JPH01129842A - Nuclear magnetic resonance imaging apparatus - Google Patents

Nuclear magnetic resonance imaging apparatus

Info

Publication number
JPH01129842A
JPH01129842A JP62287255A JP28725587A JPH01129842A JP H01129842 A JPH01129842 A JP H01129842A JP 62287255 A JP62287255 A JP 62287255A JP 28725587 A JP28725587 A JP 28725587A JP H01129842 A JPH01129842 A JP H01129842A
Authority
JP
Japan
Prior art keywords
irradiation coil
coil system
irradiation
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62287255A
Other languages
Japanese (ja)
Inventor
Yukihiro Yasugi
八杉 幸浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP62287255A priority Critical patent/JPH01129842A/en
Publication of JPH01129842A publication Critical patent/JPH01129842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To sufficiently cut off the circuit of an irradiation coil system, by constituting a parallel resonance circuit of the resonating inductance, which is parallelly connected to the cross diode inserted in the irradiation coil of the irradiation coil system in series, and a variable condenser. CONSTITUTION:In an irradiation coil system 20a, a resonance frequency adjusting capacity 2 and an impedance adjusting capacity 3 are connected to an irradiation coil 1 and a cross diode 5 is inserted in the irradiation coil 1. A resonating inductor 29 and a resonance frequency adjusting variable condenser 30 are connected to the cross diode 5 in parallel to constitute a parallel resonance circuit. When the NMR signal discharged from an examinee 9 is received, the parallel resonance circuit is resonated in parallel to the NMR signal at the time of reception inclusive of the connection capacity C of the cross diode 5 and the connection capacity C is negated to become only the parallel resistance component of the cross diode 5. As a result, the circuit of the irradiation coil system 20a is sufficiently cut off and the connection thereof to a receiving coil system 20b is sufficiently prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、核磁気共鳴(以下rNMRJと略記する)現
象を利用して被検体(人体)の所望部位の断層像を得る
核磁気共鳴イメージング装置に関し、特に被検体から核
磁気共鳴により放出される高周波信号を検出する際の受
信コイル系と照射コイル系との結合を十分に阻止できる
核磁気共鳴イメージング装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to nuclear magnetic resonance imaging, which obtains a tomographic image of a desired part of a subject (human body) by utilizing the nuclear magnetic resonance (hereinafter abbreviated as rNMRJ) phenomenon. The present invention relates to an apparatus, and particularly to a nuclear magnetic resonance imaging apparatus that can sufficiently prevent coupling between a receiving coil system and an irradiating coil system when detecting high frequency signals emitted from a subject by nuclear magnetic resonance.

〔従来の技術〕[Conventional technology]

核磁気共鳴イメージング装置は、被検体に静磁場及び傾
斜磁場を与える磁場発生手段と、上記被検体の生体組織
を構成する原子の原子核に核磁気共鳴を起こさせるため
に高周波信号を照射する照射コイル系を有する送信系と
、上記の核磁気共鳴により放出される高周波信号を検出
する受信コイル系を有する受信系と、この受信系で検出
した高周波信号を用いて画像再構成演算を行う信号処理
系とを具備してなっている。ここで、人体を検査対象と
する核磁気共鳴イメージング装置では、被検体に対して
空間的に広く−様な高周波信号を照射することと、上記
被検体から核磁気共鳴により放出される高周波信号(こ
れをNMR信号という)を感度が高<S/Hの良い状態
で検出することとを実現するため、送信系の照射コイル
系においては比較的大きな照射コイルを用い、受信系の
受信コイル系においては被検体の近くに配置した比較的
小さな受信コイルが用いられている。そして、この受信
コイルと同一方向に照射コイルを配置すると1両者が高
周波的に結合して検出感度が低下するので1通常は上記
両者を互いに直交する軸上に配置している。
A nuclear magnetic resonance imaging apparatus includes a magnetic field generating means that applies a static magnetic field and a gradient magnetic field to a subject, and an irradiation coil that irradiates high-frequency signals to cause nuclear magnetic resonance in the nuclei of atoms constituting the living tissue of the subject. a receiving system having a receiving coil system that detects the high-frequency signals emitted by the above-mentioned nuclear magnetic resonance; and a signal processing system that performs image reconstruction calculations using the high-frequency signals detected by the receiving system. It is equipped with. Here, in a nuclear magnetic resonance imaging apparatus that examines a human body, the subject is irradiated with spatially wide-variant high-frequency signals, and the high-frequency signal emitted from the subject by nuclear magnetic resonance ( In order to detect this (called NMR signal) with high sensitivity < good S/H, a relatively large irradiation coil is used in the irradiation coil system of the transmission system, and a relatively large irradiation coil is used in the reception coil system of the reception system. uses a relatively small receiving coil placed close to the subject. If the irradiation coil is placed in the same direction as the receiving coil, the two will be coupled at high frequencies and the detection sensitivity will be lowered.Therefore, the two are usually placed on axes perpendicular to each other.

