JPH01130595A - Electromagnetic shielding laminated body - Google Patents

Electromagnetic shielding laminated body

Info

Publication number
JPH01130595A
JPH01130595A JP28842287A JP28842287A JPH01130595A JP H01130595 A JPH01130595 A JP H01130595A JP 28842287 A JP28842287 A JP 28842287A JP 28842287 A JP28842287 A JP 28842287A JP H01130595 A JPH01130595 A JP H01130595A
Authority
JP
Japan
Prior art keywords
electromagnetic shielding
layer
conductive polymer
metal
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28842287A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kahata
利幸 加幡
Toshiyuki Osawa
利幸 大澤
Okitoshi Kimura
興利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP28842287A priority Critical patent/JPH01130595A/en
Publication of JPH01130595A publication Critical patent/JPH01130595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To realize light weight and thin structure, and improve mechanical strength, by laminating a conducting polymer layer and a metal layer. CONSTITUTION:On an adhesive agent layer 2 using an adhesive tape or an adhesive film, a metal layer 3 and a conductive polymer layer 4 are stacked and a release paper 1 is laminated. By constituting electromagnetic shielding material by laminating a conductive polymer layer 4 and a metal layer 3, light weight and thin structure with mechanical strength are realized, and the effect of electromagnetic shielding is improved.

Description

【発明の詳細な説明】 [技術分野] 本発明は、電磁シールド材に関する。[Detailed description of the invention] [Technical field] The present invention relates to an electromagnetic shielding material.

[従来技術] コンピューターを初めとする各種電子機器には、IC,
LSIなどが使用されているが、そこで発生する高周波
パルスの電子波が外部に漏洩し、周辺機器に大きな影響
を与える。
[Prior Art] Various electronic devices including computers include ICs,
Although LSIs and other devices are used, the high-frequency pulsed electronic waves generated there leak to the outside and have a major impact on peripheral devices.

従来、このような電子機器からの電磁波の外部への漏洩
を防止するめだめの機器筐体でのいわゆるEMI対策と
して、主に2つの方法が考えられている。
Conventionally, two main methods have been considered as so-called EMI countermeasures for the electronic equipment housing to prevent leakage of electromagnetic waves from such electronic equipment to the outside.

一つはプラスチック成型品の表面に導電性被膜を形成す
る表面処理方法で、もう一つは導電性フィラーをプラス
チック中に導入する複合化プラスチック導電剤の成型加
工法である。
One is a surface treatment method that forms a conductive film on the surface of a plastic molded product, and the other is a molding method for a composite plastic conductive agent that incorporates a conductive filler into the plastic.

しかしながら、この前者の表面処理手法において、例え
ば金属メツキ法を用いる場合には、メツキ可能な樹脂の
種類が限定され、また、部分的なメツキは難しく、高価
である。ざらに導電性塗料を用いることも考えられるが
、厚さ50μm以上に塗布しないと均質な塗膜にならず
、十分なシールド効果が得られない等の゛欠点がある。
However, in the former surface treatment method, for example, when a metal plating method is used, the types of resins that can be plated are limited, and partial plating is difficult and expensive. Although it is conceivable to use a roughly conductive paint, there are drawbacks such as the fact that unless it is applied to a thickness of 50 μm or more, a homogeneous paint film will not be obtained and a sufficient shielding effect will not be obtained.

又、後者の成型加工法においては、30〜40%のフィ
ラーを混入する必要があるので、機械的強度の高いもの
が得られないという問題がある。
Moreover, in the latter molding method, it is necessary to mix 30 to 40% filler, so there is a problem that a product with high mechanical strength cannot be obtained.

一方、ポリアセチレン、ポリチオフェン、ポリピロール
などの導電性高分子は、微量の不純物をドーピングする
と金属層の電気伝導度を持つようになることが知られて
いるが、これらのほとんどは、空気中での安定性が悪く
金属状態を長く保つことができず、かつ機械的強度が十
分でなくまた磁界シールド効果が十分ではなく、実用化
には至っていない。
On the other hand, conductive polymers such as polyacetylene, polythiophene, and polypyrrole are known to have the electrical conductivity of a metal layer when doped with a small amount of impurity, but most of these are stable in air. It has poor properties and cannot maintain its metallic state for a long period of time, has insufficient mechanical strength, and has insufficient magnetic field shielding effect, so it has not been put into practical use.

