JPH01131034A - Solid electrolyte for sensor - Google Patents

Solid electrolyte for sensor

Info

Publication number
JPH01131034A
JPH01131034A JP28620087A JP28620087A JPH01131034A JP H01131034 A JPH01131034 A JP H01131034A JP 28620087 A JP28620087 A JP 28620087A JP 28620087 A JP28620087 A JP 28620087A JP H01131034 A JPH01131034 A JP H01131034A
Authority
JP
Japan
Prior art keywords
electrode
substrate
solid electrolyte
sensor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28620087A
Other languages
Japanese (ja)
Inventor
Jun Kuwano
桑野 潤
Masayoshi Kato
正義 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP28620087A priority Critical patent/JPH01131034A/en
Publication of JPH01131034A publication Critical patent/JPH01131034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the title solid electrolyte having a high glass transition temperature and ionic conductivity, by vitrifying AgI, Ag2O and WO3 components of a specific composition. CONSTITUTION:An aqueous solution of AgNO3 is mixed with aqueous solutions of K2WO4 and KI to provide precipitates, which are then washed, separated by filtration and dried to afford a mixture of AgI with Ag2WO4. WO3 is subsequently added and blended with the above-mentioned mixture and the obtained blend is pulverized, melted by heating and vitrified to provide a solid electrolyte, consisting of 35-58mol% AgI, 19-30mol% Ag2O and 23-35mol% WO3, having 130-190 deg.C glass transition temperature and 10<-2>-10<-3>Scm electric conductivity (ambient temperature) and useful as sensors. The resultant electrolyte is cut into the form of a thin sheet to provide a substrate 1. The second electrode 6 consisting of an LaF3 layer 2 and air-permeable platinum layer is then formed on the specular surface side of the substrate 1 and the first electrode 3 having a lead wire 4 secured to the other surface is simultaneously formed. Other surfaces are molded with a resin 5, leaving the LaF3 layer 2. A copper wire 7 is bonded onto the resin 5 to constitute a sensor.

Description

【発明の詳細な説明】 (技術分野) 本発明は、固体化学センサーを構成するのに適した高イ
オン伝導性を有する固体電解質に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a solid electrolyte with high ionic conductivity suitable for constructing a solid-state chemical sensor.

(従来技術) 固体電解質を使用した化学センサーは、基本的には電解
質基板の一方の表面に参照電極を、また他方の表面(こ
感応物質層と検出電極を設け、被検出物質か電極活性物
質として作用するように構成されでいる。この固体電解
質は、両極における酸化、または還元反応をイオン伝導
により電気化学的に結び付け、しかも両極における活性
物質か相互に混合するのを阻止するための物理的隔壁と
しての機能をも併せもっている。
(Prior art) A chemical sensor using a solid electrolyte basically has a reference electrode on one surface of an electrolyte substrate, and a sensitive material layer and a detection electrode on the other surface. This solid electrolyte electrochemically couples the oxidation or reduction reactions at the two poles by ionic conduction, and also has physical controls to prevent the active substances at the poles from mixing with each other. It also functions as a bulkhead.

例えば、ジルコニア酸素センサーは、安定化ジルコニア
焼結体からなる基板の一方の表面に検出電極を、他方の
表面に空気参照電極を設け、検出電極での酸素分圧に基
づく起電力を検出するように構成されている。しかしな
から、固体電解質である安定化ジルコニア焼結体かイオ
ン伝導を呈するには、600°C以上の温度を必要とす
るため、取扱いか面倒であるばかってなく、加熱機構を
必要として構造の複雑化を招くという問題かある。
For example, in a zirconia oxygen sensor, a detection electrode is provided on one surface of a substrate made of a stabilized zirconia sintered body, and an air reference electrode is provided on the other surface, and the electromotive force based on the oxygen partial pressure at the detection electrode is detected. It is composed of However, in order for the stabilized zirconia sintered body, which is a solid electrolyte, to exhibit ionic conduction, it requires a temperature of 600°C or higher, which is not only troublesome to handle, but also requires a heating mechanism, resulting in structural problems. The problem is that it complicates things.