ところが、上記受信コイルとして、二つのコイルを直交
して組み合わせた直交コイルや一つのコイルを体表面に
接近させて任意方向にセットするサーフェイスコイル等
を使用する場合がある。このとき、直交コイルにおいて
は、二つのコイルのうち一方のコイルは必ず照射コイル
と同一方向に配置されることとなる。また、サーフェイ
スコイルにおいては、検査部位に応じて任意方向にセッ
トするため、照射コイルに対して直交する軸上には配置
できないことがある。このため、上記受信コイルと照射
コイルとの結合を強制的に阻止する手段を講じる必要が
ある。
However, as the receiving coil, an orthogonal coil in which two coils are orthogonally combined or a surface coil in which one coil is set close to the body surface in an arbitrary direction may be used. At this time, in the orthogonal coils, one of the two coils is always arranged in the same direction as the irradiation coil. Furthermore, since the surface coil is set in any direction depending on the region to be examined, it may not be possible to arrange it on the axis orthogonal to the irradiation coil. Therefore, it is necessary to take measures to forcibly prevent the coupling between the receiving coil and the irradiating coil.

そこで、従来は、第3図に示すように、照射コイル1に
共振周波数調整容量2とインピーダンス調整容量3とを
接続してなる照射コイル系4において、照射コイル1に
直列にクロスダイオード5を挿入し、高周波信号の照射
時以外では照射コイル系4の回路を遮断して受信コイル
6に対する照射コイル1の結合を阻止していた。
Therefore, conventionally, as shown in FIG. 3, in an irradiation coil system 4 in which a resonant frequency adjustment capacitor 2 and an impedance adjustment capacitor 3 are connected to an irradiation coil 1, a cross diode 5 is inserted in series with the irradiation coil 1. However, the circuit of the irradiation coil system 4 is cut off to prevent the irradiation coil 1 from coupling to the reception coil 6 except when irradiating a high-frequency signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような従来装置の照射コイル系4において
は、上記クロスダイオード5には接合間容量Cが必ず存
在するので、上記照射コイル系4はその接合間容量Cで
導通した状態となり、照射コイル系40回路を完全に遮
断することはできなかった。従って、受信コイル6に対
する照射コイル1の結合を十分に阻止することはできな
かった。
However, in the irradiation coil system 4 of such a conventional device, since the cross diode 5 always has a junction capacitance C, the irradiation coil system 4 becomes conductive with the junction capacitance C, and the irradiation coil It was not possible to completely shut off system 40 circuits. Therefore, the coupling of the irradiating coil 1 to the receiving coil 6 could not be sufficiently prevented.

また、上記クロスダイオード5としては照射出力の大電
流に耐えるものを使用しなければならないが、このよう
なりロスダイオード5の接合間容量Cは比較的大きな値
となる。従って、ますます受信コイル6に対する照射コ
イル1の結合を阻止することができなくなるものであっ
た。これらのことから、照射コイル1に直列にクロスダ
イオード5を挿入しただけでは照射コイル系4を完全に
遮断することができず、照射コイル1と受信コイル6と
の結合を十分に阻止しきれずに、両者が直交配置状態以
外ではQ値が低下して受信コイル6の検出感度が著しく
低下するものであった。さらに。
Further, as the cross diode 5, one must be used that can withstand the large current of the irradiation output, and as a result, the junction capacitance C of the loss diode 5 becomes a relatively large value. Therefore, it becomes increasingly difficult to prevent the irradiation coil 1 from being coupled to the reception coil 6. For these reasons, simply inserting the cross diode 5 in series with the irradiation coil 1 cannot completely shut off the irradiation coil system 4, and cannot sufficiently prevent the coupling between the irradiation coil 1 and the reception coil 6. When both are arranged other than orthogonally, the Q value decreases and the detection sensitivity of the receiving coil 6 decreases significantly. moreover.

