JPH0112802B2 - - Google Patents

Info

Publication number
JPH0112802B2
JPH0112802B2 JP25254686A JP25254686A JPH0112802B2 JP H0112802 B2 JPH0112802 B2 JP H0112802B2 JP 25254686 A JP25254686 A JP 25254686A JP 25254686 A JP25254686 A JP 25254686A JP H0112802 B2 JPH0112802 B2 JP H0112802B2
Authority
JP
Japan
Prior art keywords
metal
oscillator
crucible
excitation
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25254686A
Other languages
Japanese (ja)
Other versions
JPS63105907A (en
Inventor
Kazuo Yasue
Yasuo Yamada
Toshuki Nishio
Mineo Kosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP25254686A priority Critical patent/JPS63105907A/en
Publication of JPS63105907A publication Critical patent/JPS63105907A/en
Publication of JPH0112802B2 publication Critical patent/JPH0112802B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は超音波による金属粉製造方法及び製
造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method and apparatus for producing metal powder using ultrasonic waves.

〈従来の技術〉 超音波はこれを液体に照射する事によつて、液
体を霧化する事は良く知られており、加湿器とし
て広く利用されている。同じ要領で液体金属に応
用して金属微粉末を得ることも十分考えられる
が、液体金属は密度、粘度、表面張力の値が水に
較べてけた違いに大きいため、霧化させるには大
出力の超音波とその出力を集中させるような工夫
を必要とする。さらに、超音波振動装置の加振部
は酸化物等のように溶融金属と、反応しない事が
不可欠であり、また十分に高温に耐える材料でな
ければならない。例えば、セラミツクスが考えら
れるが、しかしながら加振部に超音波出力を集中
させると大応力、大変位が生じてついには破壊す
る。従つて高温下の溶融金属中では、超音波出力
の増加と集中には限界があり、一度に大量に金属
を霧化することは困難である。このような困難を
避けて、これまでは加振面上に小量の金属を乗
せ、これを溶解後、超音波を照射して微粉化させ
ていた。
<Prior Art> It is well known that ultrasonic waves atomize liquid by irradiating it with ultrasonic waves, and it is widely used as a humidifier. It is quite conceivable to apply the same method to liquid metals to obtain fine metal powder, but since liquid metals have much larger density, viscosity, and surface tension values than water, high power is required to atomize them. It is necessary to devise ways to concentrate the ultrasonic waves and their output. Furthermore, it is essential that the vibrating part of the ultrasonic vibrator does not react with molten metal, such as oxides, and must be made of a material that can withstand high temperatures. For example, ceramics can be considered, but if the ultrasonic output is concentrated on the vibrating part, large stress and large displacement will occur, which will eventually destroy it. Therefore, in molten metal at high temperatures, there is a limit to the increase and concentration of ultrasonic output, and it is difficult to atomize a large amount of metal at once. To avoid these difficulties, conventional methods have been to place a small amount of metal on the vibrating surface, melt it, and then irradiate it with ultrasonic waves to pulverize it.

〈発明が解決しようとする問題点〉 従来の、超音波加振面に小量の金属材を移し乗
せ、これを溶融させ、発振器を作動させて霧化
し、微粉化する方法は質的には、球形で粒度も微
細でかつ粒度分布幅も狭い金属粉が得られ優れた
方法である。
<Problems to be solved by the invention> The conventional method of transferring a small amount of metal material onto an ultrasonic excitation surface, melting it, and activating an oscillator to atomize it and pulverize it is qualitatively inadequate. This is an excellent method as it yields metal powder that is spherical, fine in particle size, and has a narrow particle size distribution.

しかし、一回ごとに加振部へ小量の金属材を移
し載せて融かすため生産性は極めて低い。
However, productivity is extremely low because a small amount of metal material is transferred and melted onto the vibrating section each time.

この発明は、上述のバツチ方式の製造方式から
連続的な製造方式に改善する事によつて、良質な
金属粉末の生産性向上を目ざす。
This invention aims to improve the productivity of high-quality metal powder by improving the above-mentioned batch production method to a continuous production method.