また機器に応じ必要な部分のみを電磁シールドする金属
箔テープが市販されているものの、金属のみでは箔に傷
が付き易いため信頼性の高いシールド効果を得るために
はある程度の厚みが必要であるため、シールド材の重量
は重くなりまた高価なものとなってしまう。また、金属
油に樹脂をコートして金属箔を保護したテープもめるが
、フレキシビリティに欠ける。
Additionally, although metal foil tapes are available on the market that provide electromagnetic shielding for only the necessary parts depending on the device, the foil is easily damaged when using only metal, so a certain amount of thickness is required to obtain a reliable shielding effect. Therefore, the shielding material becomes heavy and expensive. Also, tapes made by coating metal oil with resin to protect metal foils are used, but they lack flexibility.

[目 的] 本発明は、上記した従来の問題点に鑑み、軽量かつ強靭
な電磁シールドを目的とするものである。
[Objective] In view of the above-mentioned conventional problems, the present invention aims at providing a lightweight and strong electromagnetic shield.

[構 成] 本発明者は、従来より上記課題を解決するため研究を重
ねてきたが、導電性高分子層と金属層を積層することに
より、軽量、薄型、強靭な電磁シールド効果の高い電磁
シールド材を提供し得ることを見出し、本発明に至った
[Structure] The present inventor has been conducting research to solve the above problems, and found that by laminating a conductive polymer layer and a metal layer, a lightweight, thin, strong electromagnetic shield with high electromagnetic shielding effect was created. It was discovered that a shielding material can be provided, leading to the present invention.

すなわち、本発明は、導電性高分子層と金属層を有する
ことを特徴とする電磁シールド積層体でおる。
That is, the present invention is an electromagnetic shielding laminate characterized by having a conductive polymer layer and a metal layer.

本発明に用いる導電性高分子材料としては例えば、アセ
チレン、ピロール、チオフェン、ベンゼンあるいはこれ
らの誘導体を原料とした導電性高分子またはこれらの重
合体と電解質アニオンからなる重合錯体を挙げることが
できる。
Examples of the conductive polymer material used in the present invention include conductive polymers made from acetylene, pyrrole, thiophene, benzene, or derivatives thereof, or polymer complexes consisting of these polymers and electrolyte anions.

これらの導電性高分子材料は化学的重合法や電解重合法
などにより製造することができるが、化学的重合法を行
った場合、導電性高分子材料は一般的に粉末で得られる
ために金属層上への塗布などを必要とするため均一であ
る程度の厚さの導電性高分子層を形成することが難しい
These conductive polymer materials can be manufactured by chemical polymerization methods, electrolytic polymerization methods, etc. However, when chemical polymerization methods are used, conductive polymer materials are generally obtained in powder form, so they cannot be manufactured using metals. Since it requires coating on the layer, it is difficult to form a uniform conductive polymer layer with a certain thickness.

一方、電解重合法により製造した場合、通常、電解電極
上に均質な膜状に生成し、電気的門械的接触も良好であ
るので電解電極として本発明の構成要素である金属層を
用いて電解重合することにより導電性高分子層の製造と
同時に電磁シールド材が!!!造されることになり、製
造コスト上極めて有利になる。また、電解電極を任意の
形状にすることにより、任意の形状の電磁シールド材が
製造される。
On the other hand, when produced by the electrolytic polymerization method, the metal layer, which is a component of the present invention, is usually formed on the electrolytic electrode as a homogeneous film and has good electrical and mechanical contact. Through electrolytic polymerization, electromagnetic shielding materials can be produced simultaneously with the production of conductive polymer layers! ! ! This makes it extremely advantageous in terms of manufacturing costs. Further, by forming the electrolytic electrode into an arbitrary shape, an electromagnetic shielding material having an arbitrary shape can be manufactured.

この電解重合方法は、一般には例えば、J。This electrolytic polymerization method is generally described in, for example, J.