被検体からのNMR信号受信時に照射コイル系4にのっ
た外来ノイズの誘導を受けて、受信コイル系のS/Nが
低下し、得られる断層像の画質が悪化することがあった
When receiving an NMR signal from a subject, the irradiation coil system 4 is induced by external noise, which lowers the S/N of the reception coil system and deteriorates the quality of the obtained tomographic image.

そこで、本発明は、このような問題点を解決することが
できる核磁気共鳴イメージング装置を提供することを目
的とする。
Therefore, an object of the present invention is to provide a nuclear magnetic resonance imaging apparatus that can solve such problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決する本発明の手段は、被検体に静磁
場及び傾斜磁場を与える磁場発生手段と。
Means of the present invention for solving the above problems includes a magnetic field generating means for applying a static magnetic field and a gradient magnetic field to a subject.

上記被検体の生体組織を構成する原子の原子核に核磁気
共鳴を起こさせるために高周波(73号を照射する照射
コイル系を有する送信系と、上記の核磁気共鳴により放
出される高周波信号を検出する受信コイル系を有する受
信系と、この受信系で検出した高周波信号を用いて画像
再構成演算を行う信号処理系とを具備してなる核磁気共
鳴イメージング装置において、上記照射コイル系にて高
周波信号を照射する照射コイルに直列に挿入されたクロ
スダイオードと並列に、共振用インダクタ及び可変コン
デンサを接続して並列共振回路を構成し、受信コイル系
で被検体から放出される高周波信号を検出する際には上
記照射コイル系を遮断するようにした核磁気共鳴イメー
ジング装置によってなされる。
A transmission system includes an irradiation coil system that irradiates radio frequency (No. 73) to cause nuclear magnetic resonance in the nuclei of atoms constituting the living tissue of the subject, and detects the radio frequency signal emitted by the nuclear magnetic resonance. In a nuclear magnetic resonance imaging apparatus, the nuclear magnetic resonance imaging apparatus includes a receiving system having a receiving coil system, and a signal processing system that performs image reconstruction calculations using high-frequency signals detected by the receiving system. A parallel resonant circuit is constructed by connecting a resonant inductor and a variable capacitor in parallel with a cross diode inserted in series with the irradiation coil that irradiates the signal, and the high-frequency signal emitted from the subject is detected by the receiving coil system. In some cases, this is done using a nuclear magnetic resonance imaging device in which the irradiation coil system is shut off.

〔作 用〕[For production]

このように構成された核磁気共鳴イメージング装置は、
照射コイル系の照射コイルに直列に挿入されたクロスダ
イオードと並列に接続した共振用インダクタンス及び可
変コンデンサにより並列共振回路が構成される。そして
、被検体からのNMR信号受信時には、上記並列共振回
路を共振させることによってクロスダイオードの接合間
容量を含めた部分が高インピーダンスとなり、照射コイ
ル系の回路を十分に遮断するものである。
The nuclear magnetic resonance imaging device configured in this way is
A parallel resonant circuit is configured by a cross diode inserted in series with the irradiation coil of the irradiation coil system, and a resonant inductance and a variable capacitor connected in parallel. When receiving an NMR signal from the subject, the parallel resonant circuit resonates, so that the portion including the junction capacitance of the cross diode becomes high impedance, and the circuit of the irradiation coil system is sufficiently cut off.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面に基づいて詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明による核磁気共鳴イメージング装置の全
体構成を示すブロック図である。この核磁気共鳴イメー
ジング装置は、核磁気共鳴(NMR)現象を利用して被
検体の断層像を得るもので、第1図に示すように、静磁
場発生磁石10と、中央処理装置(CPU)11と、シ
ーケンサ12と、送信系13と、磁場勾配発生系14と
、受信系15と、信号処理系16とから成る。
FIG. 1 is a block diagram showing the overall configuration of a nuclear magnetic resonance imaging apparatus according to the present invention. This nuclear magnetic resonance imaging apparatus obtains a tomographic image of a subject by using the nuclear magnetic resonance (NMR) phenomenon, and as shown in FIG. 11, a sequencer 12, a transmission system 13, a magnetic field gradient generation system 14, a reception system 15, and a signal processing system 16.

