JPH01128852A - Heat accumulation detector for thermal head - Google Patents

Heat accumulation detector for thermal head

Info

Publication number
JPH01128852A
JPH01128852A JP28695187A JP28695187A JPH01128852A JP H01128852 A JPH01128852 A JP H01128852A JP 28695187 A JP28695187 A JP 28695187A JP 28695187 A JP28695187 A JP 28695187A JP H01128852 A JPH01128852 A JP H01128852A
Authority
JP
Japan
Prior art keywords
integrator
heat accumulation
output
heat
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28695187A
Other languages
Japanese (ja)
Other versions
JP2512033B2 (en
Inventor
Kenzo Takeuchi
武内 建造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28695187A priority Critical patent/JP2512033B2/en
Publication of JPH01128852A publication Critical patent/JPH01128852A/en
Application granted granted Critical
Publication of JP2512033B2 publication Critical patent/JP2512033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To accurately detect the quantity of heat accumulated, by providing a detecting resistance for detecting a recording current passed through a group of het generating elements of a thermal head, a differential amplifier for obtaining the detected voltage, an integrator to be charged with the output of the differential amplifier and discharged, and a comparator for outputting a heat accumulation detection signal based on an output from the integrator. CONSTITUTION:Heat accumulation in a thermal head 1 is proportional to consumption of electric power by the head 1. The power consumption can be detected by a recording current passed through each of heat generating elements 10a-10n, and is obtained by integrating the voltage acorss a detecting resistor 2. A voltage waveform obtained through the detecting resistor 2 is amplified by a differential amplifier 3, and is inputted to an integrator 4, which is charged when the recording current is flowing and which is discharged when the recording current is not flowing, under the control of a charging/discharging controlling circuit 5. This operation is repeated, and when an output from the integrator 4 is detected to be more than a predetermined value by a comparator 6, it is judged that a limit of heat accumulation is exceeded, and a heat accumulation detection signal TS is outputted. By this, it is possible to perform accurate detection of heat accumulation following up to printing patterns or gradational recording, and a construction for the detection is made easy and inexpensive.

Description

【発明の詳細な説明】 〔目次〕 概要 産業上の利用分野 従来の技術(第4図) 発明が解決しようとする問題点 問題点を解決するための手段(第1図)作用 実施例 (a)一実施例の説明(第2図、第3図)(bl他の実
施例の説明 発明の効果 〔概要〕 多階調駆動されるサーマルヘッドの蓄熱状態を検出する
蓄熱検出装置に関し、 印字パターンや階調変化に対し正確に蓄熱量を検出する
ことを目的とし、 サーマルヘッドの発熱素子群に流れる記録電流を検出す
るための検出用抵抗と、該検出用抵抗の検出電圧を求め
る差動増幅器と、該差動増幅器の出力を充放電する積分
器と、該差動増幅器の出力によって該積分器の充放電を
制御する充放電制御回路と、該積分器の出力から蓄熱検
出信号を出力するコンパレータとを有する。
[Detailed description of the invention] [Table of contents] Overview Industrial field of application Prior art (Figure 4) Problems to be solved by the invention Means for solving the problems (Figure 1) Working examples (a ) Description of one embodiment (Figures 2 and 3) (bl Description of other embodiments Effects of the invention [Summary] Regarding a heat accumulation detection device that detects the heat accumulation state of a thermal head driven in multiple gradations, printing pattern The purpose of this system is to accurately detect the amount of heat stored in response to changes in temperature and gradation, and includes a detection resistor to detect the recording current flowing through the heating element group of the thermal head, and a differential amplifier to determine the detection voltage of the detection resistor. an integrator that charges and discharges the output of the differential amplifier; a charge/discharge control circuit that controls charging and discharging of the integrator based on the output of the differential amplifier; and a heat accumulation detection signal output from the output of the integrator. It has a comparator.

〔産業上の利用分野〕[Industrial application field]

本発明は、多階調駆動されるサーマルヘッドの蓄熱状態
を検出する蓄熱検出装置に関する。
The present invention relates to a heat accumulation detection device that detects the heat accumulation state of a thermal head driven in multiple gradations.

熱転写プリンタやサーマルプリンタにおいては、−列に
多数の発熱抵抗素子を並べたサーマルラインヘッドが用
いられる。
A thermal transfer printer or a thermal printer uses a thermal line head in which a large number of heating resistive elements are arranged in a negative row.

