JPH01130789A - Anaerobic micrororganism-immobilized filter medium for water treatment - Google Patents

Anaerobic micrororganism-immobilized filter medium for water treatment

Info

Publication number
JPH01130789A
JPH01130789A JP29006387A JP29006387A JPH01130789A JP H01130789 A JPH01130789 A JP H01130789A JP 29006387 A JP29006387 A JP 29006387A JP 29006387 A JP29006387 A JP 29006387A JP H01130789 A JPH01130789 A JP H01130789A
Authority
JP
Japan
Prior art keywords
filter medium
anaerobic
sewage
immobilized
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29006387A
Other languages
Japanese (ja)
Inventor
Nobuyuki Wada
信行 和田
Masahide Ichikawa
雅英 市川
Kazuo Fushimi
伏見 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP29006387A priority Critical patent/JPH01130789A/en
Publication of JPH01130789A publication Critical patent/JPH01130789A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30276Sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30296Other shapes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To capture and immobilize anaerobic microorganisms in org. sewage at a high concn. and to enhance treatment efficiency by using specific film-like porous bodies to form an anaerobic microorganism-immobilized filter medium for water treatment. CONSTITUTION:Two sheets of the film-like porous bodies 1, 2 which consist of high-polymer films essentially consisting of 70wt.% polyethylene and 30wt.% amorphous silica and having 1mm thickness and 20X20mm width and length are notched with grooves in a vertical direction and are fitted to each other to obtain the prescribed filter medium. The anaerobic microorganisms in the org. sewge are captured and immobilized in the fine pores of the surface layer of the filter medium formed in such a manner by passing the sewage through said filter media, by which the sewage is efficiently treated.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、下水等の汚水の嫌気性処理を行う嫌気性微生
物を固定化するための濾材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a filter medium for immobilizing anaerobic microorganisms for anaerobic treatment of wastewater such as sewage.

B1発明の概要 本発明は、有機性の汚水を嫌気性処理するための嫌気性
微生物を固定化する濾材において、濾材の担体を多孔性
のポリエチレンとアモルファスシリカよりなる膜状多孔
質体により作ることによって、嫌気性微生物の捕捉能力
を高めることにより、 嫌気性の水処理効率を向上させようとするものである。
B1 Summary of the Invention The present invention provides a filter medium for immobilizing anaerobic microorganisms for anaerobic treatment of organic wastewater, in which the carrier of the filter medium is made of a membrane-like porous material made of porous polyethylene and amorphous silica. The aim is to improve the efficiency of anaerobic water treatment by increasing the ability to capture anaerobic microorganisms.

C1従来の技術 下水のような比較的有機物濃度が低い排水の処理には、
一般的に活性汚泥による好気性処理が行われている。こ
の方法は、好気性微生物である活性汚泥による有機物分
解であるため多量の空気供給を必要とし、その電力消費
は多大である。また、活性汚泥の増殖分である余剰汚泥
が多く発生し、汚泥処理に要するコストも高い。
C1 Conventional technology To treat wastewater such as sewage that has a relatively low concentration of organic matter,
Generally, aerobic treatment using activated sludge is performed. Since this method decomposes organic matter using activated sludge, which is aerobic microorganisms, it requires a large amount of air supply and consumes a large amount of electricity. Further, a large amount of surplus sludge, which is the multiplication of activated sludge, is generated, and the cost required for sludge treatment is high.

そこで、最近では電力消費と汚泥発生が少なく、メタン
ガスが有価物として回収できる嫌気性処理が見直されて
きている。この方法は、下水汚泥やふん尿などの有機物
濃度が高い排水の処理に供されており、長い滞留時間を
かけて有機物を分解するものである。
Therefore, anaerobic treatment, which consumes less electricity, generates less sludge, and can recover methane gas as a valuable product, has recently been reconsidered. This method is used to treat wastewater with a high concentration of organic matter, such as sewage sludge and manure, and decomposes the organic matter over a long residence time.

