JPH01130207A - Running control system for running robot - Google Patents

Running control system for running robot

Info

Publication number
JPH01130207A
JPH01130207A JP62288689A JP28868987A JPH01130207A JP H01130207 A JPH01130207 A JP H01130207A JP 62288689 A JP62288689 A JP 62288689A JP 28868987 A JP28868987 A JP 28868987A JP H01130207 A JPH01130207 A JP H01130207A
Authority
JP
Japan
Prior art keywords
running
robot
guided
distance
running robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62288689A
Other languages
Japanese (ja)
Inventor
Tsuneo Kawagoe
川越 常生
Ichiji Kayano
栢野 一司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP62288689A priority Critical patent/JPH01130207A/en
Publication of JPH01130207A publication Critical patent/JPH01130207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To satisfactorily execute the change between guided lines by setting a prescribed distance which is shorter than a distance D between both guided line end points and larger than D/2 and running autonomously a running robot. CONSTITUTION:A running control system for a running robot 14 is provided with a running robot controller 11 and a guidance current generator 12. This controller 11 executes mutual communication of a command and data to the running robot 14 through the guidance current generator 12 and guided lines 13a-13b, and brings the running robot 14 to moving control by a prescribed carrying plan. Also, each guided line 13a-13b is a go-and-return line electrically, respectively, and in the end part, intersections P1, P2 are formed, and constituted so that they can be detected by the running robot 14. In this state, in case the running robot 14 is changed from one guided line 13a to the other guided line 13b, an intermediate point PM is set virtually, the robot is allowed to execute an autonomous run which has fixed a rotating speed of a driving wheel to a prescribed value and moved by a distance (d), and brought to guidance run after a guidance magnetic field has been searched.

Description

【発明の詳細な説明】 〈産業上の利用分母〉 本発明は走行ロボットの走行制御方式に、係り、特に一
方の誘導線路から他方の誘導線路へ走行ロボットを走行
させる走行制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Denominator> The present invention relates to a traveling control system for a traveling robot, and particularly to a traveling control system for causing a traveling robot to travel from one guideway to another guideway.

〈従来技術〉 誘導線路を埋設すると共に該誘導線路に所定周波数の誘
導信号を発生させておき、該誘導信号を検出しながら走
行ロボットを誘導線路に沿って移動させろ走行制御方式
がある。かかる誘導走行においては誘導!fsI?5が
連続であれば該誘導線路に沿って正しく走行ロボットを
移動させて目的地に停止させることができろ。
<Prior Art> There is a travel control method in which a guide line is buried, a guide signal of a predetermined frequency is generated on the guide line, and a traveling robot is moved along the guide line while detecting the guide signal. In such guided driving, guidance! fsI? If 5 is continuous, the traveling robot can be moved correctly along the guide line and stopped at the destination.

しかし、誘導線路を埋設する環境によっては誘導線路を
連続に埋設することができず、いくつかに分離せざるを
えな・い場合がある。かかる場合、一方の誘導線路から
他方の誘導線路へ走行ロボットを正確に乗り移す必要が
生じる。
However, depending on the environment in which the guide line is buried, the guide line cannot be buried continuously and may have to be separated into several parts. In such a case, it is necessary to accurately transfer the traveling robot from one guideway to the other guideway.

従来の乗り移し走行においては、一方の誘導線路終点に
到達した時、走行四ボットの左右駆動輪の回転を一定値
に固定すると共に現蒔点の姿勢を維持したま\乗り移り
先の誘導線路始点まで移動させて乗り移させている。
In conventional transfer driving, when one reaches the end of the guide line, the rotation of the left and right drive wheels of the four running bots is fixed at a constant value, and the attitude of the current sowing point is maintained. It has been moved up to the point where it has been transferred.

〈発明が解決しようとしている問題点〉しかし、かかる
従来の乗抄移り方式では、走行ロボットの走行経路と誘
導経路とにズレが生じて、しばらく蛇行したり、極端な
場合は次の誘導線路を検出できずに脱線することがあっ
た。
<Problem to be solved by the invention> However, in such a conventional boarding and transfer method, there is a discrepancy between the traveling route of the traveling robot and the guidance route, causing the robot to meander for a while, or in extreme cases, to move to the next guidance route. There were times when the line could not be detected and the line derailed.