サーマルラインヘッドでは、長時間ベタ印刷等の連続記
録を行うと、ヘッドが蓄熱する。
When a thermal line head performs continuous recording such as solid printing for a long time, the head accumulates heat.

ヘッドが蓄熱すると、特に記録電流パルスの波高値やパ
ルス幅を変化して多階調印刷する場合に、濃度変化や解
像度劣化の印刷品質の劣化が生じる。
When the head accumulates heat, print quality deteriorates such as density changes and resolution deterioration, especially when performing multi-gradation printing by changing the peak value or pulse width of the recording current pulse.

蓄熱は、ヘッドで消費される電力量に比例するので、印
刷に悪影響となる蓄熱が生じた時には、記録電流パルス
の波高値を下げたり、パルス幅を狭くして、ヘットで消
費される電力を少なくし、蓄熱が少なくなったら電流パ
ルスを元に戻す制御を行う必要がある。
Heat storage is proportional to the amount of power consumed by the head, so if heat storage that adversely affects printing occurs, lower the peak value of the recording current pulse or narrow the pulse width to reduce the power consumed by the head. It is necessary to perform control to reduce the amount of heat and then return the current pulse to its original state when the amount of accumulated heat decreases.

このため、簡易に且つ追随性の優れた蓄熱検出技術が求
められている。
Therefore, there is a need for a heat accumulation detection technique that is simple and has excellent followability.

〔従来の技術〕[Conventional technology]

第4図は従来技術の説明図である。 FIG. 4 is an explanatory diagram of the prior art.

サーマルヘッド1は、nヶの発熱抵抗10a〜10nと
駆動トランジスタlla〜1lrtの直列接続したもの
を、電源+VE、に対して並列に接続して構成される。
The thermal head 1 is constructed by connecting n heat generating resistors 10a to 10n and drive transistors lla to 1lrt in series in parallel to a power supply +VE.

各トランジスタlla〜llnは個々のドライブ信号D
 V a % D V nによって駆動され、所望の発
熱抵抗10a〜10nに電流が流れ、発熱する。
Each transistor lla to lln has an individual drive signal D.
Driven by V a % D V n, current flows through desired heat generating resistors 10a to 10n, generating heat.

従来のN熱検出装置は、電源+V=εの分圧電圧(抵抗
rとツェナーダイオードZDによる)を、抵抗R1コン
デンサCの積分器で充電し、ドライブ信号DVa〜DV
nのオア出力でトランジスタTrをオンして放電する構
成のものが知られている(例えば特許出願公告間62−
38150号公報等参照)。
The conventional N heat detection device charges a divided voltage of power supply +V=ε (by resistor r and Zener diode ZD) with an integrator of resistor R1 and capacitor C, and generates drive signals DVa to DV.
A structure is known in which the transistor Tr is turned on and discharged by the OR output of n (for example, the patent application publication number 62-
(See Publication No. 38150, etc.).

この従来技術は、印字なしでコンデンサCに充電され、
印字有りで放電されることにより、連続的に印字される
と、コンデンサCの充電電圧Eが低下することによって
蓄熱を検出するものである。
In this prior art, capacitor C is charged without printing,
When the capacitor C is discharged and printed continuously, the charging voltage E of the capacitor C decreases, thereby detecting heat accumulation.

又、他の従来技術として、各発熱抵抗102〜10nの
ドライブ信号D V a ” D V nからプロセッ
サの演算処理により電流パルスの密度を総計し、蓄熱量
を算出する方法が知られていた。
In addition, as another conventional technique, a method has been known in which the density of current pulses is totaled by arithmetic processing by a processor from the drive signal D V a '' D V n of each heating resistor 102 to 10 n, and the amount of heat storage is calculated.

〔発明が解決しようとす、る問題点〕[Problem that the invention attempts to solve]

しかしながら、前者の従来技術では、ドライブ信号D 
V a = D V nのパターン(即ち印字パターン
)や階調(パルス幅や電流値)によらず充放電特性が一
定のため、印字パターンの変化や階調記録に対し正確に
蓄熱量を検出することができないという問題があった。
However, in the former prior art, the drive signal D
Since the charging and discharging characteristics are constant regardless of the V a = D V n pattern (i.e. print pattern) or gradation (pulse width or current value), the amount of heat storage can be accurately detected based on changes in the print pattern or gradation recording. The problem was that I couldn't do it.