このような問題を解消するため、A9IやCaF2等の
比較的室温(こ近い温度で高いイオン伝導性を示す多結
晶固体電解質を用いて、動作温度の低温化、小型化、応
答速度の向上を図った化学的センサーも提案されている
か、イオン伝導性が依然として低く実用域1こ到達して
いない。
In order to solve these problems, we are using polycrystalline solid electrolytes such as A9I and CaF2, which exhibit high ionic conductivity at relatively room temperature (near temperature), to lower operating temperatures, downsize, and improve response speed. Chemical sensors have also been proposed, but their ionic conductivity is still low and has not yet reached the practical level.

このような要求を満たすべく、最近、A9I−A92 
MOO4、A9I  A92 Cr207、A9I−A
92 As04などのA9 It主成分とする高イオン
伝導性ガラスか開発され、高いイオン伝導性を示す点に
おいては優れている。
In order to meet these demands, recently A9I-A92
MOO4, A9I A92 Cr207, A9I-A
Highly ionic conductive glasses containing A9 It as a main component, such as 92 As04, have been developed and are excellent in exhibiting high ionic conductivity.

しかしながら、センサーの小型化、高機能化を図る上に
おいては、感応物質層や電極層の形成を蒸着やイオンブ
レーティングに頼る関係上、固体電解質基板の平滑性や
熱的安定性や、薄膜への加工性か重要な要素となるが、
ガラスが液体になる温度、いわゆるガラス転移点か依然
として低く、蒸着やイオンブレーティング工程における
基板温度を十分に確保することができず、しかも加工が
困難であるという問題がある。
However, in order to miniaturize and improve the functionality of sensors, the formation of sensitive material layers and electrode layers relies on vapor deposition and ion blating, and the smoothness and thermal stability of the solid electrolyte substrate and the thin film The processability is an important factor,
The temperature at which glass becomes liquid, the so-called glass transition point, is still low, making it difficult to maintain a sufficient substrate temperature during vapor deposition or ion blating processes, and processing is difficult.

(目的) 本発明はこのような問題に鑑みてなされたものであって
、その目的とするところは高いガラス転移温度と、高い
イオン伝導性を合せ持つとともに研削等による加工を可
能ならしめる固体電解質を提供することにある。
(Purpose) The present invention was made in view of these problems, and its purpose is to provide a solid electrolyte that has both a high glass transition temperature and high ionic conductivity, and which can be processed by grinding etc. Our goal is to provide the following.

(発明の概要) すなわち、本発明が特徴とするところは、ヨウ化銀35
乃至58モル%、酸化銀19乃至30モル%、及び酸化
タングステン23乃至35モル%の組成をもつ成分をガ
ラス化させた点にある。
(Summary of the invention) That is, the present invention is characterized in that silver iodide 35
The point is that components having a composition of 58 mol % to 58 mol %, silver oxide 19 to 30 mol %, and tungsten oxide 23 to 35 mol % are vitrified.

(実施例) そこで以下に本発明の詳細を実施例に基づいて説明する
(Example) Therefore, the details of the present invention will be explained below based on an example.

A 9 N O3と、に2W O−+及びKIのそれぞ
れ0.5 mol/A水溶液を作り、KI及びに2W○
4の水溶液にA 9 N O3水溶液をゆっくり加えて
沈澱を作り、この沈澱した八9■及びA92WO,Iを
蒸留水で10〜15回、ついてメタノールで洗浄してガ
ラスフィルターで濾過した。この濾過したものをアスピ
レータで減圧しながら数日間乾燥した後、減圧下120
℃で約6時間乾燥した。
Prepare 0.5 mol/A aqueous solutions of A 9 N O3, 2W O−+ and KI each, and add 2W○ to KI and 2W○.
A 9 N O 3 aqueous solution was slowly added to the aqueous solution of 4 to form a precipitate, and the precipitated 89 and A92WO,I were washed with distilled water 10 to 15 times, then with methanol, and filtered through a glass filter. After drying the filtered material for several days under reduced pressure with an aspirator, it was dried for several days under reduced pressure.
It was dried at ℃ for about 6 hours.