以上から、本発明の目的は正しく一方の誘導線路から他
方の誘導線路に乗り移すことができろ走行ロボットの走
行制御方式を提供することである。
From the foregoing, an object of the present invention is to provide a traveling control system for a traveling robot that can correctly transfer from one guideway to another guideway.

く問題点を解決するための手段〉 第1図は本発明の説明図である。Means to solve problems〉 FIG. 1 is an explanatory diagram of the present invention.

11は走行ロボット制御装置、12は誘導電流発生器、
13 a、 13 bは誘導線路、14は走行ロボット
、15は誘導線路が埋設されていない区間、p、、 p
2は各誘導線路の端点である。
11 is a traveling robot control device, 12 is an induced current generator,
13a, 13b are guide lines, 14 is a traveling robot, 15 is a section where no guide line is buried, p,, p
2 is the end point of each guide line.

く作用〉 一方の誘導線路13aから他方の誘導線路13bへ走行
ロボット14を乗り移す場合、他方の誘導線路13b上
の端点P2近くであって一方の誘導線路13a上の端点
P、から所定圧glciの位置に中間ポイントP、を仮
想的に設定し、走行ロボット14が距離d移動する迄は
左右両駆動輪の回転速度を一定値に固定した自律走行を
行わせ、距離d移動した後は誘導線路13bの誘導磁界
を探しながら走行させ、誘導磁界が探索された後は誘導
線路13bに沿って誘導走行させる。
When transferring the traveling robot 14 from one guide line 13a to the other guide line 13b, a predetermined pressure GLCI is applied from an end point P on one guide line 13a near the end point P2 on the other guide line 13b. An intermediate point P is virtually set at the position of , and the traveling robot 14 is caused to run autonomously with the rotational speed of both left and right drive wheels fixed at a constant value until it has traveled a distance d, and after it has traveled a distance d, it is guided. The vehicle is caused to run while searching for the induced magnetic field of the track 13b, and after the guided magnetic field is searched for, the vehicle is caused to travel along the guided track 13b.

〈実施例〉 第1図は本発明の説明図であり、11は走行ロボット制
御装置、12は誘導電流発生器、13a。
<Embodiment> FIG. 1 is an explanatory diagram of the present invention, in which 11 is a traveling robot control device, 12 is an induced current generator, and 13a.

13bは誘導線路、14は走行qボット、15は誘導線
路が埋設されていない区間、Pl、 P2は各誘導線路
の交差点(端点)である。
13b is a guide line, 14 is a running Q-bot, 15 is a section where no guide line is buried, and Pl and P2 are intersections (end points) of each guide line.

走行ロボット制御装置11は誘導電流発生器12、誘導
線路13a〜13bを介して走行ロボット14とコマン
ドやデータの相互通信を行い、所定の搬送計画に従って
走行ロボット14を移動制御する。誘導電流発生器12
は周波数f、、f2の低周波誘導電流をそれぞれ第1.
第2の誘導線路13 a、  13 bに生ぜしめ、こ
の誘導電流を走行ロボット14に検出させて誘導線路1
3a、13bから逸脱しないように誘導走行させるため
のものである。
The traveling robot control device 11 communicates commands and data with the traveling robot 14 via the induced current generator 12 and the guide lines 13a to 13b, and controls the movement of the traveling robot 14 according to a predetermined transfer plan. Induced current generator 12
are the low frequency induced currents of frequencies f, , f2, respectively.
The induced current is generated in the second guide lines 13a and 13b, and the traveling robot 14 detects this induced current, and the guide line 1
This is to guide the vehicle so that it does not deviate from 3a and 13b.

各誘導線路13a、13bはそれぞれ電気的に往復線路
になっており、端部において交差点(端点) P、、 
P2が形成され、各交差点p、、 p2は走行ロボット
14により検出できるようになっている。
Each guide line 13a, 13b is an electrically reciprocating line, and has an intersection (end point) P at the end.
P2 is formed, and each intersection p, , p2 can be detected by the traveling robot 14.