上記静磁場発生磁石10は、被検体9の周りにその体軸
方向または体軸と直交する方向に強く均一な静磁場を発
生させるもので、上記被検体9の周りのある広がりをも
った空間に永久磁石方式または常電動力式あるいは超電
動力式の磁場発生手段が配置されている。上記シーケン
サ12は、CFULLの制御で動作し、被検体9の断層
像のデータ収集に必要な種々の命令を送信系13及び磁
場勾配発生系14並びに受信系15に送るものである。
The static magnetic field generating magnet 10 generates a strong and uniform static magnetic field around the subject 9 in the body axis direction or in a direction perpendicular to the body axis, and is used to generate a strong and uniform static magnetic field around the subject 9 in a certain expanse of space around the subject 9. A magnetic field generating means of a permanent magnet type, a constant electromotive force type, or a super electromotive force type is arranged in the magnetic field generating means. The sequencer 12 operates under the control of CFULL and sends various commands necessary for data collection of tomographic images of the subject 9 to the transmission system 13, the magnetic field gradient generation system 14, and the reception system 15.

上記送信系13は、被検体9の生体組織を構成する原子
の原子核に核磁気共鳴を起こさせるために高周波信号を
照射するもので、高周波発振器17と変調器18と高周
波増幅器19と照射コイル系20aとから成り、上記高
周波発振器17から出力された高周波パルスをシーケン
サ12の命令に従って変調器18で振幅変調し、この振
幅変調された高周波パルスを高周波増幅器19で増幅し
た後に被検体9に近接して配置された照射コイル系20
aに供給することにより、高周波信号が上記被検体9に
照射されるようになっている。
The transmission system 13 irradiates high-frequency signals to cause nuclear magnetic resonance in the nuclei of atoms constituting the living tissue of the subject 9, and includes a high-frequency oscillator 17, a modulator 18, a high-frequency amplifier 19, and an irradiation coil system. 20a, the high frequency pulse outputted from the high frequency oscillator 17 is amplitude modulated by the modulator 18 according to the command of the sequencer 12, and after this amplitude modulated high frequency pulse is amplified by the high frequency amplifier 19, it is brought close to the subject 9. Irradiation coil system 20 arranged as
By supplying the high frequency signal to a, the subject 9 is irradiated with the high frequency signal.

上記磁場勾配発生系14.は、x、y、zの三軸方向に
巻かれた傾斜磁場コイル21と、それぞれのコイルを駆
動する傾斜磁場電源22とから成り。
The above magnetic field gradient generation system 14. consists of gradient magnetic field coils 21 wound in the three axial directions of x, y, and z, and a gradient magnetic field power supply 22 that drives each coil.

上記シーケンサ12からの命令に従ってそれぞれのコイ
ルの傾斜磁場電源22を駆動することにより、x、y、
zの三軸方向の傾斜磁場G x + G V tGzを
被検体9に印加するようになっている。この傾斜磁場の
加え方により、被検体9に対するスライス面を設定する
ことができる。上記受信系15は、被検体9の生体組織
の原子核の核磁気共鳴により放出される高周波信号(N
MR信号)を検出するもので、受信コイル系20bと増
幅器23と直交位相検波器24とA/D変換器25とか
ら成り、上記照射コイル系20aから照射された高周波
信号による被検体9の応答のNMR信号は被検体9に近
接して配置された受信コイル系20bで検出され、増幅
器23及び直交位相検波器24を介してA/D変換器2
5に入力してディジタル量に変換され、さらにシーケン
サ12からの命令によるタイミングで直交位相検波器2
4によりサンプリングされた二基列の収集データとされ
、その信号が信号処理系16に送られるようになってい
る。この信号処理系16は、CPUI 1と、磁気ディ
スク26及び磁気テープ27等の記憶装置と、CRT等
のデイスプレィ28とから成り、上記C:PU11でフ
ーリエ変換、補正係数計算像再構成等の処理を行い、任
意断面の信号強度分布あるいは複数の信号に適当な演算
を行って得られた分布を画像化してデイスプレィ28に
断層像として表示するようになっている。なお、第1図
において、照射コイル系20a及び受信コイル系20b
並びに傾斜磁場コイル21は、被検体9の周りの空間に
配置された静磁場発生磁石10の磁場空間内に配置され
ている。
By driving the gradient magnetic field power supply 22 of each coil according to the command from the sequencer 12, x, y,
A gradient magnetic field G x + G V tGz in the triaxial direction of z is applied to the subject 9 . A slice plane for the subject 9 can be set by applying this gradient magnetic field. The receiving system 15 receives a high frequency signal (N
The device detects the response of the subject 9 due to the high frequency signal irradiated from the irradiation coil system 20a, and is composed of a receiving coil system 20b, an amplifier 23, a quadrature phase detector 24, and an A/D converter 25. The NMR signal is detected by a receiving coil system 20b placed close to the subject 9, and sent to the A/D converter 2 via an amplifier 23 and a quadrature phase detector 24.
5, it is converted into a digital quantity, and then it is input to the quadrature phase detector 2 at the timing according to the command from the sequencer 12.
4, and the signal is sent to a signal processing system 16. This signal processing system 16 consists of a CPU 1, a storage device such as a magnetic disk 26 and a magnetic tape 27, and a display 28 such as a CRT. The signal intensity distribution of an arbitrary cross section or the distribution obtained by performing appropriate calculations on a plurality of signals is converted into an image and displayed as a tomographic image on the display 28. In addition, in FIG. 1, the irradiation coil system 20a and the reception coil system 20b
Further, the gradient magnetic field coil 21 is arranged within the magnetic field space of the static magnetic field generating magnet 10 arranged in the space around the subject 9.

