrogen,
Selected from acetyl group, propionyl group, and benzoyl group. ) (C)R_4CO-Ar'-COR_4 (However, Ar' is a divalent aromatic group, and more than 50 mol% of Ar' is ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲Mathematical formulas, chemical formulas, There are tables, etc.▼, and/or ▲There are mathematical formulas, chemical formulas, tables, etc.▼.R_4 is a hydroxyl group,
OR_5 is selected from halogen, and R_5 is selected from hydrogen, alkyl having 1 to 6 carbon atoms, and aryl group having 6 to 18 carbon atoms. )
JP63220846A 1988-09-02 1988-09-02 Manufacturing method of aromatic polyester Expired - Lifetime JP2838119B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63220846A JP2838119B2 (en) 1988-09-02 1988-09-02 Manufacturing method of aromatic polyester
US07/400,131 US5015723A (en) 1988-09-02 1989-08-28 Process for producing aromatic polyesters
DE68928156T DE68928156T2 (en) 1988-09-02 1989-09-01 Process for the production of aromatic polyester
EP89116174A EP0357079B1 (en) 1988-09-02 1989-09-01 Process for producing aromatic polyesters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220846A JP2838119B2 (en) 1988-09-02 1988-09-02 Manufacturing method of aromatic polyester

Publications (2)

Publication Number Publication Date
JPH0269518A true JPH0269518A (en) 1990-03-08
JP2838119B2 JP2838119B2 (en) 1998-12-16

Family

ID=16757460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220846A Expired - Lifetime JP2838119B2 (en) 1988-09-02 1988-09-02 Manufacturing method of aromatic polyester

Country Status (1)

Country Link
JP (1) JP2838119B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200043A (en) * 2000-01-14 2001-07-24 Ticona Llc Method for manufacturing liquid crystalline polymer
US6296930B1 (en) 1998-06-08 2001-10-02 Sumitomo Chemical Company, Limited Aromatic liquid crystalline polyester resin and resin composition thereof
US6376076B1 (en) 1999-06-08 2002-04-23 Sumitomo Chemical Company, Limited Aromatic liquid crystalline polyester resin and resin composition thereof
JP2002179778A (en) * 2000-12-14 2002-06-26 Sumitomo Chem Co Ltd Method for producing thermotropic liquid crystalline resin
US6528164B1 (en) 1999-09-03 2003-03-04 Sumitomo Chemical Company, Limited Process for producing aromatic liquid crystalline polyester and film thereof
JP2006028287A (en) * 2004-07-14 2006-02-02 Ueno Seiyaku Oyo Kenkyusho:Kk Liquid crystalline polyester resin and manufacturing method thereof
JP2010132888A (en) * 2008-10-28 2010-06-17 Sumitomo Chemical Co Ltd Method for producing liquid crystalline polyester, method for solid phase polymerization of liquid crystalline polyester, and liquid crystalline polyesters obtained by the methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292295A (en) * 1976-01-29 1977-08-03 Sumitomo Chem Co Ltd Preparation of aromatic polyester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292295A (en) * 1976-01-29 1977-08-03 Sumitomo Chem Co Ltd Preparation of aromatic polyester

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296930B1 (en) 1998-06-08 2001-10-02 Sumitomo Chemical Company, Limited Aromatic liquid crystalline polyester resin and resin composition thereof
US6376076B1 (en) 1999-06-08 2002-04-23 Sumitomo Chemical Company, Limited Aromatic liquid crystalline polyester resin and resin composition thereof
US6528164B1 (en) 1999-09-03 2003-03-04 Sumitomo Chemical Company, Limited Process for producing aromatic liquid crystalline polyester and film thereof
US6656578B2 (en) 1999-09-03 2003-12-02 Sumitomo Chemical Company, Limited Process for producing aromatic liquid crystalline polyester and film thereof
JP2001200043A (en) * 2000-01-14 2001-07-24 Ticona Llc Method for manufacturing liquid crystalline polymer
JP2002179778A (en) * 2000-12-14 2002-06-26 Sumitomo Chem Co Ltd Method for producing thermotropic liquid crystalline resin
US6582625B2 (en) 2000-12-14 2003-06-24 Sumitomo Chemical Company, Limited Process for producing thermotropic liquid crystalline polymer
JP4644933B2 (en) * 2000-12-14 2011-03-09 住友化学株式会社 Method for producing molten liquid crystalline resin
JP2006028287A (en) * 2004-07-14 2006-02-02 Ueno Seiyaku Oyo Kenkyusho:Kk Liquid crystalline polyester resin and manufacturing method thereof
JP2010132888A (en) * 2008-10-28 2010-06-17 Sumitomo Chemical Co Ltd Method for producing liquid crystalline polyester, method for solid phase polymerization of liquid crystalline polyester, and liquid crystalline polyesters obtained by the methods

Also Published As

Publication number Publication date
JP2838119B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
JP3969171B2 (en) Liquid crystalline polyester and method for producing the same
JP5161785B2 (en) Method for producing wholly aromatic polyester
JP2012214736A (en) Method for producing liquid crystal polyester
JP2847188B2 (en) Method for producing aromatic polyester
JPH0269518A (en) Production of aromatic polyester
JP2830118B2 (en) Aromatic polyester and method for producing the same
EP0357079B1 (en) Process for producing aromatic polyesters
KR20120100628A (en) Method of preparing wholly aromatic liquid crystalline polyester resin and resin prepared by the method, and compound including the resin
JP2838118B2 (en) Method for producing aromatic polyester
JP2533328B2 (en) Aromatic polyester
JP2000063503A (en) Aromatic liquid crystalline polyester resin and its production, and aromatic liquid crystalline polyester resin film and its production
JPH024608B2 (en)
US20040044171A1 (en) Method for producing a liquid crystalline polyester and the liquid crystalline polyester
JP2794812B2 (en) Method for producing aromatic polyester
JPH02235923A (en) Production of aromatic polyester
JP3419070B2 (en) Method for producing aromatic polyester
JPH02235922A (en) Production of aromatic polyester
JPH03152124A (en) Production of aromatic polyester
JPH1036492A (en) Production of wholly aromatic polyester
JPH0251523A (en) Aromatic polyester
JP3052144B2 (en) Method for producing aromatic polyester
CN115449061A (en) Wholly aromatic liquid crystal polyester resin and preparation method and application thereof
JP3419227B2 (en) Method for producing aromatic polyester
JPH01221420A (en) Thermotropic liquid crystal aromatic polyester
JP2008138221A (en) Liquid crystal polyester and method for producing the same