上記工程により合成した△9工とA92W0.1(また
は市販のA 920)及び市販のW O3a所望のモル
比になるように精秤したのちメノウ乳ばちで粉砕混合し
た(なおA92WO4はモル比てA 920 :WO3
= 1 : 1として換算できる)。
The △9 process synthesized by the above process, A92W0.1 (or commercially available A920), and commercially available WO3a were accurately weighed to the desired molar ratio, and then ground and mixed in an agate mortar (A92WO4 has a molar ratio of Te A 920: WO3
= 1: 1).

この混合粉末を耐熱ガラス管に入れ、窒素雰囲気中で温
度400℃において1時間予備加熱した後、600℃で
5時間はど加熱して溶融させ、この溶融物を大気中に放
冷しでバルク状ガラス体を得た。
This mixed powder was placed in a heat-resistant glass tube, preheated at a temperature of 400°C for 1 hour in a nitrogen atmosphere, and then heated at 600°C for 5 hours to melt it. A vitreous body was obtained.

次に、A9I−A920  WO2の3つの成分の混合
比を変化させて、上述した手法によりサンプルを作成し
、ガラス化の有無を調査したところ、第1図に示したよ
うな結果を得た。
Next, samples were prepared by the method described above while changing the mixing ratio of the three components of A9I-A920 WO2, and the presence or absence of vitrification was investigated, and the results shown in FIG. 1 were obtained.

すなわち、Ac+1含量35〜58m01%、A920
含量19−19−3O%、WO3含蛍2S−35mo1
%のW O3/ A 920 = 1の組成線に沿った
範囲のものでは自然空冷でガラス化することが判明した
(図中○はガラス化したものを、Cは一部だけがガラス
化したものを、・は完全な結晶質のものを、ムは銀の析
出したものをそれぞれ表す)。
That is, Ac+1 content 35-58m01%, A920
Content 19-19-3O%, 2S-35mol containing WO3 fluorescein
It was found that materials in the range along the composition line of %W O3 / A 920 = 1 were vitrified by natural air cooling (in the figure, ○ indicates those that were vitrified, and C indicates those that were only partially vitrified. , . represents completely crystalline material, and .mu. represents silver precipitated material).

表1は、上記ガラス化したサンプルの電気導電性、ガラ
ス転移温度を示すものであって導電率の点ては室温で1
0−2〜10−10−3S+という高い値を示して大差
がなかったが、7A9I −6A920−7W03(3
5−30−35mo1%)の組成のものは、ガラス転移
温度(T9)が190℃という一番高い値を示して蒸着
用の基板として最も適することが判明した。
Table 1 shows the electrical conductivity and glass transition temperature of the vitrified sample, and the electrical conductivity is 1 at room temperature.
There was no big difference, showing high values of 0-2 to 10-10-3S+, but 7A9I-6A920-7W03 (3
5-30-35 mo1%) showed the highest glass transition temperature (T9) of 190° C. and was found to be most suitable as a substrate for vapor deposition.

次に、このようにして得た固体電解質を使用してセンサ
ーを構成する方法について説明する。
Next, a method for constructing a sensor using the solid electrolyte thus obtained will be described.

上述のバルク状ガラス体を刃具により縦横巾約5 mm
X 5 mmx 2 mmの薄板に切出し、一方の面を
ラッピングして鏡面とした。
Cut the bulk glass body mentioned above into a piece with a length and width of approximately 5 mm using a cutting tool.
It was cut into a thin plate measuring 5 mm x 2 mm, and one side was wrapped to give it a mirror surface.