E l ectrochem、 Soc、 、 Vol
、 130. No、 1506−1509(1983
)、Electrochem、Acta、 、Vol、
27.No、 1.6l−65(1982) 、J、C
hem、Soc、、Chem、Commun、、119
9−(1984)などに示されているが、単量体と電解
質とを溶媒に溶解した液を所定の電解槽に入れ、電極を
浸漬し、陽極醸化あるいは陰極還元による電解重合反応
を起こさせることによって行うことができる。
El electrochem, Soc, , Vol.
, 130. No. 1506-1509 (1983
), Electrochem, Acta, , Vol.
27. No. 1.6l-65 (1982), J.C.
hem,Soc,,Chem,Commun,,119
9-(1984), a solution in which a monomer and an electrolyte are dissolved in a solvent is placed in a designated electrolytic bath, and electrodes are immersed to cause an electrolytic polymerization reaction by anodic fermentation or cathodic reduction. This can be done by letting

単量体としては、ピロール、チオフェンなど複素芳香族
系化合物、ベンゼンなど芳香族系化合物及びこれら誘導
体を例示することができる。
Examples of the monomer include heteroaromatic compounds such as pyrrole and thiophene, aromatic compounds such as benzene, and derivatives thereof.

電解質としては、例えばアニオンとして、BF4− 、
ASF6″″、SbFも″″、PF6−1CI04″″
、5042−および芳香族スルホン酸アニオン金属錯体
アニオン、また、カチオンとしてHl、4級アンモニウ
ムカチオン、リチウム、ナトリウムまたはカリウムなど
を例示することかできるが、特にこれらに限定されるも
のではない。
As the electrolyte, for example, as an anion, BF4-,
ASF6″″, SbF also″″, PF6-1CI04″″
, 5042- and aromatic sulfonic acid anions, metal complex anions, and cations such as H1, quaternary ammonium cations, lithium, sodium, and potassium, but are not particularly limited thereto.

また、溶媒としては、例えば、水、アセトニトリル、ベ
ンゾニトリル、プロレンカーボネイト、γ−ブチロラク
トン、ジクロルメタン、ジオキサン、ジメチルホルムア
ミド、あるいはニトロメタン、ニトロエタン、ニトロプ
ロパン、ニトロベンゼンなどのニトロ系溶媒などを挙げ
ることができるが、特にこれらに限定されるものではな
い。
Examples of the solvent include water, acetonitrile, benzonitrile, prolene carbonate, γ-butyrolactone, dichloromethane, dioxane, dimethylformamide, and nitro solvents such as nitromethane, nitroethane, nitropropane, and nitrobenzene. However, it is not particularly limited to these.

この中でも、単量体としてピロール系化合物、電解質と
して、芳香族スルホン酸アニオン、金属錯体アニオン、
溶媒の水あるいは、アセトニトリルを用いたポリピロー
ルが機械的強度に優れ、また電界シールド効果も高い。
Among these, pyrrole compounds are used as monomers, aromatic sulfonic acid anions, metal complex anions, and electrolytes are used as monomers.
Polypyrrole using water or acetonitrile as a solvent has excellent mechanical strength and also has a high electric field shielding effect.

電解重合方法としては、定電圧電解法、定電流電解法、
定電位電解法、電位掃引法などいずれもが可能ではある
が、定電流電解法が量産性から考えて好ましい。
Electrolytic polymerization methods include constant voltage electrolysis, constant current electrolysis,
Although both the constant potential electrolysis method and the potential sweep method are possible, the constant current electrolysis method is preferable in terms of mass productivity.

電極を構成する材料としては、例えばAU、Pt、Ni
、AI、ステンレス鋼、SnO2、In2O3、炭素体
などを挙げることができるが、先に示した様に電極に本
発明の電磁シールド材の金属層に当る金属箔を用いるこ
とを考えると厚さは30μm以下が好ましく、重量、経
済性を考慮してA1が最も好ましい。一般にA1金属表
面には、絶縁性の酸化被膜を形成し、電解用電極として
は不適切であるが、機械的研摩、電解研摩、M処理など
により酸化被膜を除去し、電解用電極とすることができ
るが、待に機械的研摩、電解研摩をすることにより、A
1表面にはミクロな複雑な凹凸を形成し、表面積は増大
することができ、これを電極として電解重合を行った場
合、重合する導電性高分子はA1表面のミクロな凹凸を
埋没させるように重合していくので、A1金属と導電性
高分子との接合はより良好となる。
Examples of materials constituting the electrode include AU, Pt, and Ni.
, AI, stainless steel, SnO2, In2O3, carbon material, etc. However, considering that the metal foil corresponding to the metal layer of the electromagnetic shielding material of the present invention is used for the electrode as shown earlier, the thickness is The thickness is preferably 30 μm or less, and A1 is most preferred in consideration of weight and economical efficiency. Generally, an insulating oxide film is formed on the surface of A1 metal, making it unsuitable for use as an electrode for electrolysis, but the oxide film can be removed by mechanical polishing, electrolytic polishing, M treatment, etc., and used as an electrode for electrolysis. However, by first performing mechanical polishing and electrolytic polishing, A
Complex microscopic irregularities can be formed on the surface of A1, increasing the surface area, and when electrolytic polymerization is performed using this as an electrode, the conductive polymer that polymerizes will bury the microscopic irregularities on the A1 surface. As the polymerization progresses, the bond between the A1 metal and the conductive polymer becomes better.