ここで、上記照射コイル系20aは、第2図に示すよう
に、照射コイル1に共振周波数調整容量2とインピーダ
ンス調整容量3とが接続されると共に、上記照射コイル
1に直列にクロスダイオード5が挿入されている。さら
に、本発明においては、上記クロスダイオード5と並列
に、共振用インダクタ29及び共振周波数調整用の可変
コンデンサ30が接続され、並列共振回路が構成されて
いる。そして、被検体9から放出されるNMR信号受信
時には、上記並列共振回路を、上記クロスダイオード5
の接合間容量Cを含めて受信時のNMR信号に並列共振
させることにより、上記接合間容量Cが打ち消されてク
ロスダイオード5の並列抵抗成分だけとなり、そのイン
ピーダンス値を例えば約10倍に上げることができる。
Here, in the irradiation coil system 20a, as shown in FIG. 2, a resonant frequency adjustment capacitor 2 and an impedance adjustment capacitor 3 are connected to the irradiation coil 1, and a cross diode 5 is connected in series to the irradiation coil 1. It has been inserted. Further, in the present invention, a resonant inductor 29 and a variable capacitor 30 for adjusting the resonant frequency are connected in parallel with the cross diode 5 to form a parallel resonant circuit. When receiving the NMR signal emitted from the subject 9, the parallel resonant circuit is connected to the cross diode 5.
By causing parallel resonance to the NMR signal during reception, including the junction capacitance C, the junction capacitance C is canceled and only the parallel resistance component of the cross diode 5 remains, increasing its impedance value to about 10 times, for example. Can be done.

この結果、上記照射コイル系20aの回路は十分に遮断
され、照射コイル系20aと受信コイル系20bとの結
合も十分に阻止される。
As a result, the circuit of the irradiation coil system 20a is sufficiently cut off, and the coupling between the irradiation coil system 20a and the reception coil system 20b is also sufficiently prevented.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように構成されたので、被検体9から放
出されるNMR信号受信時には、照射コイル系20aに
おいてクロスダイオード5と共振用インダクタ29と可
変コンデンサ30とで構成された並列共振回路を共振さ
せることによって、上記クロスダイオード5の接合間容
量Cを打ち消しそのインピーダンスを高くすることがで
き、照射コイル系20aの回路を十分に遮断することが
できる。従って、受信コイル系20bと照射コイル系2
0aとの結合を十分に阻止することができる。このこと
から、照射コイル系20aの照射コイル1と受信コイル
系20bの受信コイル6とを直交する方向以外の任意方
向に配置してもQ値が低下することなく、受信コイル6
の検出感度を低下させないようにすることができる。ま
た、被検体9からのNMR信号受信時に上記照射コイル
系20aの回路が遮断されることから、その照射コイル
系20aによる外来ノイズの誘導を避けることができ、
受信コイル系20bのS/Nを向上することができる。
Since the present invention is configured as described above, when receiving the NMR signal emitted from the subject 9, the parallel resonant circuit composed of the cross diode 5, the resonant inductor 29, and the variable capacitor 30 is connected to the irradiation coil system 20a. By causing resonance, the interjunction capacitance C of the cross diode 5 can be canceled out and its impedance can be increased, and the circuit of the irradiation coil system 20a can be sufficiently interrupted. Therefore, the receiving coil system 20b and the irradiating coil system 2
Bonding with Oa can be sufficiently prevented. From this, even if the irradiation coil 1 of the irradiation coil system 20a and the reception coil 6 of the reception coil system 20b are arranged in any direction other than the orthogonal direction, the Q value does not decrease and the reception coil 6
It is possible to prevent the detection sensitivity from decreasing. Furthermore, since the circuit of the irradiation coil system 20a is cut off when receiving the NMR signal from the subject 9, induction of external noise by the irradiation coil system 20a can be avoided.
The S/N of the receiving coil system 20b can be improved.