このように形成した基板1を、ヘルジャー内に鏡面側を
下向き載置し、また他面側にヒータを配設し、蒸着に適
した温度である125°Cに基板を加熱し、粉末状フッ
化うンタンLaFsiモリブデン製ポートに収容すると
ともに、ペルジャー内を1O−5Torrオーダーまで
排気し、粉末状フッ化うンタンLaF3@蒸発させて基
板1の鏡面側表面にのみ厚ざ1L1mの結晶性フッ化ラ
ンタン層2を形成した。
The substrate 1 thus formed was placed in a Herjar with the mirror side facing downward, and a heater was placed on the other side to heat the substrate to 125°C, which is a temperature suitable for vapor deposition, and powdered fluorine was applied to the substrate. LaFsi is housed in a molybdenum port, the inside of the Pelger is evacuated to the order of 1O-5 Torr, and powdered fluoride LaF3 is evaporated to form crystalline fluoride with a thickness of 1L1m only on the mirror side surface of the substrate 1. A lanthanum layer 2 was formed.

この蒸着過程において、基板1を温度125℃に加熱し
ていたが、結晶化を誘発することなく、依然としてガラ
ス質を維持していた。
During this vapor deposition process, the substrate 1 was heated to a temperature of 125° C., but it still maintained its glassy state without inducing crystallization.

フッ化ランタン層2を形成した面とは反対の面に、銀ド
ータイトを塗布して第1の電極3を形成するとともに、
この電極3にリード線4を固着した。フッ化うンタン層
2表面たけを残しで、他の表面をエポキシ樹脂5てモー
ルドした。また同時に第2の電極6との電気的接触を保
つための銅線7をフッ化うンタン層近傍のエポキシ樹脂
5上に接着した。
Applying silver dotite to the surface opposite to the surface on which the lanthanum fluoride layer 2 is formed to form the first electrode 3,
A lead wire 4 was fixed to this electrode 3. Leaving only the surface of the fluorinated porcelain layer 2 intact, the other surfaces were molded with epoxy resin 5. At the same time, a copper wire 7 for maintaining electrical contact with the second electrode 6 was bonded onto the epoxy resin 5 near the fluorinated titanium layer.

アルゴンガス雰囲気で白金をターゲット材料としてフッ
化うンタン層2表面及びリート線部分に電圧2.4KV
を印加してイオン化電流5mAで30秒ずつ断続的に6
回スパッタして通気性を有する白金層を形成して第2の
電極6を構成した。
Using platinum as a target material in an argon gas atmosphere, a voltage of 2.4 KV is applied to the surface of the fluorinated titanium layer 2 and the Riet wire.
6 intermittently for 30 seconds at an ionization current of 5 mA by applying
The second electrode 6 was formed by repeating sputtering to form a platinum layer having air permeability.

この実施例において、基板]を温度25℃に維持した状
態で、02ガスとN2ガスを混合してなる雰囲気を注入
し、酸素濃度に対するセンサーの起電力を測定したとこ
ろ、第3図に示したように、 (たたし、Elは定数、nは検知極における酸素ガス1
molを含む電極応答に関与する電子数(mol数)を
それぞれ表わす。) なるNernst式で表わされる直線性の良い応答を示
した。
In this example, while maintaining the substrate at a temperature of 25°C, an atmosphere consisting of a mixture of 02 gas and N2 gas was injected, and the electromotive force of the sensor relative to the oxygen concentration was measured, as shown in Figure 3. (where, El is a constant, n is oxygen gas 1 at the sensing electrode
Each represents the number of electrons (mol number) involved in electrode response including mol. ) It showed a response with good linearity expressed by the Nernst equation.

次に酸素分圧を段階的に増加させてセンサーの起電力変
化を調査したところ、第4図に示したように、9O%応
答に要する時間は、酸素分圧に関わりなく約9分であっ
た。
Next, we investigated the change in the electromotive force of the sensor by increasing the oxygen partial pressure in stages, and found that the time required for a 90% response was approximately 9 minutes, regardless of the oxygen partial pressure, as shown in Figure 4. Ta.

このように構成したセンサーは、第1の電極3を構成し
ている金属銀と基板1との界面では、A9=Aq”+e
      −2 また、基板1とフッ化ランタン層2の界面では、上記過
程(式2)により生成した銀イオン八〇+と界面に移動
してきたLaF3中のフッ化物イオンF−との間で A9” +F−=A9F    ・・・3という反応か
生じる。
In the sensor configured in this way, at the interface between the metal silver constituting the first electrode 3 and the substrate 1, A9=Aq''+e
-2 Furthermore, at the interface between the substrate 1 and the lanthanum fluoride layer 2, A9'' +F-=A9F...3 reaction occurs.