D0発明が解決しようとする問題点 しかしながら、上記従来の技術における嫌気性処理で(
木、短時間での処理が要求される下水処理に嫌気性処理
を応用した場合、増殖速度の極めて遅い嫌気性微生物は
、反応槽から流失してしまうことが問題点となっていた
。この問題点を解決する方法として、嫌気性処理を行う
反応槽に濾材を充填し、この濾材に嫌気性微生物を高濃
度に固定する方法か考えられているが、効率的な濾材の
開発においては、現在模索の状態である。
Problems to be solved by the D0 invention However, in the anaerobic treatment in the above conventional technology (
When anaerobic treatment is applied to sewage treatment, which requires rapid treatment, a problem has been that anaerobic microorganisms, which have extremely slow growth rates, are washed away from the reaction tank. One possible solution to this problem is to fill the reaction tank for anaerobic treatment with a filter medium and fix anaerobic microorganisms in this filter medium at a high concentration.However, in the development of an efficient filter medium, , is currently in the state of exploration.

本発明は、上記問題点を解決するために創案されたもの
で、嫌気性微生物の捕捉能力が高く、これにより嫌気性
処理による水処理の効率を向上することのできる水処理
用微生物固定化濾材を提供することを目的とする。
The present invention was created to solve the above problems, and is a microorganism-immobilized filter material for water treatment that has a high ability to capture anaerobic microorganisms, thereby improving the efficiency of water treatment by anaerobic treatment. The purpose is to provide

E1問題点を解決するための手段 上記の目的を達成するための本発明の水処理用嫌気性微
生物固定化濾材は、 有機性の汚水を嫌気処理するための嫌気性微生物を固定
化する濾材において、 ポリエチレンとアモルファスシリカよりなる膜状多孔質
体により構成したことを特徴とする。
Means for Solving Problem E1 To achieve the above object, the anaerobic microorganism-immobilized filter medium for water treatment of the present invention is a filter medium for immobilizing anaerobic microorganisms for anaerobic treatment of organic wastewater. , It is characterized by being constructed from a membrane-like porous material made of polyethylene and amorphous silica.

F9作用 嫌気性微生物の濾材への固定では、濾材表層の細孔に微
生物が捕捉されるものである。そのためp材としては捕
捉空間の広い多孔性に優れた材料が育利となる。
When immobilizing F9 acting anaerobic microorganisms onto a filter medium, the microorganisms are captured in the pores of the surface layer of the filter medium. Therefore, it is best to use a material with excellent porosity and a wide trapping space as the p-material.

本発明は、多孔性に優れたポリエチレンとアモルファス
シリカを主成分とする高分子膜を、濾材の担体として用
いることにより、濾材の嫌気性微生物の捕捉能力を高め
る。
The present invention improves the ability of the filter medium to capture anaerobic microorganisms by using a polymer membrane mainly composed of polyethylene and amorphous silica, which have excellent porosity, as a carrier for the filter medium.

G、実施例 以下、本発明を実施例に基づいて詳細に説明する。G. Example Hereinafter, the present invention will be explained in detail based on examples.

第1図は本発明の一実施例を示す嫌気性微生物固定化濾
材の構成図である。本実施例は、ポリエチレン70ボリ
ユーム%とアモルファスシリカ30ボリユーム%を主成
分とする高分子膜(旭化成株式会社製)より成る厚さ1
mm、縦横20X20II1mの2枚の膜状多孔質体(
以下膜状ポリエチレンと記す)1,2を、互いに縦方向
に溝を切り欠いて嵌合させ、濾材として形成したもので
ある。上記膜状ポリエチレン1.2は、孔径が0.01
〜1μmで、気孔率50%と多孔性に優れている。
FIG. 1 is a block diagram of an anaerobic microorganism-immobilized filter medium showing one embodiment of the present invention. This example is made of a polymer film (manufactured by Asahi Kasei Corporation) whose main components are 70 vol% polyethylene and 30 vol% amorphous silica.
mm, two membrane-like porous bodies measuring 20 x 20 II 1 m in length and width (
1 and 2 (hereinafter referred to as membrane-like polyethylene) were fitted together with grooves cut out in the vertical direction to form a filter medium. The membrane polyethylene 1.2 has a pore diameter of 0.01
~1 μm, and has excellent porosity with a porosity of 50%.