走行ロボット14の裏側は第2図に示すように左右一対
の駆動輪14a、14a’ と、駆動輪を回転させるモ
ータと該駆動輪が所定角度回転する毎にパルスを発生す
るパルスコーダを一体に有する一対のサーボユニット1
4b、14b’ と、磁石センサ14c、14c’ と
、誘導線路である埋設ワイヤの交差点P、、 P2(第
1図参照)を検出する交差点検出用アンテナ14dと、
通信アンテナ14e、ガイド用兼受信用アンテナ14f
とが設けられている。
As shown in FIG. 2, the back side of the traveling robot 14 has a pair of left and right drive wheels 14a, 14a', a motor that rotates the drive wheels, and a pulse coder that generates a pulse every time the drive wheels rotate by a predetermined angle. A pair of servo units 1
4b, 14b', magnetic sensors 14c, 14c', and an intersection detection antenna 14d for detecting intersections P, P2 (see FIG. 1) of buried wires that are guide lines.
Communication antenna 14e, guide and reception antenna 14f
and is provided.

第3図は走行ロボットにおける走行制御回路のブロック
図であり、RDvは走行駆動部であり、左右の駆動輪1
4a、14a’に接続されたモータMT、MT’ と、
モータMT、MT’ を駆動するサーボアンプSAMP
及びサーボコントローラSvCを有している。尚、左右
の駆動輪14a。
FIG. 3 is a block diagram of a travel control circuit in a travel robot, where RDv is a travel drive unit, and left and right drive wheels 1
motors MT and MT' connected to 4a and 14a';
Servo amplifier SAMP that drives motors MT and MT'
and a servo controller SvC. Note that the left and right drive wheels 14a.

14a′にはパルスコーダPCD、PCD’が接続され
ている。
Pulse coders PCD and PCD' are connected to 14a'.

INFIは通信用送信アンテナ14e (第2図参照)
を介して外部にデータを送信する第1のインク7エース
、lNF2はガイド用兼受信アンテナ14f (第2図
)からの信号を取り込む第2のインタフェース、lNF
3は交差点検出用アンテナ14d、14d’  (第2
図)からの信号を取り込むインタフェースである。
INFI is the communication transmitting antenna 14e (see Figure 2)
The first ink 7ace, lNF2, transmits data to the outside via the guide and receiving antenna 14f (Figure 2), and the second interface, lNF
3 are intersection detection antennas 14d and 14d' (second
This is an interface that takes in signals from (see Figure).

MC0Mはコントロールマイコンでアリ、インタフェー
スTNFI、2を介して外部の走行ロボット制御装置1
1(第1図参照)とコマンドやデータの相互通信を行う
と共に、交差点検出用アンテナ14d、14d’  、
(第2図参照)及びパルスコーダPCD、PCD’から
の各検出信号を入力され、走行駆動部RDVへ所定の制
御信号を出力して走行制御を行う。
MC0M is a control microcomputer and is connected to the external traveling robot control device 1 via the interface TNFI, 2.
1 (see FIG. 1), as well as mutual communication of commands and data, as well as intersection detection antennas 14d, 14d',
(See FIG. 2) and each detection signal from the pulse coders PCD and PCD' are input, and a predetermined control signal is output to the travel drive section RDV to perform travel control.

第4図は本発明の走行制御処理の流れ図であり、以下こ
の流れ図に従って本発明方式を説明する。
FIG. 4 is a flowchart of the travel control process of the present invention, and the method of the present invention will be explained below according to this flowchart.

尚、予め誘導線路13b上の交差点(端点)P2近(で
あって、誘導線路13a上の交差点(端点)Plから所
定距離dの位置に仮想的に中間ポイントP、を設定し、
該距Fad及び両交差点間の距gIDをコントロールマ
イコンMC0Mに設定しておく。
In addition, a virtual intermediate point P is set in advance near the intersection (end point) P2 on the guide line 13b (and at a predetermined distance d from the intersection (end point) P1 on the guide line 13a,
The distance Fad and the distance gID between both intersections are set in the control microcomputer MC0M.

さて、通常の誘導走行にしたがって走行ロボット14 
(第1図参照)が誘導線路13゛aの端点である交差点
P1に到達すると、マイコンMCOM(第3図)は交差
点検出用アンテナ14d、14d’  (第2図)の出
力信号変化により走行ロボット14が交差点P1に到達
したことを認識する。これにより、マイコンは以後誘導
走行から自律走行に制御を切、り替える(ステップ10
1)。尚、自律走行は左右側駆動輪14a、14a’の
回転速度を一定値に固定すると共に直前の姿勢を維持し
たま\走行ロボットを移動させるものである。
Now, the traveling robot 14 follows normal guided travel.
(See Figure 1) reaches the intersection P1, which is the end point of the guide line 13'a, the microcomputer MCOM (Figure 3) detects the traveling robot by changing the output signal of the intersection detection antennas 14d and 14d' (Figure 2). 14 recognizes that the vehicle has arrived at the intersection P1. As a result, the microcomputer switches control from guided driving to autonomous driving (step 10).
1). Incidentally, in autonomous running, the rotational speed of the left and right drive wheels 14a, 14a' is fixed at a constant value, and the running robot is moved while maintaining the previous posture.