ところてLaF3結晶は5chottky欠陥生成の活
性化エネルギーが0.069evと低いので、常温で非
常に多くの5chottky欠陥をもっている。
However, LaF3 crystal has a very large number of 5-chottky defects at room temperature because the activation energy for 5-chottky defect generation is as low as 0.069 ev.

また、LaF3中のFにはエネルギーに等価てない3つ
のサイトかあり、そのう152つは共有結合が支配的で
あるが、他の1つの第3のサイトは層を形成して60%
のイオン結合と40%の■結合とによっており、他の2
つのサイトに比へて結合が弱い。このため第3のサイト
にフッ素イオン空孔か発生し易く、この空孔をキャリア
ーとしてF−イオンが速ヤかに移動すると考えられてい
る。
In addition, there are three sites in F in LaF3 that are not equivalent in energy, and 152 of them are dominated by covalent bonds, while the other 3rd site forms a layer and has a 60%
This is due to ionic bonds of 40% and ■ bonds of 40%, and the other 2
The binding is weaker than that of two sites. For this reason, fluorine ion holes are likely to be generated at the third site, and it is thought that F- ions rapidly move using these holes as carriers.

一方、酸素02は電極6を通過して電極6とフッ化ラン
タン層2との界面において、Q2+2Fp +2e=2
0斧+2F−−−−4(0γはLaF3のF−サイトに
入った○−イオン、Fiはフッ化ランタン中の正規格子
サイトのフツ化物イオンF−7a表わす) なる電極反応によりフッ化ランタンと反応する。
On the other hand, oxygen 02 passes through the electrode 6 and at the interface between the electrode 6 and the lanthanum fluoride layer 2, Q2+2Fp +2e=2
0ax+2F----4 (0γ is the ○- ion that has entered the F-site of LaF3, Fi represents the fluoride ion F-7a at the regular lattice site in lanthanum fluoride) Through the electrode reaction, lanthanum fluoride and react.

酸素原子○からの酸化物イオン○−の生成は、酸化物イ
オン○−2の生成時より8.8eVたけエネルギーが少
なくすみ、また、ノッ化物イオンF−の半径は1.33
人であり、また酸化物イオン〇−の半径は1.76人と
比較的小さいため、LaF3の格子を大きくは歪ませる
ことなくフッ化物イオンと酸化物イオン〇−の置換が行
なわれると考えられる。
The generation of oxide ion ○- from oxygen atom ○ requires 8.8 eV less energy than the generation of oxide ion ○-2, and the radius of nodide ion F- is 1.33
Since the radius of the oxide ion 〇- is relatively small (1.76 people), it is thought that the substitution between the fluoride ion and the oxide ion 〇- takes place without significantly distorting the lattice of LaF3. .

この置換によって生成フ・ン化物イオンは空孔を通して
フッ化ランタン中をガラス−フッ化ランタン界面へ移動
し式3によりAqF!生じる。
Due to this substitution, the produced fluoride ions move through the vacancies in the lanthanum fluoride to the glass-lanthanum fluoride interface, and according to equation 3, AqF! arise.

このため、第1の電極3と第2の電極4の間では、セン
サー中の全反応として、 2A9+02 +2FW =20斧+2AqF  −5
という2電子反応に基づく起電力反応が生しるから、セ
ンサーの起電力は、 ・・・6 (たたし、E2は定数を、aはそれぞれの活量を表わす
。) となる。
Therefore, between the first electrode 3 and the second electrode 4, the total reaction in the sensor is 2A9+02 +2FW = 20ax+2AqF -5
Since the electromotive force reaction based on the two-electron reaction occurs, the electromotive force of the sensor is 6 (where E2 is a constant and a represents each activity).