〈問題点を解決するための手段〉 この発明の超音波による金属粉製造方法は、超
音波発振器の加振部を、その加振面が上を向く姿
勢で溶融金属中に沈めて、超音波振動させ、この
姿勢で上記発振器、加振部全体を繰返し上下動さ
せて、上記加振面を金属液面から出没させ、上記
加振面により液外へすくい上げられて霧化、飛散
し、凝固した金属の微粉を回収する事を特徴とす
る。
<Means for Solving the Problems> In the method of producing metal powder using ultrasonic waves according to the present invention, the excitation part of an ultrasonic oscillator is submerged in molten metal with its excitation surface facing upward, and ultrasonic waves The oscillator and the entire vibrating section are repeatedly moved up and down in this posture to make the vibrating surface appear and disappear from the metal liquid surface, and the vibrating surface scoops the metal out of the liquid and atomizes, scatters, and solidifies. It is characterized by recovering fine metal powder.

またこの発明の製造装置は、金属溶融用るつ
ぼ、このるつぼの下方にある超音波発振器、この
発振器に装着されて上方へ伸び、上記るつぼの底
を貫通して、先端の上向き加振面がるつぼ内の溶
融金属液面付近に達した加振棒、この加振棒の加
振面が金属液面から出没を繰返すよう、上記発振
器の支持材を案内機構沿いに繰返し上下動させる
上下駆動機構、上記発振器支持材とその上下駆動
機構とを、金属液面高さの変動範囲だけ、変位さ
せ得る上下調整機構、及び上記加振棒加振面によ
り液外へすくい上げられて霧化、飛散し、凝固し
た金属微粉を受ける回収機構を備えることを特徴
とする。
Further, the manufacturing device of the present invention includes a metal melting crucible, an ultrasonic oscillator located below the crucible, an ultrasonic oscillator attached to the oscillator, extending upwardly, penetrating the bottom of the crucible, and an upwardly directed excitation surface of the crucible. an excitation rod that has reached near the molten metal liquid level in the oscillator; a vertical drive mechanism that repeatedly moves the supporting member of the oscillator up and down along a guide mechanism so that the excitation surface of the excitation rod repeatedly rises and disappears from the metal liquid surface; The oscillator support member and its vertical drive mechanism are scooped out of the liquid by the vertical adjustment mechanism capable of displacing the metal liquid level height variation range, and the vibration surface of the vibration rod, and are atomized and scattered; It is characterized by being equipped with a collection mechanism for receiving solidified metal fine powder.

〈作用〉 この発明の金属粉製造方法は、超音波振動させ
た発振器の加振部を溶融金属液中に沈め、その上
向き加振面を金属液面から出没させるよう繰返し
上下動させるから、上向き加振面が溶融金属をす
くい上げて液面上に出す作用と、液面上で、その
溶融金属を霧化、飛散させる作用とを同時に行
う。
<Function> In the metal powder manufacturing method of the present invention, the excitation part of the oscillator that vibrates ultrasonically is submerged in the molten metal liquid, and the upward excitation surface is repeatedly moved up and down so that it appears and disappears from the metal liquid surface. The vibrating surface simultaneously scoops up the molten metal and releases it onto the liquid surface, and atomizes and scatters the molten metal on the liquid surface.

従来の、加振面に小量の金属を載せる工程、こ
れを融かす工程、超音波振動を加える工程が、こ
の発明によれば上下運動をする加振面の上昇行程
に集約された。
According to the present invention, the conventional steps of placing a small amount of metal on an excitation surface, melting it, and applying ultrasonic vibrations are integrated into the upward movement of an excitation surface that moves up and down.