以下、上記嫌気性微生物固定化F材を使用した場合の水
処理効率を、それを使用しない場合と比較する。
Below, the water treatment efficiency when using the above-mentioned anaerobic microorganism immobilized material F will be compared with when it is not used.

非多孔性の高分子材料である円筒状ポリ塩化ビニル(厚
さl+nm、内径18φjljl、高さ20■)を充填
した反応容器(以下反応容器Aとする)と、膜状ポリエ
チレン濾材を充填した反応容器(以下反応容器Bとする
)のそれぞれに、消化汚泥と肉エキス、ペプトンを主成
分とする合成下水I(BOD(水質); 1000mg
/12 )とをI:lの割合で混合した液を種汚泥液と
して加えた。その後各反応容器A、Bを35°Cの恒温
度水槽中で20日間静置して微生物を馴養した。
A reaction vessel (hereinafter referred to as reaction vessel A) filled with cylindrical polyvinyl chloride (thickness l+nm, inner diameter 18φjljl, height 20cm), which is a non-porous polymeric material, and a reaction vessel filled with a membrane-shaped polyethylene filter medium. In each of the containers (hereinafter referred to as reaction containers B), synthetic sewage I (BOD (water quality); 1000 mg containing digested sludge, meat extract, and peptone as the main components) was added.
/12) in a ratio of I:l was added as a seed sludge liquid. Thereafter, each of the reaction vessels A and B was left standing in a constant temperature water bath at 35°C for 20 days to acclimatize the microorganisms.

次に、この汚泥液を各反応容器A、Bより引き抜き、合
成下水Iで反応容器A、B内を洗浄後、合成下水Iを各
反応容器A、Bに満たし、IO日間培養を行った。続い
て同様にして、合成下水、Iを水で希釈し5た合成下水
II (BOD:500mg/I )で10日間培養し
、さらに同様にして、合成下水■を水で希釈した合成下
水1ff(BOD勺200mg/ρ)により順次にIO
日間培養を行った。
Next, this sludge liquid was drawn out from each reaction vessel A, B, and after washing the inside of reaction vessels A, B with synthetic sewage I, each reaction vessel A, B was filled with synthetic sewage I, and cultured for 10 days. Subsequently, in the same manner, synthetic sewage I was diluted with water and cultured for 10 days in synthetic sewage II (BOD: 500 mg/I). Sequential IO with BOD (200mg/ρ)
Culture was performed for 1 day.

こうした培養を行った後、合成下水■を用いて上向流式
により1.FM!/日の流量で連続培養を行った。各反
応容!A、Bについて合成下水■による連続培養の経過
期間かIO週間になった時に発生ガスの量と組成及び反
応容器A、Hの処理水質を調べた。結果は表1のとおり
である。ただし表1中のガス量はlO週目までの累積量
である。
After culturing in this manner, 1. FM! Continuous culture was performed at a flow rate of /day. Each reaction capacity! For A and B, the amount and composition of gas generated and the quality of treated water in reaction vessels A and H were investigated after the elapsed period of continuous culture using synthetic sewage ■ or 10 weeks had passed. The results are shown in Table 1. However, the gas amount in Table 1 is the cumulative amount up to the 10th week.

また、表1中COD(Mn)とはN/40KMnO+に
よる化学的酸素要求量で蘂り、TOCとは全有機炭素量
である。
Further, in Table 1, COD (Mn) refers to the chemical oxygen demand amount by N/40KMnO+, and TOC refers to the total organic carbon amount.