ところで、第2の電極6とフッ化ランタン層2との界面
付近のLaF3格子中には、既に成る程度の酸素イオン
○−が不可逆的に固溶しでいるものの、弐8のような電
極反応ではその組成が実質的(こ変化しないので、ao
F及びaFgは酸素分圧に関係なく一定(aAq、aA
9Fはへ9とA9Fは組成の変化しない固体相なので一
定)となるから、起電力は、 となり、式1で示され実験的特性が説明できる。
By the way, although some oxygen ions are already irreversibly dissolved in the LaF3 lattice near the interface between the second electrode 6 and the lanthanum fluoride layer 2, the electrode reaction as shown in No. 28 Then, since its composition does not substantially change, ao
F and aFg are constant regardless of oxygen partial pressure (aAq, aA
Since 9F is constant since 9F and A9F are solid phases whose compositions do not change, the electromotive force is as follows, which is expressed by Equation 1 and the experimental characteristics can be explained.

このように、基板1が室温において10−2乃至10−
33 c m−’という極めて高いイオン伝導性を有す
る銀イオン伝導性ガラスから構成されていることと、基
板の一方の面に金属銀か配設されでいて、両者の界面に
おいて前記式2て示した電極反応が可逆的(こ極めで速
やかに生じることとの相乗作用により、界面は、界面抵
抗か低く、かつ外乱に対しでも速やかに平衡状態に戻る
という安定性をもつ固体参照極を形成しで、極めて高い
応答速度を示すことになる。
In this way, the substrate 1 is 10-2 to 10-2 at room temperature.
It is made of silver ion conductive glass having an extremely high ion conductivity of 33 cm-', and metal silver is disposed on one side of the substrate, and the interface between the two is expressed by the formula 2 above. Due to the synergistic effect of the reversible electrode reaction (which occurs rapidly), the interface forms a stable solid reference electrode that has low interfacial resistance and quickly returns to an equilibrium state even in the face of external disturbances. This results in an extremely high response speed.

] 1 すなわち、−船釣に、固体電解質を用いた素子の全抵抗
は界面抵抗に支配されることが多いが、本発明の固体電
解質によれば界面抵抗の低減が図られるため、センサー
の内部抵抗(約10’Ω)は従来のセンサー(約107
Ω)に比べ1000分の1にまで低減されることになる
] 1 In other words, - In boat fishing, the total resistance of an element using a solid electrolyte is often controlled by the interfacial resistance, but since the solid electrolyte of the present invention can reduce the interfacial resistance, the internal resistance of the sensor The resistance (approximately 10'Ω) is the same as the conventional sensor (approximately 10
This results in a reduction to 1/1000 compared to Ω).

また、上記基板を用い、基板の一方の通気性を有する面
に第1の電極を、他方の面に第2の電極を形成するとと
もに、第1の電極だけを露出させた状態でモールドして
センサーを構成し、このセンサーを水中に浸漬して塩化
物イオンの濃度を変化させながら起電力を測定したとこ
ろ、塩化物イオン濃度に比例した起電力を得ることがで
きた。
Further, using the above substrate, a first electrode is formed on one air-permeable surface of the substrate, a second electrode is formed on the other surface, and molded with only the first electrode exposed. When we constructed a sensor and measured the electromotive force while changing the concentration of chloride ions by immersing the sensor in water, we were able to obtain an electromotive force proportional to the concentration of chloride ions.

また、同しセンサーによりヨウ素や臭素等のハロゲンガ
スを測定したところ、ハロゲンガスの分圧に比例した起
電力を得ることができた。
Furthermore, when we measured halogen gases such as iodine and bromine using the same sensor, we were able to obtain an electromotive force proportional to the partial pressure of the halogen gas.

このことから、ハロゲン化合物イオン分圧の測定に適し
た固体電解質となることが判明した。
From this, it was found that the solid electrolyte is suitable for measuring the partial pressure of halogen compound ions.

さらに上記基板と第1電極との間に硫化銀等の硫化物の
層を介在させ、第1電極たけ1F!:N出させてセンサ
ーを構成し、このセンサーに硫化水素ガスに曝したとこ
ろ硫化水素ガスの濃度に比例した起電力か発生した。
Furthermore, a layer of sulfide such as silver sulfide is interposed between the substrate and the first electrode, so that the first electrode has a thickness of 1F! :N was used to construct a sensor, and when this sensor was exposed to hydrogen sulfide gas, an electromotive force proportional to the concentration of hydrogen sulfide gas was generated.

