JPH01130728A - Production of solid-phase reactor - Google Patents

Production of solid-phase reactor

Info

Publication number
JPH01130728A
JPH01130728A JP28914087A JP28914087A JPH01130728A JP H01130728 A JPH01130728 A JP H01130728A JP 28914087 A JP28914087 A JP 28914087A JP 28914087 A JP28914087 A JP 28914087A JP H01130728 A JPH01130728 A JP H01130728A
Authority
JP
Japan
Prior art keywords
heat
unit
heat storage
plate
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28914087A
Other languages
Japanese (ja)
Inventor
Akihiko Oyama
大山 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP28914087A priority Critical patent/JPH01130728A/en
Publication of JPH01130728A publication Critical patent/JPH01130728A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0013Particular heat storage apparatus the heat storage material being enclosed in elements attached to or integral with heat exchange conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To facilitate the production of the title reactor and to improve the working efficiency by integrating heat-exchanger parts by bonding as a heat- exchanger unit, packing a heat accumulating body in the supporting frame of the unit, and closing the unit with a perforated plate. CONSTITUTION:In the solid-phase reactor such as a super heat pump, a fin 2 and a rod-shaped spacer 3 for closing both ends of the fin 2 are interposed between two plates 1, and the frame 5 for supporting the heat accumulating body 4 is arranged on both sides of the plate 1 to obtain the heat-exchanger unit 6. The unit 6 is inserted between two tube plates 7, the peripheries of the plates 2 are bonded, the fin 2 and a corrugated sheet 8 are interposed between the perforated plates of the adjacent units 6 to form a heat accumulating reaction passage II, and the unit 6 is welded to the tube plate 7. A heating medium header, an inlet nozzle, and an outlet nozzle are fixed to the outside of the tube plate 7. The solid-phase reactor is efficiently produced in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、固相反応器の製造方法に関し、NiC1と
NH3との熱反応を利用する蓄熱式のスーパーヒートポ
ンプ等の固相反応器の製造に好適なものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing a solid phase reactor, and relates to a method for manufacturing a solid phase reactor such as a regenerative super heat pump that utilizes a thermal reaction between NiC1 and NH3. It is suitable for

〔従来の技術〕[Conventional technology]

固相反応を利用する固相反応器のひとつである蓄熱式の
スーパーヒートポンプの固相反応器では、NiCl  
とNH3との発熱反応および吸熱反応を利用して蓄熱お
よび放熱を行なうようにしている。
In the solid phase reactor of a regenerative super heat pump, which is one of the solid phase reactors that utilize solid phase reactions, NiCl
The exothermic and endothermic reactions between NH3 and NH3 are used to store and release heat.

このようなスーパーヒートポンプ用固相反応器では、通
常の熱交換器と異なり、熱を移送するなめの熱媒体の流
路および熱反応に必要なN H3の流路の他に蓄熱体で
あるN t CI 2を保持する部分が必要となる。
Such a solid phase reactor for a super heat pump differs from a normal heat exchanger in that, in addition to the slanted heat medium flow path for transferring heat and the N H3 flow path necessary for thermal reaction, there is also a heat storage N A part that holds t CI 2 is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような蓄熱体を充填する必要がある固相反応器では
、熟a体および、N H3の流路と蓄熱体を充填した保
持部分とを、プレートフィン熱交換器等のコンパクト熱
交換器の製造の場合と同じように、一体にろう付は等で
接合することは不可能である。
In a solid-phase reactor that needs to be filled with such a heat storage material, the mature atom, the NH3 flow path, and the holding part filled with the heat storage material are connected to a compact heat exchanger such as a plate-fin heat exchanger. As in manufacturing, it is not possible to join them together by brazing, etc.

このため各流路や蓄熱体の保持部分を順次積層しながら
溶接等を行ない蓄熱体を充填したのち、同様の積層およ
び溶接作業を繰り返すことも考えられるが、作業能率が
低く、熱媒体流路にフィンを設ける場合には、−層煩雑
な作業となってしまう。
For this reason, it is conceivable to perform welding while sequentially laminating each flow path and the holding portion of the heat storage medium to fill the heat storage medium, and then repeating the same lamination and welding work, but the work efficiency is low, and the heat medium flow path In the case where fins are provided in the layer, the work becomes complicated.