又、後者の従来技術では、印字パターンの変化や階調記
録に対し正確な蓄熱量を得るには、そのプログラムの作
成が大変で且つ演算時間もかかり、プロセッサに高速の
ものを要するという問題がある。
Furthermore, with the latter conventional technology, in order to obtain an accurate amount of heat storage for changes in print patterns and gradation recording, it is difficult to create a program, it takes a lot of calculation time, and a high-speed processor is required. be.

本発明は、印字パターンや階調変化に対し正確に蓄熱量
を検出することのできるサーマルヘッドの蓄熱検出装置
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat storage detection device for a thermal head that can accurately detect the amount of heat storage with respect to print patterns and gradation changes.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理説明図である。 FIG. 1 is a diagram explaining the principle of the present invention.

図中、第4図で示したものと同一のものは同一の記号で
示してあり、2は検出抵抗であり、サーマルヘッドの発
熱素子群LOa〜10nに流れる記録電流を検出するた
めのもの、3は差動増幅器であり、検出抵抗2の検出電
圧を求めるもの、4は積分器であり、差動増幅器3の出
力を充放電するもの、5は充放電制御回路であり、差動
増幅器3の出力によって積分器4の充放電を制御するも
の、6はコンパレータであり、積分器4の出力(積分電
圧)から蓄熱検出信号TSを出力するものである。
In the figure, the same components as those shown in FIG. 4 are indicated by the same symbols, and 2 is a detection resistor for detecting the recording current flowing through the heating element groups LOa to 10n of the thermal head. 3 is a differential amplifier that determines the detection voltage of the detection resistor 2; 4 is an integrator that charges and discharges the output of the differential amplifier 3; 5 is a charging/discharging control circuit; 6 is a comparator which outputs a heat storage detection signal TS from the output (integrated voltage) of the integrator 4.

〔作用〕[Effect]

サーマルヘッド1の蓄熱は、ヘッド1で消費される電力
に比例する。
Heat storage in the thermal head 1 is proportional to the power consumed by the head 1.

この消費電力は、各発熱素子10a〜10nの記録電流
によって検出でき、検出抵抗2の両端電圧を積分すれば
消費電力かえられる。
This power consumption can be detected by the recording current of each heating element 10a to 10n, and the power consumption can be changed by integrating the voltage across the detection resistor 2.

そこで、検出抵抗2による電圧波形を差動増幅器3で増
幅し積分器4に入力する。
Therefore, the voltage waveform generated by the detection resistor 2 is amplified by the differential amplifier 3 and input to the integrator 4.

積分器4は、充放電制御回路5によって記録電流が流れ
ている時に充電し、流れていない時に放電する。
The integrator 4 is charged by the charging/discharging control circuit 5 when the recording current is flowing, and discharged when the recording current is not flowing.

これを繰返し、積分器4の出力が、コンパレータ6で一
定値を超えたことが検出されると、蓄熱が限度を越えた
として蓄熱検出信号TSを出力する。
When this is repeated and the comparator 6 detects that the output of the integrator 4 exceeds a certain value, it is determined that the heat storage has exceeded the limit and a heat storage detection signal TS is output.

これによって、印字パターンや階調記録に追随した正確
な蓄熱検出が可能で、構成も簡易で安価に実現できる。
This makes it possible to accurately detect heat accumulation that follows print patterns and gradation recording, and to realize a simple and inexpensive configuration.

〔実施例〕〔Example〕

(a)  一実施例の説明 第2図は本発明の一実施例構成図である。 (a) Description of one embodiment FIG. 2 is a configuration diagram of an embodiment of the present invention.

図中、第1図及び第4図で示したものと同一のものは同
一の記号で示しである。
In the figures, the same parts as those shown in FIGS. 1 and 4 are indicated by the same symbols.

積分器4は、調整抵抗rと、第1のアナログスイッチ4
0と、コンデンサCと、抵抗Rと第2のアナログスイッ
チ41とで構成されている。
The integrator 4 includes an adjustment resistor r and a first analog switch 4.
0, a capacitor C, a resistor R, and a second analog switch 41.