また、本発明に使用する金属層を構成する金属としては
、上記のように電解重合時の金属電極が好ましいが、そ
の他の金属としてはCLJ。
Further, as the metal constituting the metal layer used in the present invention, the metal electrode used in electrolytic polymerization as described above is preferable, but other metals include CLJ.

1:e、Mgなどを例示することができる。1:e, Mg, etc. can be exemplified.

これらの金R層は、それ単独においても電磁シールド効
果を示すが、前述したような電界シールド効果を有し、
また機械的強度の強い導電性高分子層を積層することに
より強靭で軽量薄型であり、電磁シールド効果の高い電
磁シールド積層体が提供できる。
These gold R layers exhibit an electromagnetic shielding effect by themselves, but they also have the electric field shielding effect as described above,
Furthermore, by laminating electrically conductive polymer layers with high mechanical strength, it is possible to provide an electromagnetic shielding laminate that is strong, lightweight, and thin, and has a high electromagnetic shielding effect.

本発明の電磁シールド積層体の構成としては、目的に応
じて種々の態様があるが、以下に代表的な構成例を挙げ
て、図面により説明する。
Although there are various configurations of the electromagnetic shielding laminate of the present invention depending on the purpose, typical configuration examples will be described below with reference to the drawings.

第1図〜第4図は、粘着テープ又は粘着フィルムとして
用いた例、第5図はボックス状構造体として用いた例で
ある。
1 to 4 show examples of use as an adhesive tape or adhesive film, and FIG. 5 shows an example of use as a box-like structure.

第1図、第2図の積層体は、粘着剤層2上に導電性高分
子4、AI層3を形成したものである。
The laminates shown in FIGS. 1 and 2 have a conductive polymer 4 and an AI layer 3 formed on an adhesive layer 2.

例えば、粘着剤としてアクリルエマルジョンのようなも
のを上記層のフィルムにコーティングした後、剥離紙1
でラミネートすることによって製造される。
For example, after coating the film of the above layer with something like acrylic emulsion as an adhesive, release paper
Manufactured by laminating.

第3図は、第1図の導電性高分子の上に、ざらに保護層
5を形成しhものである。このような保護層5を設ける
ことにより保存性、耐炎性、対屈折性を向上させること
ができるので、その材料は目的に応じて適宜選択される
In FIG. 3, a protective layer 5 is roughly formed on the conductive polymer shown in FIG. 1. By providing such a protective layer 5, the storage stability, flame resistance, and anti-refraction properties can be improved, so the material thereof is appropriately selected depending on the purpose.

第4図は、プラスチックを所定のボックス形状に成型し
たちの6を補強剤として用い、この上に導電性高分子4
、A113を配置したもので、シールドボックスとして
応用可能である。
Figure 4 shows plastic molded into a predetermined box shape, 6 is used as a reinforcing agent, and conductive polymer 4 is placed on top of this as a reinforcing agent.
, A113 are arranged, and can be applied as a shield box.

このようなボックス状のものは、用途に応じて形状を適
宜選択可能である。
The shape of such a box shape can be appropriately selected depending on the purpose.