マイコンは自律走行させながら走行ロボットが距gId
移動したかチエツクしくステップ102)、d移動して
なければ自律走行を継続し、d移動すれば以後誘導線路
13bにおける周波数f2の誘導磁界を探しながら走行
胃ボットを走行させる(ステップ103)。尚、この誘
導磁界探索走行は左右側駆動輪の回転速度を変ることに
より細かくウィービングしながら誘導磁界を探し、誘導
磁界のより強い方向に向けて走行させるものである。
While the microcontroller is running autonomously, the running robot is running the distance gId.
Check whether it has moved (step 102); if it has not moved d, it continues autonomous running; if it has moved d, the running stomach bot then runs while searching for the induced magnetic field of frequency f2 on the guide line 13b (step 103). In this guided magnetic field search running, the vehicle searches for the guided magnetic field while finely weaving by changing the rotational speed of the left and right drive wheels, and runs in the direction where the guided magnetic field is stronger.

マイコンは現走行モードが探索走行モードであればガイ
ド用兼受イ:用アンテナ14fの受信電界強度(アンテ
ナ入力レベル)が所定レベル以上かチエツクしくステジ
ブ104.105) 、所定レベル以下であれば誘導磁
界探索走行を継続する。
If the current driving mode is the search driving mode, the microcomputer checks whether the received electric field strength (antenna input level) of the guide/receiver antenna 14f is above a predetermined level (104, 105), and if it is below the predetermined level, guides. Continue magnetic field search drive.

しかし、アンテナ入力レベルが所定レベル以上であれば
誘導磁界探索走行から誘導線路13bに沿って移動させ
る誘導走行に切り替える(ステップ106)。
However, if the antenna input level is equal to or higher than a predetermined level, the guided magnetic field search run is switched to guided run where the vehicle moves along the guide line 13b (step 106).

しかる後、マイコンは走行ロボット14が始めからトー
タルして両交差点間距giD移動したかチエツクしくス
テップ107)、移動してなければ誘導走行を継続しく
ステップ106)、D移動していれば第1の誘導線路か
ら第2の誘導線路への走行制御処理を終了する 〈発明の効果〉 以上本発明によれば、両誘導線路端点間の距離りより短
く、しかもD/2より大きい所定圧fidを設定し、走
行ロボットが距離d移動する迄は自律走行させ、距#d
移動した後は誘導磁界を探しながら走行させ、誘導磁界
が探索された後は誘導走行させろように構成したから、
正しく一方の誘導線路から他方の誘導線路に走行ロボッ
トを乗り移す乙とができる。
After that, the microcomputer checks whether the traveling robot 14 has moved a total of distance giD between the two intersections from the beginning (step 107), if it has not moved, continues guided travel in step 106), and if it has moved D, it returns to the first one. Ending the travel control process from the guide line to the second guide line <Effects of the Invention> According to the present invention, the predetermined pressure fid is set shorter than the distance between both guide line end points and greater than D/2. Then, the traveling robot moves autonomously until it moves a distance d, and the distance #d
After moving, it is configured to run while searching for an induced magnetic field, and after the induced magnetic field is searched, it is configured to run guided.
It is possible to correctly transfer the traveling robot from one guideway to the other guideway.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実現するシステムの全体のブロック図
、 第2図は走行ロボットの裏側の外観図、第3図は走行ロ
ボットの走行制御系のブロック図、 第4図は本発明の処理の流れ図である。 11・・走行ロボット制御装置、 12・・誘導電流発生器、 13a、13b・・誘導線路、 14・ ・走行ロボット、 15・・誘導線路が埋設されていない区間、P、、 P
2・・各誘導線路における交差点(端点)特許出願人 
       ファナック株式会社代理人      
    弁理士  齋藤千幹第1図 第2図 14f 03図 DV
Figure 1 is a block diagram of the entire system that implements the present invention, Figure 2 is an external view of the back side of the traveling robot, Figure 3 is a block diagram of the traveling control system of the traveling robot, and Figure 4 is the processing of the present invention. This is a flowchart. 11... Traveling robot control device, 12... Induced current generator, 13a, 13b... Guide line, 14... Traveling robot, 15... Section where guide line is not buried, P,, P
2. Intersection (end point) patent applicant for each guideway
Agent for FANUC Co., Ltd.
Patent Attorney Chiki Saito Figure 1 Figure 2 14f Figure 03 DV