充放電制御回路5は、増幅器50と、スライスレベルv
hと比較し充電パルスを発するコンパレータ51と、充
電パルスを反転して放電パルスを発する反転回路52で
構成されている。
The charge/discharge control circuit 5 includes an amplifier 50 and a slice level v
It is comprised of a comparator 51 that compares the charging pulse with h and generates a charging pulse, and an inversion circuit 52 that inverts the charging pulse and generates a discharging pulse.

第3図は本発明の一実施例動作波形図であり、第2図構
成の動作を第3図を用いて説明する。
FIG. 3 is an operational waveform diagram of an embodiment of the present invention, and the operation of the configuration shown in FIG. 2 will be explained with reference to FIG.

各発熱素子10a−10nは、電源+Vεεから検出抵
抗2を介し電流が供給される。
Each of the heating elements 10a-10n is supplied with current from the power supply +Vεε via the detection resistor 2.

従って、検出抵抗2に流れる電流は、ヘッドlの記録電
流、即ち各発熱素子102〜10nに流れる電流の和に
相当する。
Therefore, the current flowing through the detection resistor 2 corresponds to the recording current of the head l, that is, the sum of the currents flowing through the heating elements 102 to 10n.

即ち、パルス幅制御(通電時間制御)によって階調記録
する場合でも、時間比例した電流が検出でき、印字パタ
ーンが変化しても、これに比例した電流が検出できる。
That is, even when performing gradation recording by pulse width control (current application time control), a current proportional to time can be detected, and even if the printing pattern changes, a current proportional to this can be detected.

ヘッドlに記録電流がドライブ信号DVa−DVnによ
って流れると、検出抵抗2の両端3点、b点に電圧が発
生する。
When a recording current flows through the head 1 according to the drive signals DVa to DVn, voltages are generated at three points on both ends of the detection resistor 2, and at point b.

a点電位は第3図のVaとなり、b点電位は第3図のv
bとなる。
The potential at point a is Va in Figure 3, and the potential at point b is V in Figure 3.
It becomes b.

a点、b点の電位を差動増幅器3へ入力し、第3図の検
出電位(C点電位)に示すSG(シグナルグランド)を
基準として増幅波形を出力する。
The potentials at points a and b are input to the differential amplifier 3, and an amplified waveform is output with reference to SG (signal ground) shown in the detection potential (potential at point C) in FIG.

このヰ★出電位は充放電制御回路5の増幅器50で増幅
され、第3図の増幅出力となる。
This output potential is amplified by the amplifier 50 of the charge/discharge control circuit 5, resulting in the amplified output shown in FIG.

この増幅出力は、コンパレータ51に入力され、一定レ
ベルのスライス電位vhでスライスされる。
This amplified output is input to a comparator 51 and sliced at a constant level slice potential vh.

コンパレーク51では、増幅出力がスライスレベルvh
より高いときに、ハイレベルとなる充電パルス(e点電
位)を出力する。
In the comparator 51, the amplified output is at the slice level vh
When the voltage is higher than that, a charging pulse (potential at point e) that becomes high level is output.

この充電パルスは記録電流が流れているときのみ、ハイ
レベルとなる。
This charging pulse becomes high level only when the recording current is flowing.

更に、反転回路52で充電パルスを反転した放電パルス
を第3図の如く作成する。
Further, an inverting circuit 52 inverts the charging pulse to create a discharging pulse as shown in FIG.

従って、記録電流が流れると、充電パルスがハイとなり
、積分器4の第1のアナログスイッチ40をオンし、第
2のアナログスイッチ41はオフであるので、差動増幅
器3からの検出電位は抵抗rを通り、コンデンサCに充
電される。
Therefore, when the recording current flows, the charging pulse becomes high, turning on the first analog switch 40 of the integrator 4, and turning off the second analog switch 41, so that the detected potential from the differential amplifier 3 is r and is charged to capacitor C.

即ち、記録電流の積分値が積分器4へ出力される。That is, the integral value of the recording current is output to the integrator 4.

記録電流が流れないときは、充電パルスはローレベルと
なり、第1のアナログスイッチ4oはオフ、放電パルス
はハイレベルとなって第2のアナログスイッチ41はオ
ンとなるので、コンデンサCに充電された電圧は抵抗R
を通り放電する°。
When the recording current does not flow, the charging pulse is at a low level and the first analog switch 4o is turned off, and the discharge pulse is at a high level and the second analog switch 41 is turned on, so that the capacitor C is charged. Voltage is resistance R
discharge through °.