またこの発明の金属粉製造装置は、従来のよう
に金属を小量ずゝ融かすのでなく、るつぼ中で大
量の金属を融かしておく。金属を超音波発振器の
加振面に載せて融かすのでなく、るつぼの底から
上方へ伸び出た加振棒を溶融金属中に立て、その
上端の加振面を金属液面から出没を繰返させるだ
けで、次々と融けた金属を汲上げ、霧化させる。
上下駆動機構と案内機構が発振器支持材を繰返し
上下動させて、上記汲上げ、霧化を繰返させるの
である。
Further, the metal powder manufacturing apparatus of the present invention melts a large amount of metal in a crucible instead of melting small amounts of metal as in the conventional method. Instead of melting the metal by placing it on the vibrating surface of an ultrasonic oscillator, a vibrating rod that extends upward from the bottom of the crucible is placed in the molten metal, and the vibrating surface at the top of the crucible is repeatedly moved in and out of the metal liquid surface. Just by turning it on, it pumps up molten metal one after another and atomizes it.
The vertical drive mechanism and guide mechanism repeatedly move the oscillator support member up and down, thereby repeating the pumping and atomization.

そして、発振器支持材とその上下駆動機構と
は、上下調整機構により共に上下させる事がで
き、金属液の減少につれ降下させるとか、るつぼ
への金属追加に応じて上昇させる等の動作を、超
音波振動、上下往復動を続けながら、正確に行い
得る装置とした。
The oscillator support material and its vertical drive mechanism can be moved up and down together by a vertical adjustment mechanism, and operations such as lowering it as the metal liquid decreases or raising it as metal is added to the crucible can be controlled by The device was designed to be able to perform accurately while continuing to vibrate and reciprocate up and down.

〈実施例〉 図はこの発明の金属粉製造装置一実施例を示す
もので、電気炉1の中にるつぼ2があり、その中
で、粉末にする金属材が融かされて溶融金属3と
なつている。そのるつぼ2、その下の超音波発振
器4、これに装着した加振棒5、その先端にある
上向き加振面5a、発振器支持材6を案内機構7
沿いに上下動させる上下駆動機構8、その上下調
整機構9、そして霧化、飛散し、凝固した金属微
粉の回収機構10等がこの実施例の主要部であ
る。
<Embodiment> The figure shows an embodiment of the metal powder manufacturing apparatus of the present invention, in which there is a crucible 2 in an electric furnace 1, in which a metal material to be powdered is melted to form a molten metal 3. It's summery. The crucible 2, the ultrasonic oscillator 4 below it, the excitation rod 5 attached to it, the upward excitation surface 5a at its tip, and the oscillator support 6 are guided by a mechanism 7.
The main parts of this embodiment include a vertical drive mechanism 8 that moves up and down along the same axis, a vertical adjustment mechanism 9, and a recovery mechanism 10 for atomized, scattered, and solidified metal fine powder.

電気炉1は耐火物基台1aに載り、熱電対1b
を付け、コイル1cにより、るつぼ2内の金属材
料を溶融する。
The electric furnace 1 is placed on a refractory base 1a, and a thermocouple 1b
is attached, and the metal material in the crucible 2 is melted by the coil 1c.

コイル1cはるつぼ2の外周にあり、るつぼ2
の底に穴11を明け、そこに加振棒5を通すのに
支障はない。るつぼ2は黒鉛その他の材料で作ら
れており、加振棒5は高級アルミナ等で作るが、
両者の間にシール材を入れなくても、溶融金属3
が洩れたり、摩擦で上下動を妨げたりする事はな
い。
The coil 1c is located on the outer periphery of the crucible 2.
There is no problem in making a hole 11 in the bottom and passing the vibration rod 5 through it. The crucible 2 is made of graphite or other materials, and the vibration rod 5 is made of high-grade alumina or the like.
Molten metal 3 without putting a sealant between the two
There is no leakage or interference with vertical movement due to friction.

加振棒5の先端の加振面5aを、この実施例で
は凹面にして、溶融金属3をすくい上げやすく、
また飛散方向をなるべく真上へ集中させるように
している。もつとも凹面でなく、平らな加振面5
aで実験しても、支障はなかつた。発振器4、加
振棒5の具体的数値は後述する。
In this embodiment, the excitation surface 5a at the tip of the excitation rod 5 is made concave to make it easier to scoop up the molten metal 3.
I also try to concentrate the scattering direction directly above as much as possible. The excitation surface 5 is flat, not concave.
There were no problems even when experimenting with a. Specific numerical values of the oscillator 4 and the vibrating rod 5 will be described later.