また、同様に基板と第1電極との間に炭酸銀、硫化銀、
シアン化銀等により層を設けることにより、それぞれ二
酸化炭素ガス、二酸化イオウガス、シアン化水素ガスに
対して、その分圧に比例した起電力を得ることができた
Similarly, silver carbonate, silver sulfide,
By providing a layer of silver cyanide or the like, it was possible to obtain an electromotive force proportional to the partial pressure of carbon dioxide gas, sulfur dioxide gas, and hydrogen cyanide gas, respectively.

(効果) 以上、説明したように本発明によれば、ヨウ化銀35乃
至58モル%、酸化銀]9乃至30モル%、及び酸化タ
ングステン23乃至35モル%の組成を有するので、高
いイオン伝導度と、高いガラス転移温度を示す固体電解
質を得ることができ、センサーの応答速度の向上と、基
板への感応物質や電極金属の蒸着か簡素化することがで
き、さらには、刃具による切削が可能となって薄型基板
への加工を簡素化することができる。
(Effects) As explained above, according to the present invention, the composition has a composition of 35 to 58 mol% silver iodide, 9 to 30 mol% silver oxide, and 23 to 35 mol% tungsten oxide, and therefore has high ionic conductivity. It is possible to obtain a solid electrolyte that exhibits a high glass transition temperature, which improves the response speed of sensors, and simplifies the deposition of sensitive materials and electrode metals on the substrate. This makes it possible to simplify processing into thin substrates.

また、この物資により形成した基板は、室温においで1
0−2乃至10−38cm−’という極めて高いイオン
伝導性を有するとともに、一方の面に金属銀を配設した
場合には、界面において電極反応か速やかに可逆的に生
しることとの相乗作用により、界面で内部抵抗か低く、
かつ外乱に対しても速やかに平衡状態に戻るから、常温
においての応答の優れたセンサーを実現することができ
る。
In addition, the substrate formed with this material can be heated to 1
It has an extremely high ionic conductivity of 0-2 to 10-38 cm-', and when metal silver is placed on one side, the electrode reaction occurs quickly and reversibly at the interface, which is synergistic. Due to the action, the internal resistance at the interface is low,
In addition, since it quickly returns to an equilibrium state even in response to disturbances, it is possible to realize a sensor with excellent response at room temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(よ本発明に使用する固体電解質の組成を示す図
、第2図は、同上固体電解質を使用して構成した酸素セ
ンサーの一例を示す断面図、第3図は、同上装置の応答
特性を示す線図である。 ]・・・・基板 2・・・・フッ化物イオン伝導体 3・・・・第1の電極 4・・・・第2の電極 7・・・・モルード
Figure 1 shows the composition of the solid electrolyte used in the present invention, Figure 2 is a sectional view showing an example of an oxygen sensor constructed using the solid electrolyte described above, and Figure 3 shows the response of the above device. It is a diagram showing the characteristics. ] ... Substrate 2 ... Fluoride ion conductor 3 ... First electrode 4 ... Second electrode 7 ... Molded

Claims (1)

【特許請求の範囲】[Claims]  ヨウ化銀35乃至58モル%、酸化銀19乃至30モ
ル%、及び酸化タングステン23乃至35モル%の組成
を有する成分をガラス化させてなるセンサー用固体電解
質。
A solid electrolyte for a sensor made by vitrifying components having a composition of 35 to 58 mol% silver iodide, 19 to 30 mol% silver oxide, and 23 to 35 mol% tungsten oxide.
JP28620087A 1987-11-12 1987-11-12 Solid electrolyte for sensor Pending JPH01131034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28620087A JPH01131034A (en) 1987-11-12 1987-11-12 Solid electrolyte for sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28620087A JPH01131034A (en) 1987-11-12 1987-11-12 Solid electrolyte for sensor