この発明はか、かる従来技術に鑑みてなされたもので、
蓄熱体を保持する必要がある固相反応器であっても能率
良く製造することができるとともに、伝熱性能の良い固
相反応器を製造することができる固相反応器の製造方法
を提供しようとするものである。
This invention was made in view of the prior art,
An object of the present invention is to provide a method for manufacturing a solid phase reactor that can efficiently manufacture even a solid phase reactor that needs to hold a heat storage body, and can also manufacture a solid phase reactor with good heat transfer performance. That is.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するためこの発明の固相反応器の製造
方法は、プレート間に熱媒体流路となるフィンとスペー
サとを介装するとともに、プレートの外側に蓄熱体用の
保持枠を配置したのち、これらを一体に接合し、次いで
保持枠内に蓄熱体を充填して多孔板で塞いで熱交換部ユ
ニットを形成し、この熱交換部ユニットのプレートの両
端部周囲を管仮に接合するとともに、各ユニット間に蓄
熱反応媒体用流路を形成しながら積層し、こののち、そ
れぞれの管板端部に熱媒体流路と連通ずる一対のヘッダ
を取付けるとともに、蓄熱反応媒体用流路と連通ずる一
対のヘッダを取付けるようにしたことを特徴とするもの
である。
In order to solve the above problems, the method for manufacturing a solid phase reactor of the present invention includes interposing fins and spacers between the plates to serve as heat medium flow paths, and arranging a holding frame for the heat storage body on the outside of the plates. After that, these are joined together, and then the holding frame is filled with a heat storage body and closed with a perforated plate to form a heat exchange unit, and the periphery of both ends of the plate of this heat exchange unit is temporarily joined as a tube. At the same time, the units are stacked while forming a heat storage reaction medium flow path between each unit, and then a pair of headers communicating with the heat storage reaction medium flow path is attached to the end of each tube sheet, and a heat storage reaction medium flow path and a heat storage reaction medium flow path are installed. This device is characterized by attaching a pair of communicating headers.

〔作 用〕[For production]

プレートフィン形式の熱媒体流路を形成し、このプレー
トに蓄熱体を保持する保持枠を配置してこれらを一体に
ろう付は等で接合してユニットとし、このユニットの保
持枠に蓄熱体を充填したのち多孔板で塞ぐようにし、一
対の管仮にユニットの熱媒体流路の周囲を接合しながら
各ユニット間に蓄熱反応媒体用流路を形成し、これら2
つの流路の両端部にヘッダをそれぞれ取付けるようにし
ており、固体の蓄熱体を使用する固相反応器を簡単に製
造できるとともに、伝熱部分は一体に接合できるので熱
抵抗も小さく伝熱性能が高い。
A heat medium flow path in the form of a plate fin is formed, a holding frame for holding the heat storage body is placed on this plate, these are joined together by brazing, etc. to form a unit, and the heat storage body is placed in the holding frame of this unit. After filling, the tubes are closed with a perforated plate, and the heat storage reaction medium flow path is formed between each unit while the periphery of the heat medium flow path of the pair of tubes is temporarily joined.
Headers are attached to both ends of each flow path, making it easy to manufacture a solid phase reactor that uses a solid heat storage medium.The heat transfer parts can be joined together, resulting in low thermal resistance and high heat transfer performance. is high.

〔実施例〕〔Example〕

以下、この発明を図面を参照しながら具体的に説明する
Hereinafter, the present invention will be specifically explained with reference to the drawings.

第1図はこの発明の固相反応器の製造方法の一実施例に
かかる工程図である。
FIG. 1 is a process diagram of an embodiment of the method for manufacturing a solid phase reactor of the present invention.

この固相反応器は、蓄熱式のスーパーヒートポンプ用の
もので、蓄熱体としてNiC1゜を用い、蓄熱反応用と
してNH3ガスを使用し、次式に基づいて発熱反応およ
び吸熱反応を行なわせるものである。
This solid phase reactor is for a heat storage type super heat pump, and uses NiC1° as a heat storage medium and NH3 gas for heat storage reaction, and performs exothermic and endothermic reactions based on the following equation. be.

+Q N i C126N H3、N t C1・2 N H
3Q 十 Q −ト 4NH3 この固相反応器の製造は、まず、2枚のプレート1間に
フィン2とフィン2の両側を塞ぐ棒状のスペーサ3を介
装し、プレートフィン型熱交換器の一層のようにする。
+Q N i C126N H3, N t C1・2 N H
3Q 10 Q -t 4NH3 To manufacture this solid phase reactor, first, a fin 2 and a rod-shaped spacer 3 that closes both sides of the fin 2 are interposed between two plates 1, and a plate-fin type heat exchanger is constructed. Do like this.