発振器支持材6はこの場合、水平板で、これを
繰返し上下動させるため、左右に垂直支柱6aを
垂下し、両支柱下端を下側水平板6bによつて連
結固定している。その左右の支柱6aはそれぞれ
案内機構7により垂直上下動だけ可能に規制され
ており、上記下側水平板6bの下面の受ロール1
2が上下駆動機構8のカムの回転により上下動さ
せられると、支柱6a、支持材6を介して、発振
器4も上下動させられる構造である。
In this case, the oscillator support member 6 is a horizontal plate, and in order to repeatedly move it up and down, vertical columns 6a are hung from the left and right, and the lower ends of both columns are connected and fixed by a lower horizontal plate 6b. The left and right pillars 6a are restricted by guide mechanisms 7 to only vertically move up and down, and the receiving roll 1 on the lower surface of the lower horizontal plate 6b
When the oscillator 2 is moved up and down by the rotation of the cam of the up-and-down drive mechanism 8, the oscillator 4 is also moved up and down via the column 6a and the support member 6.

上述の案内機構7は、電気炉1の支柱も兼ねる
案内柱7aと、これに沿つて上下動し、上下ネジ
を締めて適当高さに固定できる案内ブロツク7b
とからなり、そのブロツク7bの案内穴が上記垂
直支柱6bを案内する。
The above-mentioned guide mechanism 7 includes a guide column 7a that also serves as a support for the electric furnace 1, and a guide block 7b that moves up and down along the guide column and can be fixed at an appropriate height by tightening the upper and lower screws.
The guide hole of the block 7b guides the vertical support 6b.

この場合、回転カムを回す上下駆動機構8は、
上下調整機構9の左右垂直レール9a沿いに、図
の実線位置から鎖線位置へといつたように昇降す
る。この昇降のための駆動機構は周知のものゆえ
図では略したが、手回しでも、モーター駆動でも
よい。上下駆動機構8の回転カムによる発振器4
の上下動で、振動棒加振面5aが溶融金属3の液
面から上へ出たり、下へ没したりするよう、この
上下調整機構9でもつて、上下発振器支持材6と
の高さを調整する。
In this case, the vertical drive mechanism 8 that rotates the rotary cam is
The vertical adjustment mechanism 9 moves up and down along the left and right vertical rails 9a from the solid line position to the chain line position in the figure. The drive mechanism for raising and lowering is not shown in the drawings because it is well known, but it may be driven by hand or driven by a motor. Oscillator 4 using a rotating cam of the vertical drive mechanism 8
This vertical adjustment mechanism 9 also adjusts the height with respect to the upper and lower oscillator support members 6 so that the vibrating rod excitation surface 5a rises above or sinks below the liquid level of the molten metal 3 due to the vertical movement of the oscillator support member 6. adjust.

飛散、凝固した金属微粉の回収機構10は、こ
の場合、中央に穴をもつ傘状受皿10aと、これ
にかぶさるフード10bとからなる。受皿10a
の中央の穴は、るつぼ2への金属材料供給穴と、
上方へ飛散する金属微粉を通す受穴とを兼ねてい
る。このを通つて上進した金属微粉はフード10
bに当つて四方へ散り、受皿10aの上に落ち
る。なお図では略したが、飛散しても受皿10a
へ入らなかつた金属微粉は再びるつぼ2へ戻るよ
う板囲いなどを設けるとよい。
In this case, the collection mechanism 10 for the scattered and solidified metal fine powder includes an umbrella-shaped saucer 10a having a hole in the center, and a hood 10b that covers the umbrella-shaped saucer 10a. saucer 10a
The central hole is a metal material supply hole to the crucible 2,
It also serves as a receiving hole through which fine metal powder scatters upward. The fine metal powder that has gone up through this is hood 10.
When it hits b, it scatters in all directions and falls on the saucer 10a. Although not shown in the figure, even if it is scattered, the saucer 10a
It is preferable to provide a plate enclosure or the like so that the metal fine powder that does not enter the crucible 2 can be returned to the crucible 2.