これらのことから、得られる断層像の画質が向上して良
好な診断情報を得ることができる。
For these reasons, the quality of the obtained tomographic image is improved and good diagnostic information can be obtained.

4.13!!1面の簡単な説明 第1図は本発明による核磁気共鳴イメージング装置の全
体構成を示すブロック図、第2図は本発明における照射
コイル系の内部構成を示す回路図、第3図は従来装置に
おける照射コイル系の内部構成を示す回路図である。
4.13! ! Brief explanation of page 1 Fig. 1 is a block diagram showing the overall configuration of the nuclear magnetic resonance imaging apparatus according to the present invention, Fig. 2 is a circuit diagram showing the internal structure of the irradiation coil system in the present invention, and Fig. 3 is a conventional apparatus. FIG. 2 is a circuit diagram showing the internal configuration of an irradiation coil system in FIG.

1・・・照射コイル、  5・・・クロスダイオード、
6・・・受信コイル、 9・・・被検体、 10・・・
静磁場発生磁石、  11・・・中央処理装置(CPU
)。
1... Irradiation coil, 5... Cross diode,
6... Receiving coil, 9... Subject, 10...
Static magnetic field generating magnet, 11...Central processing unit (CPU
).

12・・・シーケンサ、  13・・・送信系、  1
4・・・磁場勾配発生系、 15・・・受信系、  1
6・・・信号処理系、 20a・・・照射コイル系、 
 20b・・・受信コイル系、 29・・・共振用イン
ダクタ、  30・・・可変コンデンサ、 C・・・ク
ロスダイオードの接合間容量。
12...Sequencer, 13...Transmission system, 1
4... Magnetic field gradient generation system, 15... Receiving system, 1
6... Signal processing system, 20a... Irradiation coil system,
20b... Receiving coil system, 29... Resonant inductor, 30... Variable capacitor, C... Junction capacitance of cross diode.

Claims (1)

【特許請求の範囲】[Claims] 被検体に静磁場及び傾斜磁場を与える磁場発生手段と、
上記被検体の生体組織を構成する原子の原子核に核磁気
共鳴を起こさせるために高周波信号を照射する照射コイ
ル系を有する送信系と、上記の核磁気共鳴により放出さ
れる高周波信号を検出する受信コイル系を有する受信系
と、この受信系で検出した高周波信号を用いて画像再構
成演算を行う信号処理系とを具備してなる核磁気共鳴イ
メージング装置において、上記照射コイル系にて高周波
信号を照射する照射コイルに直列に挿入されたクロスダ
イオードと並列に、共振用インダクタ及び可変コンデン
サを接続して並列共振回路を構成し、受信コイル系で被
検体から放出される高周波信号を検出する際には上記照
射コイル系を遮断するようにしたことを特徴とする核磁
気共鳴イメージング装置。
a magnetic field generating means for applying a static magnetic field and a gradient magnetic field to the subject;
a transmission system having an irradiation coil system that irradiates high-frequency signals to cause nuclear magnetic resonance to the nuclei of atoms constituting the living tissue of the subject; and a reception system that detects the high-frequency signals emitted by the nuclear magnetic resonance. In a nuclear magnetic resonance imaging apparatus comprising a receiving system having a coil system and a signal processing system that performs image reconstruction calculations using the high frequency signals detected by the receiving system, the high frequency signals are received by the irradiation coil system. A parallel resonant circuit is constructed by connecting a resonant inductor and a variable capacitor in parallel with a cross diode inserted in series with the irradiation coil, and is used to detect high-frequency signals emitted from the subject in the receiving coil system. A nuclear magnetic resonance imaging apparatus characterized in that the irradiation coil system is shut off.
JP62287255A 1987-11-16 1987-11-16 Nuclear magnetic resonance imaging apparatus Pending JPH01129842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62287255A JPH01129842A (en) 1987-11-16 1987-11-16 Nuclear magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62287255A JPH01129842A (en) 1987-11-16 1987-11-16 Nuclear magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
JPH01129842A true JPH01129842A (en) 1989-05-23