そして、これらプレート1の両側に蓄熱体(N iC1
2) 4を保持するための保持枠5を配置する。
A heat storage body (N iC1
2) Arrange the holding frame 5 for holding 4.

この保持枠5は、2枚のプレート1とフィン2とで形成
される熱媒体流路Iの両端部を残すようその長さが定め
られ、幅はプレート1と同一になっており、必要に応じ
保持枠5内に格子状の仕切板(図示せず)が介装される
(第1図(a)参照)。
The length of the holding frame 5 is determined so as to leave both ends of the heat medium flow path I formed by the two plates 1 and the fins 2, and the width is the same as that of the plate 1. A lattice-shaped partition plate (not shown) is interposed in the corresponding holding frame 5 (see FIG. 1(a)).

次に、第1図(b)に示すように、2枚のプレート1.
フィン2.スペーサ3および両側の保持枠5を一体に炉
中ろう付は等で接合する。
Next, as shown in FIG. 1(b), two plates 1.
Fin 2. The spacer 3 and the holding frames 5 on both sides are joined together by furnace brazing or the like.

こうして一体に接合されたものを熱交換部ユニット6と
する。
The heat exchanger unit 6 is thus integrally joined.

この熱交換部ユニット6は一層の熱媒体流路Iと2層の
蓄熱体4の保持枠5とで構成されることになる。
This heat exchange unit 6 is composed of a heat medium flow path I of one layer and a holding frame 5 for a heat storage body 4 of two layers.

こののち、熱交換部ユニット6の保持枠5内に蓄熱体4
としてN I CI 2を充填し、蓄熱体4が通過せず
NH3ガスのみが通過できる多孔板(ポーラスプレート
)で蓋をする。
After this, the heat storage body 4 is placed inside the holding frame 5 of the heat exchanger unit 6.
The container is filled with N ICI 2 and covered with a porous plate that does not allow the heat storage body 4 to pass through but allows only NH3 gas to pass through.

次に、第1図(C)に示すように、固相反応器として必
要な大きさの2枚の管板7に熱交換部ユニット6の保持
枠5が取付けられていない両端部を差込んでプレート1
の周囲を溶接する。
Next, as shown in FIG. 1(C), both ends of the heat exchanger unit 6 where the holding frame 5 is not attached are inserted into two tube sheets 7 of a size necessary for the solid phase reactor. plate 1
Weld around the area.

そして、隣接する熱交換部ユニット6の多孔板の間に蓄
熱反応用流路口を形成するようフィン2と直交方向の波
板8を介装しながら順次熱交換部ユニット6を所定数管
板7に溶接する。
Then, the heat exchange unit 6 is sequentially welded to a predetermined number of tube sheets 7 while interposing a corrugated plate 8 in a direction perpendicular to the fins 2 so as to form a heat storage reaction flow path between the perforated plates of the adjacent heat exchange unit 6. do.

こうして所定鷺の熱交換部ユニット6を積層したのち、
第1図(d)に示すように、管板7の外側を覆うよう熱
媒体用ヘッダ9をそれぞれ取付けるとともに、熱媒体入
口ノズル10および熱媒体出口ノズル11を取付ける。
After stacking the heat exchanger units 6 of the predetermined size in this way,
As shown in FIG. 1(d), a heat medium header 9 is attached to cover the outside of the tube plate 7, and a heat medium inlet nozzle 10 and a heat medium outlet nozzle 11 are attached.

次に、一対の管板7の周囲を塞ぐとともに、蓄熱反応媒
体用流路■の両端部と連通ずるよう蓄熱反応螺体用ヘッ
ダ12をそれぞれ取付け、蓄熱反応媒体(NH3)ガス
用の出入口ノズル13を取付ける。
Next, the headers 12 for heat storage reaction screws are respectively installed so as to close the periphery of the pair of tube plates 7 and communicate with both ends of the heat storage reaction medium flow path (2), and the inlet and outlet nozzles for heat storage reaction medium (NH3) gas are installed. Install 13.

このようにして、第1図(0)に示すような固相反応器
14が完成する。
In this way, the solid phase reactor 14 as shown in FIG. 1(0) is completed.