積分器4の充電は、ヘッド1の蓄熱に対応するので、抵
抗rとコンデンサCの値を調節することにより、蓄熱特
性と充電特性を比例させることができる。
Since charging of the integrator 4 corresponds to heat storage in the head 1, by adjusting the values of the resistor r and the capacitor C, the heat storage characteristics and the charging characteristics can be made proportional.

又、積分器4の放電は、ヘッド1の放熱に対応するので
、抵抗RとコンデンサCの値を調節することにより、放
熱特性と放電特性を比例させることができる。
Further, since the discharge of the integrator 4 corresponds to the heat radiation of the head 1, by adjusting the values of the resistor R and the capacitor C, the heat radiation characteristics and the discharge characteristics can be made proportional.

積分器4の出力(g点電位)をコンパレータ6へ入力し
、所定の制限レベルVsと比較し、g点電位が制限レベ
ルVsより高くなると、ヘッド1の蓄熱が大きくなった
ことになり、コンパレータ6の出力は第3図のh点電位
の如くハイレベルになり1、この蓄熱検出信号TSによ
って、前述の如くドライブ信号DVa−DVnの幅を小
に制御する。
The output of the integrator 4 (g-point potential) is input to the comparator 6 and compared with a predetermined limit level Vs. When the g-point potential becomes higher than the limit level Vs, it means that the heat storage in the head 1 has increased, The output of 6 becomes high level as the potential at point h in FIG. 3 1, and the width of drive signals DVa-DVn is controlled to be small as described above by this heat storage detection signal TS.

g点電位が再び制限レベルVsより小となると、ヘッド
lの蓄熱が小さくなったことになり、蓄熱検出信号TS
はローレベルとなり、ドライブ信号[) V a % 
D V nの幅を元に戻す。
When the potential at point g becomes smaller than the limit level Vs again, it means that the heat storage in the head l has become smaller, and the heat storage detection signal TS
becomes low level, and the drive signal [)V a %
Return the width of DV n.

なお、コンパレータ6の代わりに、積分器4の出力をA
/Dコンバータへ入力し、この出力をCPUへ入力する
ことによりドライブ信号の幅を制御してもよい。
Note that instead of the comparator 6, the output of the integrator 4 is
The width of the drive signal may be controlled by inputting the signal to a /D converter and inputting this output to the CPU.

このようにして、印字パターンや階調に応じた検出電位
を積分することができ、正確に蓄熱検出ができる。
In this way, it is possible to integrate the detection potential according to the print pattern and gradation, and it is possible to accurately detect heat accumulation.

又、回路構成も簡易で小型であり、安価にしかもスペー
スを要せずに実現できる。
Further, the circuit configuration is simple and compact, and can be realized at low cost and without requiring space.

更に、リアルタイムの検出ができ、追随性もよい。Furthermore, real-time detection is possible and followability is good.

fb)  他の実施例の説明 上述の実施例では、熱転写プリンタに用いられるライン
サーマルヘッドについて説明したが、サーマルプリンタ
に用いるものであってもよく、サーマルヘッドも抵抗線
型、薄H9型、厚膜型を問わない。
fb) Description of other embodiments In the above embodiments, a line thermal head used in a thermal transfer printer was explained, but it may also be used in a thermal printer, and the thermal head may also be a resistance line type, a thin H9 type, or a thick film type. No matter the type.

又、通電時間制御による階調記録を例に説明したが、電
流値制御による階調記録についても同様に適用できる。
Furthermore, although the explanation has been given by taking gradation recording by controlling the current supply time as an example, the present invention can be similarly applied to gradation recording by controlling the current value.