表1 10週間連続培養後の発生ガス量1組成及び処理
水質以上の結果に基づいて反応容器AとBにおける合成
下水の嫌気処理の効率を比較すると、発生ガス量は反応
容器Bの方が反応容器Aよりはるかに多く、約5倍はど
にもなった。発生ガス中のメタンガス濃度においても反
応容器Bの方が反応容器Aの約18倍と極めて高濃度に
なった。処理水においてもCODMn、 TOCとも反
応容器Bの方が反応容器Aよりもかなり低い値を示し、
反応容器Bの方が反応容器Aより高い処理効率を有して
いると言える。このことは合成下水を基準とした嫌気性
処理に関与する微生物については、反応容器Bの方が反
応容器Aよりも多いことを示しており、その要因として
は、膜状ポリエチレン濾材の細孔中にポリ塩化ビニルの
濾材より多くの微生物を捕捉していると考えられる。
Table 1 Amount of gas generated after 10 weeks of continuous culture 1 Comparing the efficiency of anaerobic treatment of synthetic sewage in reaction vessels A and B based on the results of the composition and quality of treated water, the amount of gas generated was higher in reaction vessel B. Much more than in container A, about 5 times as much. The concentration of methane gas in the generated gas was also extremely high in reaction vessel B, approximately 18 times that in reaction vessel A. In the treated water, both CODMn and TOC in reaction vessel B showed significantly lower values than in reaction vessel A.
It can be said that reaction vessel B has higher processing efficiency than reaction vessel A. This shows that there are more microorganisms involved in the anaerobic treatment of synthetic sewage in reaction vessel B than in reaction vessel A, and the reason for this is that microorganisms involved in anaerobic treatment of synthetic sewage are more abundant in the pores of the membrane-like polyethylene filter medium. It is thought that more microorganisms are captured than polyvinyl chloride filter media.

なお、ポリエチレンとアモルファスシリカの混合率は実
施例に限定するものでなく、適宜に変えたものでも良い
ことはもちろんである。また濾材の形状も反応槽に則し
て構成されるものである。
It should be noted that the mixing ratio of polyethylene and amorphous silica is not limited to that in the examples, and it goes without saying that it may be changed as appropriate. Furthermore, the shape of the filter medium is configured to match the reaction tank.

このように、本発明はその主旨に沿って種々に応用され
、種々の実施態様を取り得るものである。
As described above, the present invention can be applied in various ways and can take various embodiments in accordance with its gist.

H,発明の効果 以上の説明で明らかなように、本発明の水処理用嫌気性
微生物固定化濾材によれば、ポリエチレンとアモルファ
スシリカよりなる膜状多孔質体を使用しているため、実
施例からもわかるように、微生物を高濃度に捕捉するこ
とができ、処理効率の向上を図ることができるとともに
メタンガスの回収が促進される。
H. Effects of the Invention As is clear from the above explanation, the anaerobic microorganism-immobilized filter medium for water treatment of the present invention uses a membranous porous body made of polyethylene and amorphous silica. As can be seen, microorganisms can be captured at a high concentration, treatment efficiency can be improved, and methane gas recovery can be promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す微生物固定化濾材の構
成図である。 1.2・・・膜状多孔質膜。
FIG. 1 is a block diagram of a microorganism-immobilized filter medium showing one embodiment of the present invention. 1.2... Membrane-like porous membrane.