Family

ID=17715032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62287255A Pending JPH01129842A (en) 1987-11-16 1987-11-16 Nuclear magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JPH01129842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1199577A2 (en) * 2000-10-20 2002-04-24 Marconi Medical Sytems Finland Inc. Magnetic resonance imaging using a tuning circuit for the transmit coil
EP2447732A1 (en) * 2010-10-26 2012-05-02 Koninklijke Philips Electronics N.V. RF antenna arrangement including a decoupling circuit especially for an MR imaging system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230115A (en) * 1986-03-31 1987-10-08 Toshiba Corp Cross diode switch circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230115A (en) * 1986-03-31 1987-10-08 Toshiba Corp Cross diode switch circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1199577A2 (en) * 2000-10-20 2002-04-24 Marconi Medical Sytems Finland Inc. Magnetic resonance imaging using a tuning circuit for the transmit coil
EP1199577A3 (en) * 2000-10-20 2004-01-02 Marconi Medical Sytems Finland Inc. Magnetic resonance imaging using a tuning circuit for the transmit coil
EP2447732A1 (en) * 2010-10-26 2012-05-02 Koninklijke Philips Electronics N.V. RF antenna arrangement including a decoupling circuit especially for an MR imaging system
WO2012056396A1 (en) * 2010-10-26 2012-05-03 Koninklijke Philips Electronics N.V. Rf antenna arrangement for mri comprising a trap circuit
CN103180748A (en) * 2010-10-26 2013-06-26 皇家飞利浦电子股份有限公司 RF antenna arrangement for MRI comprising a trap circuit

Similar Documents

Publication Publication Date Title
JP5667349B2 (en) RF coil and apparatus for reducing acoustic noise in MRI systems
JP2003180655A (en) Method for measuring location of object in mr system, and catheter and mr system for performing the method
JPH0350542B2 (en)
JPH01129842A (en) Nuclear magnetic resonance imaging apparatus
JP3137366B2 (en) Magnetic resonance imaging equipment
JPH048348A (en) Receiving coil for magnetic resonance imaging device
JPH07163543A (en) High-frequency signal receiving coil of magnetic resonance imaging system
JP3547520B2 (en) Magnetic resonance imaging system
JP3010366B2 (en) High frequency coil and magnetic resonance imaging apparatus using the same
JP3501168B2 (en) Inspection device using spin resonance
JP3213819B2 (en) High frequency receiving coil for magnetic resonance imaging equipment
JP3154002B2 (en) Receiving coil of quadrature receiving method and magnetic resonance imaging apparatus using this receiving coil
JP3007383B2 (en) Magnetic resonance imaging equipment
JPH0763459B2 (en) High frequency receiver coil for magnetic resonance imaging
JP3170309B2 (en) Magnetic resonance inspection equipment
JPH09238921A (en) Magnetic resonance imaging apparatus
US11747416B1 (en) System and method for stabilizing surface coil
JP2811352B2 (en) High frequency coil for magnetic resonance imaging equipment
JP3170771B2 (en) Receiving coil for magnetic resonance imaging equipment
JP2767311B2 (en) High frequency coil for magnetic resonance imaging equipment
JPH07265279A (en) Magnetic resonance imaging system
JPH0243494B2 (en)
JPH0265844A (en) Receiving coil of nuclear magnetic resonance imaging apparatus
JP4350889B2 (en) High frequency coil and magnetic resonance imaging apparatus
JP3120111B2 (en) High-speed magnetic resonance imaging system using single excitation spin echo