以下に実施例を挙げ、本発明をさらに詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

[実施例1] 酸化被膜を取り除いである厚さ20μ乳のエツチドアル
ミ箔を正極、負極をNi板とし、0.05Hパラトルエ
ンスルホン醒0.1Mピロールをアセトニトリルに溶解
させた溶液を電解液として4v定電圧電解により20μ
mのポリピロールをA1上に合成した。この積層体フィ
ルムにアクリル樹脂系粘着剤アロンタック[東亜合成社
製S−121]を約4μの厚さに塗布し、15ofix
 150g。
[Example 1] Etched aluminum foil with a thickness of 20 μm from which the oxide film has been removed was used as the positive electrode, a Ni plate was used as the negative electrode, and a solution of 0.1M pyrrole dissolved in 0.05H paratoluene sulfone dissolved in acetonitrile was used as the electrolyte at 4V. 20μ by constant voltage electrolysis
m polypyrrole was synthesized on A1. An acrylic resin adhesive Arontack [S-121 manufactured by Toagosei Co., Ltd.] was applied to this laminate film to a thickness of about 4μ, and 15ofix
150g.

厚さ2sのアクリル板に固定した後、タケダ理研法によ
り減衰率(dB)を測定して電磁シールド効果及び耐折
強ざを測定した。
After fixing it on an acrylic plate with a thickness of 2 seconds, the attenuation rate (dB) was measured using the Takeda Riken method to measure the electromagnetic shielding effect and bending strength.

[実施例2] 実施例1のAIの代りに、市販のアルミホイル(厚さ1
0μm)をエメリー紙により研摩し酸化被膜を取り除い
たものを正極に用いる以外は実施例1と同じ電解液で厚
さ30μmのポリピロールを合成して電磁シールド材を
製造し実施例1と同様にして電磁シールド効果及び耐折
強ざを測定した。
[Example 2] Instead of AI in Example 1, commercially available aluminum foil (thickness 1
An electromagnetic shielding material was produced by synthesizing polypyrrole with a thickness of 30 μm using the same electrolyte as in Example 1, except that the material (0 μm) was polished with emery paper to remove the oxide film and used as the positive electrode. The electromagnetic shielding effect and bending strength were measured.

[実施例3] 実施例1の0.05Mパラトルエンスルホン酸をパラト
ルエンスルホン酸ナトリウムに換える以外は実施例1と
同様にして電子シールド材を製造し電磁シールド効果及
び耐折強ざを測定した。
[Example 3] An electronic shielding material was manufactured in the same manner as in Example 1 except that 0.05M para-toluenesulfonic acid in Example 1 was replaced with sodium para-toluenesulfonate, and the electromagnetic shielding effect and bending strength were measured. .

[実施例4] 実施例2の電解液を0.058αナフタレンスルホン酸
ナトリウムをアセトニトリル水(1:1)混合溶媒に溶
解したものを電解液に用いる以外は実施例2と同様にし
て電磁シールド材を製造し電磁シールド効果及び耐折強
ざを測定した。
[Example 4] An electromagnetic shielding material was prepared in the same manner as in Example 2, except that the electrolyte of Example 2 was prepared by dissolving 0.058α sodium naphthalene sulfonate in a mixed solvent of acetonitrile water (1:1). The electromagnetic shielding effect and bending strength were measured.

[比較例1] 正極にネサガラス(30Ω/cd)、対極をNi板とし
、0.058パラトルエンスルホン酸、0.01Hピロ
ールをアセトニトリルに溶解させた溶液中で4v定電圧
により40μmのポリピロールを合成した。合成したポ
リピロールをネサガラスより剥離させたポリピロールの
電磁シールド効果及び耐折強さを実施例1と同じ方法で
確認した。
[Comparative Example 1] Nesa glass (30Ω/cd) was used as the positive electrode, Ni plate was used as the counter electrode, and 40 μm polypyrrole was synthesized using a constant voltage of 4V in a solution in which 0.058 p-toluenesulfonic acid and 0.01H pyrrole were dissolved in acetonitrile. did. The electromagnetic shielding effect and folding strength of the synthesized polypyrrole was peeled from Nesa glass and the electromagnetic shielding effect and folding strength were confirmed in the same manner as in Example 1.

[比較例2]。[Comparative Example 2].

厚さ10μmの市販のAI箔の電磁シールド効果及び耐
折強さを実施例1と同じ方法でvF1認した。
The electromagnetic shielding effect and folding strength of a commercially available AI foil with a thickness of 10 μm were evaluated by vF1 using the same method as in Example 1.