Claims (1)

【特許請求の範囲】[Claims] 一方の誘導線路から他方の誘導線路へ走行ロボットを走
行させる走行ロボットの走行制御方式において、両誘導
線路端点間の距離Dより短く、しかもD/2より大きい
所定距離dを設定し、前記距離d移動する迄は走行ロボ
ットを自律走行させ、距離d移動した後は誘導磁界を探
しながら走行させ、誘導磁界が探索された後は誘導走行
させることを特徴とする走行ロボットの走行制御方式。
In a traveling control system for a traveling robot that causes the traveling robot to travel from one guideway to the other guideway, a predetermined distance d that is shorter than the distance D between both guideway end points and larger than D/2 is set, and the distance d A traveling control method for a traveling robot, characterized in that the robot is made to travel autonomously until it moves, is made to travel while searching for an induced magnetic field after moving a distance d, and is made to travel guided after the induced magnetic field is searched.
JP62288689A 1987-11-16 1987-11-16 Running control system for running robot Pending JPH01130207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62288689A JPH01130207A (en) 1987-11-16 1987-11-16 Running control system for running robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62288689A JPH01130207A (en) 1987-11-16 1987-11-16 Running control system for running robot

Publications (1)

Publication Number Publication Date
JPH01130207A true JPH01130207A (en) 1989-05-23

Family

ID=17733416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62288689A Pending JPH01130207A (en) 1987-11-16 1987-11-16 Running control system for running robot

Country Status (1)

Country Link
JP (1) JPH01130207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094123A (en) * 2010-09-30 2012-05-17 Honda Motor Co Ltd Controller for autonomous traveling service car
JP2021082122A (en) * 2019-11-21 2021-05-27 株式会社豊田自動織機 Unmanned carrier vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094123A (en) * 2010-09-30 2012-05-17 Honda Motor Co Ltd Controller for autonomous traveling service car
JP2021082122A (en) * 2019-11-21 2021-05-27 株式会社豊田自動織機 Unmanned carrier vehicle

Similar Documents

Publication Publication Date Title
US4939651A (en) Control method for an unmanned vehicle (robot car)
EP0560881B1 (en) Downward compatible agv system and methods
US5488277A (en) Travel control method, travel control device, and mobile robot for mobile robot systems
JPS6319011A (en) Guiding method for unattended mobile machine by point tracking system
JPH0954617A (en) Device and method for recognizing position of robot
JP2579808B2 (en) Mobile object guidance method and device
JPH08137549A (en) Guided travel controller for vehicle
CN113044095B (en) Automatic following baby carriage based on UWB positioning and working method
JPH01130207A (en) Running control system for running robot
JPH0827652B2 (en) Guidance method for unmanned mobile machines by point tracking method
JP2009230634A (en) Control system of mobile object, controller, and mobile object
Tachi et al. Guide dog robot—its basic plan and some experiments with MELDOG MARK I
JP2564832B2 (en) Self-supporting unmanned vehicle
JP2671297B2 (en) Route correction method for self-supporting unmanned vehicles
JP2711837B2 (en) Travel control device for automatically traveling vehicles
JP2639921B2 (en) Unmanned traveling system capable of detouring
JPH0755610Y2 (en) Self-propelled unmanned vehicle
JP2902057B2 (en) Path control method for self-propelled trolley
JP3813053B2 (en) Control method and control apparatus for transport carriage
JPS6195413A (en) Travel control system of moving car
JPS6195414A (en) Route searching system of moving car
JPH07248819A (en) Track control method for automatic running vehicle
JP3022889B2 (en) Mobile robot control method
JPH075912A (en) Travel controller for automated guided vehicle
JPS6353614A (en) Route exchanging method for unmanned vehicle