この固相反応器14では、出入口ノズル13から充填す
るN H3ガスと蓄熱体4としてのN iC12によっ
て吸熱反応や発熱反応が生じ、蓄熱体4に蓄熱された熱
を熱媒体人口ノズル10から流入する熱媒体に伝えて利
用したり、逆に熱媒体の熱を蓄熱体4に蓄える。
In this solid phase reactor 14, an endothermic reaction or an exothermic reaction occurs between the NH3 gas filled from the inlet/outlet nozzle 13 and the NiC12 as the heat storage body 4, and the heat stored in the heat storage body 4 flows into the heat medium artificial nozzle 10. The heat of the heat medium is transferred to the heat medium and used, or conversely, the heat of the heat medium is stored in the heat storage body 4.

この場合の熱媒体と蓄熱体4との間の伝熱は、プレート
1およびフィン2を介して行なわれるが、これらプレー
ト1とフィン2とは、あらかじめ炉中ろう付は等で一体
に接合しであることから熱抵抗も小さく、効率良く熱交
換が行なわれる。
In this case, heat transfer between the heat medium and the heat storage body 4 is carried out via the plate 1 and the fins 2, but the plate 1 and the fins 2 are joined together in advance by furnace brazing or the like. Therefore, the thermal resistance is low, and heat exchange is performed efficiently.

一方、蓄熱体4側では、蓄熱体4を保持枠5に充填して
多孔板で塞ぐようにしているので、N iC12が漏出
することなく保持でき、多孔板を介してNH3ガスと接
触することで、蓄熱反応が円滑に行なわれる。
On the other hand, on the heat storage body 4 side, the heat storage body 4 is filled in the holding frame 5 and closed with a perforated plate, so that the NiC12 can be held without leaking and does not come into contact with NH3 gas through the perforated plate. This allows the heat storage reaction to occur smoothly.

なお、上記実施例では、蓄熱体として N 1C12を用いる場合で説明したが、他の蓄熱体を
使用するようにしても良い。
In addition, in the above embodiment, the case where N1C12 is used as the heat storage body has been described, but other heat storage bodies may be used.

また、熱交換部ユニットの積層段数は必要な蓄熱量に応
じて選定すれば良いことは言うまでもない。
Furthermore, it goes without saying that the number of stacked heat exchanger units may be selected depending on the required amount of heat storage.

〔発明の効果〕〔Effect of the invention〕

以上、一実施例とともに具体的に説明したようにこの発
明の固相反応器の製造方法によれば、熱交換を行なう部
分を熱交換部ユニットとして一体に接合するようにして
いるので、熱抵抗が小さく伝熱性能が高い。
As explained above in detail together with one embodiment, according to the method for producing a solid phase reactor of the present invention, the parts that perform heat exchange are joined together as a heat exchange section unit, so the thermal resistance is is small and has high heat transfer performance.

また、熱交換部ユニットの保持枠内に蓄熱体を充填し、
多孔板で塞ぐようにしているので、固体の蓄熱体であっ
ても簡単に重点保持することができる。
In addition, a heat storage body is filled in the holding frame of the heat exchanger unit,
Since it is covered with a perforated plate, even if it is a solid heat storage body, it can be easily held in focus.