[効 果] 以上説明したように、本発明の電磁シールドフィルム積
層体は、軽量で薄型でありながら強靭であり、ざらに高
性能の電磁シールド効果をもたらすことができる。
[Effects] As explained above, the electromagnetic shielding film laminate of the present invention is lightweight and thin, yet strong, and can provide a highly efficient electromagnetic shielding effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は、本発明の電磁シールド積層体を粘着テー
プあるいはフィルムとして利用した場合の例を説明する
図。 1・・・剥離紙、2・・・粘着剤、3・・・アルミニウ
ム層、4・・・導電性高分子層、5・・・保護層、6・
・・補強剤。
1 to 4 are diagrams illustrating examples in which the electromagnetic shielding laminate of the present invention is used as an adhesive tape or film. DESCRIPTION OF SYMBOLS 1... Release paper, 2... Adhesive, 3... Aluminum layer, 4... Conductive polymer layer, 5... Protective layer, 6...
...Reinforcing agent.

Claims (1)

【特許請求の範囲】[Claims] 導電性高分子層と金属層を有することを特徴とする電磁
シールド積層体。
An electromagnetic shielding laminate characterized by having a conductive polymer layer and a metal layer.
JP28842287A 1987-11-17 1987-11-17 Electromagnetic shielding laminated body Pending JPH01130595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28842287A JPH01130595A (en) 1987-11-17 1987-11-17 Electromagnetic shielding laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28842287A JPH01130595A (en) 1987-11-17 1987-11-17 Electromagnetic shielding laminated body

Publications (1)

Publication Number Publication Date
JPH01130595A true JPH01130595A (en) 1989-05-23

Family

ID=17730014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28842287A Pending JPH01130595A (en) 1987-11-17 1987-11-17 Electromagnetic shielding laminated body

Country Status (1)

Country Link
JP (1) JPH01130595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124466A (en) * 2010-11-18 2012-06-28 Nitto Denko Corp Adhesive film for semiconductor device and semiconductor device
JP2012186222A (en) * 2011-03-03 2012-09-27 Nagase Chemtex Corp Molding electromagnetic wave shield sheet and electromagnetic wave shield molded body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219642A (en) * 1985-03-26 1986-09-30 株式会社リコー Electromagnetic shield laminate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219642A (en) * 1985-03-26 1986-09-30 株式会社リコー Electromagnetic shield laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124466A (en) * 2010-11-18 2012-06-28 Nitto Denko Corp Adhesive film for semiconductor device and semiconductor device
JP2012186222A (en) * 2011-03-03 2012-09-27 Nagase Chemtex Corp Molding electromagnetic wave shield sheet and electromagnetic wave shield molded body

Similar Documents

Publication Publication Date Title
TWI399774B (en) Conducting polymer composite and solid electrolytic capacitor using the same
KR101669087B1 (en) Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
EP0437857B1 (en) A method for producing a solid capacitor and a solid capacitor obtainable by said method
CN108350588B (en) Electrolytic copper foil and various products using the same
JPH01130473A (en) Thin type primary battery
JP5579350B1 (en) Electrolytic copper foil, battery current collector using the electrolytic copper foil, secondary battery electrode using the current collector, and secondary battery using the electrode
Lee et al. Crosslinked gel polymer electrolytes for Si anodes in Li-ion batteries
TW200423171A (en) Solid electrolytic capacitor and method of manufacturing the same
US2590584A (en) Sea-water battery
JPH01130595A (en) Electromagnetic shielding laminated body
CN105856792A (en) Method for manufacturing single-sided thin metal substrate
US4804568A (en) Electromagnetic shielding material
EP0560283B1 (en) Method of producing conductive polymer composites
JP3213994B2 (en) Method for manufacturing solid electrolytic capacitor
KR102040073B1 (en) Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same
JP2002115098A (en) Organic plating method and organic plated product
US5152880A (en) Electrodeposition of a polymer
JPS6012604A (en) Composite material with transparent conductive film
JPS6223195A (en) Conductive circuit board and improvement in conductivity thereof
JPH074906B2 (en) Electromagnetic shield laminate
JP3943783B2 (en) Solid electrolytic capacitor built-in substrate and manufacturing method thereof
JPS63114199A (en) Electromagnetic shielding material sheet, panel and blind
JPS6265499A (en) Composite board for shielding electromagnetic wave
TW202305187A (en) Electrolytic copper foil, and electrode and copper-clad laminate comprising the same
JPH06252003A (en) Manufacture of capacitor