以上本発明を実施例により説明したが、本発明は本発明
の主旨に従い種々の変形が可能であり、本発明からこれ
らを排除するものではない。
Although the present invention has been described above using examples, the present invention can be modified in various ways according to the gist of the present invention, and these are not excluded from the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、印字パターンの変
化や階調記録に追随して正確に蓄熱検出できるという効
果を奏し、記録品質の安定化に寄与する他に、簡易に且
つ小型で安価に構成できるという効果も奏し、係る機能
を容易にプリンタに実現できる。
As explained above, the present invention has the effect of accurately detecting heat accumulation by following changes in print patterns and gradation recording, contributes to stabilizing recording quality, and is simple and compact. It also has the effect of being able to be constructed at low cost, and such functions can be easily implemented in a printer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は本発明の一実施例構成図、 第3図は本発明の一実施例動作波形図、第4図は従来技
術の説明図である。 図中、1;サーマルヘッド、 10a−10n;発熱素子、 2;検出抵抗、 3:差動増幅器、 4;積分器、 5;充放電制御回路、 6;コンバータ。
FIG. 1 is an explanatory diagram of the principle of the present invention, FIG. 2 is a configuration diagram of an embodiment of the present invention, FIG. 3 is an operational waveform diagram of an embodiment of the present invention, and FIG. 4 is an explanatory diagram of the prior art. In the figure, 1: thermal head, 10a-10n: heating element, 2: detection resistor, 3: differential amplifier, 4: integrator, 5: charge/discharge control circuit, 6: converter.

Claims (1)

【特許請求の範囲】 サーマルヘッドの発熱素子群(10a〜10n)に流れ
る記録電流を検出するための検出用抵抗(2)と、 該検出用抵抗(2)の検出電圧を求める差動増幅器(3
)と、 該差動増幅器(3)の出力を充放電する積分器(4)と
、 該差動増幅器(3)の出力によって該積分器(4)の充
放電を制御する充放電制御回路(5)と、該積分器(4
)の出力から蓄熱検出信号を出力するコンパレータ(6
)とを有することを 特徴とするサーマルヘッドの蓄熱検出装置。
[Claims] A detection resistor (2) for detecting the recording current flowing through the heating element group (10a to 10n) of the thermal head, and a differential amplifier (2) for determining the detection voltage of the detection resistor (2). 3
), an integrator (4) that charges and discharges the output of the differential amplifier (3), and a charge/discharge control circuit ( 5) and the integrator (4
) outputs a heat storage detection signal from the output of the comparator (6
) A heat accumulation detection device for a thermal head, comprising:
JP28695187A 1987-11-13 1987-11-13 Thermal head heat storage detector Expired - Lifetime JP2512033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28695187A JP2512033B2 (en) 1987-11-13 1987-11-13 Thermal head heat storage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28695187A JP2512033B2 (en) 1987-11-13 1987-11-13 Thermal head heat storage detector

Publications (2)

Publication Number Publication Date
JPH01128852A true JPH01128852A (en) 1989-05-22
JP2512033B2 JP2512033B2 (en) 1996-07-03

Family

ID=17711066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28695187A Expired - Lifetime JP2512033B2 (en) 1987-11-13 1987-11-13 Thermal head heat storage detector

Country Status (1)

Country Link
JP (1) JP2512033B2 (en)

Also Published As

Publication number Publication date
JP2512033B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
JPS61270173A (en) Closed-loop heat-sensitive printer keeping printing-energy constant
EP1235348A1 (en) Hysteresis circuit
JPH01128852A (en) Heat accumulation detector for thermal head
JPS58164368A (en) Halftone recording device of thermal head
JPH0818440B2 (en) Thermal head
JP3299257B2 (en) Power supply circuit for inkjet head drive
JPS60203472A (en) Pulse width controller for drive pulse of heating resistor
JP3276791B2 (en) Power supply circuit for inkjet head drive
EP1439445B1 (en) Temperature compensated bandgap voltage reference
JPS5824466A (en) Driving circuit for thermal printer
JP2772373B2 (en) Thermal flow meter
JP2002123320A (en) Voltage generator with current limiting function
JP3223602B2 (en) Thermal head print density controller
JPS5942961B2 (en) Magnet drive circuit
JPH1038930A (en) Circuit for detecting peak voltage
KR0154842B1 (en) Current detecting circuit for sensor transistor with temperature compensation
JP3321966B2 (en) Time ratio detection circuit
JP3751822B2 (en) Power supply
KR960010414B1 (en) Bi-level current type head driving circuit in printer
KR0154805B1 (en) Current sensing circuit with temperature compensation and variable minimum consumption power
JPH0212074A (en) Power source unit for measurement of ic testing device
JPH0611801Y2 (en) Thermal head drive
JPH05122930A (en) Driving power supply for capacitive element
JPH0534381A (en) Automatically switching circuit for current measuring range
JPH02125762A (en) Thermal printer