Publications (1)

Publication Number Publication Date
JPH01131034A true JPH01131034A (en) 1989-05-23

Family

ID=17701257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28620087A Pending JPH01131034A (en) 1987-11-12 1987-11-12 Solid electrolyte for sensor

Country Status (1)

Country Link
JP (1) JPH01131034A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316921A (en) * 1989-06-15 1991-01-24 Matsushita Electric Ind Co Ltd Synthesis of silver ion connective solid electrolyte
US5876578A (en) * 1996-07-12 1999-03-02 Mitsubishi Denki Kabushiki Kaisha Gas sensor
KR20190006886A (en) * 2017-07-11 2019-01-21 이승철 SENSOR DEVICE AND SENSOR FOR DETECTING HCl AND METHOD FOR MANUFACTURING THEREOF

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116643A (en) * 1979-03-01 1980-09-08 Citizen Watch Co Ltd Solid electrolyte composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116643A (en) * 1979-03-01 1980-09-08 Citizen Watch Co Ltd Solid electrolyte composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316921A (en) * 1989-06-15 1991-01-24 Matsushita Electric Ind Co Ltd Synthesis of silver ion connective solid electrolyte
US5876578A (en) * 1996-07-12 1999-03-02 Mitsubishi Denki Kabushiki Kaisha Gas sensor
KR20190006886A (en) * 2017-07-11 2019-01-21 이승철 SENSOR DEVICE AND SENSOR FOR DETECTING HCl AND METHOD FOR MANUFACTURING THEREOF

Similar Documents

Publication Publication Date Title
Balachandran et al. Electrical conductivity in lanthanum‐doped strontium titanate
Ishii Structural phase transition and ionic conductivity in 0.88 ZrO2(0.12− x) Sc2O3 xAl2O3
Laqibi et al. New silver superionic conductors Ag7XY5Z (X= Si, Ge, Sn; Y= S, Se; Z= Cl, Br, I)-synthesis and electrical studies
Elrefaie et al. Thermodynamics of Nickel‐Aluminum‐Oxygen system between 900 and 1400 K
EP0718247A1 (en) Lithium ion-conductive glass film and thin carbon dioxide gas sensor using the same film
Thangadurai et al. Mixed ionic-electronic conductivity in phases in the praseodymium oxide system
Suzuki et al. Defect and mixed conductivity in nanocrystalline doped cerium oxide
Owen Chalcogenide glasses as ion-selective materials for solid-state electrochemical sensors
US5855849A (en) Solid state humidity sensor
Takahashi et al. High Oxide Ion Conduction in Sintered Oxide of the System Bi2 O 3‐M 2 O 5
JPH01131034A (en) Solid electrolyte for sensor
EP0286503A1 (en) Conducting oxide-nitride perovskites, their preparation and their use, particularly as an electrode material
Matsui et al. High conductivity cuprous halide‐metal halide systems
Creus et al. Thin films of ionic and mixed conductive glasses: their use in microdevices
Jacob et al. Gibbs energy of formation of lead zirconate
Tetot et al. Determination of Oxygen partial free energy for non-stoichiometric TiO by EMF measurements: Thermodynamics of TiO at 1323 K
JP3770456B2 (en) Measuring method of gas concentration
JP2583209B2 (en) Solid electrolyte type oxygen sensor
Sheasby et al. The Diffusional Properties of Oxygen in Niobium Pentoxide Crystals and Scales Formed on Niobium
JPS62298755A (en) Solid battery measuring oxygen partial pressure and manufacture thereof
JPH0423212B2 (en)
JP4788867B2 (en) Oxide ion conductive material comprising powder of bismuth / erbium / tungsten oxide solid solution and method for producing the same
Mathews et al. Variation of the partial thermodynamic properties of oxygen with composition in YBa 2 Cu 3 O 7− δ
Mostafa et al. Electrochemical Investigations on silver sulphide
Agrawal et al. Studies on ionic transport properties of a new Ag+ ion conducting composite electrolyte system (1− x)[0· 75 AgI: 0· 25 AgCl]: x SnO 2