さらに、熱交換部ユニットを管板に取付けて固相反応器
とするので、製作が容易であり、作業能率も良い。
Furthermore, since the heat exchanger unit is attached to the tube plate to form a solid phase reactor, manufacturing is easy and work efficiency is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の固相反応器の製造方法の一実施例に
かかる工程図である。 1・・・プレート、2・・・フィン、3・・・スペーサ
、4・・・蓄熱体、5・・・保持枠、6・・・熱交換部
ユニット、7・・・管板、8・・・波板、9・・・熱媒
体用ヘッダ、10・・・熱媒体入口ノズル、11・・・
熱媒体出口ノズル、12・・・蓄熱反応媒体用ヘッダ、
13・・・出入口ノズル、14・・・固相反応器、■・
・・熱媒体流路、■・・・蓄熱反応媒体用流路。 出願人  石川島播磨重工業株式会社
FIG. 1 is a process diagram of an embodiment of the method for manufacturing a solid phase reactor of the present invention. DESCRIPTION OF SYMBOLS 1... Plate, 2... Fin, 3... Spacer, 4... Heat storage body, 5... Holding frame, 6... Heat exchange unit, 7... Tube plate, 8... ...Corrugated plate, 9...Heat medium header, 10...Heat medium inlet nozzle, 11...
Heat medium outlet nozzle, 12...header for heat storage reaction medium,
13... Inlet/outlet nozzle, 14... Solid phase reactor, ■.
... Heat medium flow path, ■... Heat storage reaction medium flow path. Applicant Ishikawajima Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] プレート間に熱媒体流路となるフィンとスペーサとを介
装するとともに、プレートの外側に蓄熱体用の保持枠を
配置したのち、これらを一体に接合し、次いで保持枠内
に蓄熱体を充填して多孔板で塞いで熱交換部ユニットを
形成し、この熱交換部ユニットのプレートの両端部周囲
を管板に接合するとともに、各ユニット間に蓄熱反応媒
体用流路を形成しながら積層し、こののち、それぞれの
管板端部に熱媒体流路と連通する一対のヘッダを取付け
るとともに、蓄熱反応媒体用流路と連通する一対のヘッ
ダを取付けるようにしたことを特徴とする固相反応器の
製造方法。
In addition to interposing fins and spacers that serve as heat medium flow paths between the plates, a holding frame for the heat storage body is placed on the outside of the plates, and then these are joined together, and then the heat storage body is filled in the holding frame. The heat exchanger unit is sealed with a perforated plate to form a heat exchanger unit, and the periphery of both ends of the plate of this heat exchanger unit is joined to the tube plate, and the units are laminated while forming a flow path for the heat storage reaction medium between each unit. After that, a pair of headers communicating with the heat medium flow path are attached to each end of the tube plate, and a pair of headers communicating with the heat storage reaction medium flow path are attached. How to make the utensils.
JP28914087A 1987-11-16 1987-11-16 Production of solid-phase reactor Pending JPH01130728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28914087A JPH01130728A (en) 1987-11-16 1987-11-16 Production of solid-phase reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28914087A JPH01130728A (en) 1987-11-16 1987-11-16 Production of solid-phase reactor

Publications (1)

Publication Number Publication Date
JPH01130728A true JPH01130728A (en) 1989-05-23

Family

ID=17739270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28914087A Pending JPH01130728A (en) 1987-11-16 1987-11-16 Production of solid-phase reactor

Country Status (1)

Country Link
JP (1) JPH01130728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095452A1 (en) * 2009-02-19 2010-08-26 富士通株式会社 Heat pump
CN111939856A (en) * 2020-07-02 2020-11-17 山东豪迈机械制造有限公司 Vibration reactor and plate reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095452A1 (en) * 2009-02-19 2010-08-26 富士通株式会社 Heat pump
JP5348237B2 (en) * 2009-02-19 2013-11-20 富士通株式会社 heat pump
US8640489B2 (en) 2009-02-19 2014-02-04 Fujitsu Limited Heat pump
CN111939856A (en) * 2020-07-02 2020-11-17 山东豪迈机械制造有限公司 Vibration reactor and plate reactor
CN111939856B (en) * 2020-07-02 2022-12-30 山东豪迈机械制造有限公司 Vibration reactor and plate reactor

Similar Documents

Publication Publication Date Title
JP4014600B2 (en) Heat exchanger for industrial equipment
US8590598B2 (en) Devices for storing and discharging heat and methods thereof
US4231423A (en) Heat pipe panel and method of fabrication
US8636836B2 (en) Finned heat exchangers for metal hydride storage systems
US8371365B2 (en) Heat exchange device and method for manufacture
JPH074885A (en) Heat exchanger
US20070234565A1 (en) Foam core heat exchanger and method
US4134195A (en) Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby
RU2100733C1 (en) Plate-type heat exchanger and method for its manufacture
JP4516462B2 (en) Hydrogen storage container and manufacturing method thereof
JPH01130728A (en) Production of solid-phase reactor
US10780409B2 (en) Solid-gas reaction substance-filled reactor and method for manufacturing the same
JP3812792B2 (en) Indirect heat exchanger filled with solid-gas reaction particles
GB2426042A (en) Plate fin heat exchanger assembly
JP2000111193A (en) Hydrogen occlusion alloy heat exchanger
JP3190675B2 (en) Plate heat exchanger and method of assembling the same
JP2518234B2 (en) Method for producing plate fin type heat exchanger
JP6148034B2 (en) Manufacturing method of heat exchanger
JPH0642887A (en) Heat accumulator
JP2589506Y2 (en) Reformer
CN102536509A (en) Heat exchange-type regenerator for Stirling heat engine
JPH0730878B2 (en) Container for hydrogen storage alloy
JPH087200Y2 (en) Chemical reaction vessel
JP2004270972A (en) Lamination type heat exchanger and its manufacturing method
JPH0121279Y2 (en)