Claims (1)

【特許請求の範囲】 有機性の汚水を嫌気処理するための嫌気性微生物を固定
化する濾材において、 ポリエチレンとアモルファスシリカよりなる膜状多孔質
体により構成したことを特徴とする水処理用嫌気性微生
物固定化濾材。
[Scope of Claims] A filter medium for immobilizing anaerobic microorganisms for anaerobic treatment of organic wastewater, characterized in that it is made of a membrane-like porous material made of polyethylene and amorphous silica. Microorganism immobilized filter media.
JP29006387A 1987-11-17 1987-11-17 Anaerobic micrororganism-immobilized filter medium for water treatment Pending JPH01130789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29006387A JPH01130789A (en) 1987-11-17 1987-11-17 Anaerobic micrororganism-immobilized filter medium for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29006387A JPH01130789A (en) 1987-11-17 1987-11-17 Anaerobic micrororganism-immobilized filter medium for water treatment

Publications (1)

Publication Number Publication Date
JPH01130789A true JPH01130789A (en) 1989-05-23

Family

ID=17751308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29006387A Pending JPH01130789A (en) 1987-11-17 1987-11-17 Anaerobic micrororganism-immobilized filter medium for water treatment

Country Status (1)

Country Link
JP (1) JPH01130789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747052A1 (en) * 1996-04-03 1997-10-10 Norton Chem Process Prod Deformation resistant Lessing ring for mass- or heat transfer applications
KR20190027637A (en) * 2017-09-07 2019-03-15 해동에이앤씨 유한회사 Water treatment filter using UHMW PE material applied to AOS separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747052A1 (en) * 1996-04-03 1997-10-10 Norton Chem Process Prod Deformation resistant Lessing ring for mass- or heat transfer applications
KR20190027637A (en) * 2017-09-07 2019-03-15 해동에이앤씨 유한회사 Water treatment filter using UHMW PE material applied to AOS separator

Similar Documents

Publication Publication Date Title
Zhang et al. Effect of filling fraction on the performance of sponge-based moving bed biofilm reactor
Huang et al. Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor
JP5150993B2 (en) Denitrification method and apparatus
Premarathna et al. Enhancement of organic matter and total nitrogen removal in a membrane aerated biofilm reactor using PVA-Gel bio-carriers
CN109019833A (en) A kind of biologic packing material, the preparation method of biologic packing material, sewage disposal system
Wilderer Technology of membrane biofilm reactors operated under periodically changing process conditions
JP2009039643A (en) Removing method of organic substance and nitrogen as liquid to be treated, granule, solution for acclimatization and apparatus
JPH05507027A (en) How to remove nitrogen from an aqueous solution
JP4719095B2 (en) Treatment method of wastewater containing selenate compound by microorganisms
Kocadagistan et al. Wastewater treatment with combined upflow anaerobic fixed-bed and suspended aerobic reactor equipped with a membrane unit
Zeng et al. Improving a compact biofilm reactor to realize efficient nitrogen removal performance: step-feed, intermittent aeration, and immobilization technique
Lim et al. Effects of temperature on biodegradation characteristics of organic pollutants and microbial community in a solid phase aerobic bioreactor treating high strength organic wastewater
TW593166B (en) Apparatus for reduction of biological wasted sludge
CN110217888A (en) A kind of the nitrosation-anaerobic ammoxidation processing unit and method of municipal sewage
Lemoine et al. Biological denitrification of water in a two-chambered immobilized-cell bioreactor
CN111018101B (en) Membrane biofilm culture domestication process and membrane biofilm reaction device for treating high-salinity wastewater
JP4719094B2 (en) Method for treating liquid containing selenate compound using microorganisms
CN108083452A (en) A kind of heterotrophism integrates solid phase denilrification system with sulphur autotrophy and handles high nitric acid body of salt
CN104773924B (en) Apparatus and method for enhancing biodegradation of dye wastewater with micro-current
JP2009195831A (en) Method and system for treating drain water
JPH01130789A (en) Anaerobic micrororganism-immobilized filter medium for water treatment
CN110776117A (en) Compound aeration device for controlling gradient dissolved oxygen distribution
CN206654779U (en) A kind of sewage disposal biomembrane based on graphene lamination filler
Liu et al. Carbon membrane-aerated biofilm reactor for synthetic wastewater treatment
JP2011104564A (en) Method and equipment for treating organic wastewater