この装置の運転は、金属材料をるつぼ2へ入れ
て溶融し、上下駆動機構8を起動して発振器4を
上下動させ、その加振棒加振面5aが溶融金属3
の液面から出没を繰返すよう、上下調整機構9に
より高さを調整し、それからか、又はその前に発
振器4の電源回路13へ通電する。これにより溶
融金属の液外へのすい上げ、霧化、飛散した金属
微粉の回収機構10への落下が自動的に繰返さ
れ、製造雰囲気、金属の組成を問わず、粒子特性
の優れた金属微粉を連続的に製造することができ
る。
In operation of this device, a metal material is put into the crucible 2 and melted, and the vertical drive mechanism 8 is started to move the oscillator 4 up and down, so that the vibration surface 5a of the vibration rod is moved into the molten metal.
The height is adjusted by the vertical adjustment mechanism 9 so that it repeatedly rises and falls from the liquid level, and then or before that, the power supply circuit 13 of the oscillator 4 is energized. As a result, the process of scooping the molten metal out of the liquid, atomizing it, and dropping the scattered metal fine powder into the recovery mechanism 10 is automatically repeated, and the metal fine powder with excellent particle characteristics can be produced regardless of the manufacturing atmosphere or metal composition. can be manufactured continuously.

発振器4は連続作動させるが、その出力30Wで
は溶融金属中での霧化作用は無く、加振面5aが
金属液面から出ると、汲上げた溶融金属を瞬間的
に霧化する。
Although the oscillator 4 is operated continuously, its output of 30 W does not atomize the molten metal, and when the excitation surface 5a emerges from the metal liquid level, the pumped molten metal is instantaneously atomized.

(実験の諸数値) 比較的密度の大きいSn―Zn合金を260℃で溶解
した。発振器に付く加振棒5として直径8mmのア
ルミナ製丸棒を用いた。一回の汲み上げ量は約2
gであり、上下駆動機構8のカムの回転数は
60rpmとした。市販の周波数25kHz、出力30Wの
超音波発振器4により、加振棒5を振動させて上
記合金を霧化した。その結果、平均粒径40μの球
形金属粒を、90g/minの割合で得られた。
(Experimental values) A relatively dense Sn-Zn alloy was melted at 260℃. An alumina round rod with a diameter of 8 mm was used as the vibration rod 5 attached to the oscillator. The amount pumped at one time is approximately 2
g, and the rotation speed of the cam of the vertical drive mechanism 8 is
It was set to 60 rpm. The above alloy was atomized by vibrating the vibrating rod 5 using a commercially available ultrasonic oscillator 4 with a frequency of 25 kHz and an output of 30 W. As a result, spherical metal particles with an average particle diameter of 40 μm were obtained at a rate of 90 g/min.

以上、一実施例について説明したが、この発明
の超音波による金属粉製造方法、製造装置は実施
条件に応じて当業者の周知技術により多様に変化
し、応用し得ることはいうまでもない。例えば加
振部加振面を溶融金属液中に上向きに沈めるた
め、加振棒をるつぼの底から伸ばすとは限らな
い。上方から垂下した加振棒の下端に上向き加振
面を付ける事も可能である。加振面の形状、面積
も実施条件に応じて工夫し、能率を高めるとよ
い。
Although one embodiment has been described above, it goes without saying that the method and apparatus for producing metal powder using ultrasonic waves according to the present invention can be varied and applied in a variety of ways according to implementation conditions using techniques well known to those skilled in the art. For example, since the vibrating surface of the vibrating section is submerged upward into the molten metal liquid, the vibrating rod does not necessarily extend from the bottom of the crucible. It is also possible to attach an upwardly facing excitation surface to the lower end of the excitation rod hanging down from above. The shape and area of the excitation surface should also be devised according to the implementation conditions to improve efficiency.

発振器の上下動機構、上下調整機構等は機械技
術者の周知技術に任せればよい。
The vertical movement mechanism, vertical adjustment mechanism, etc. of the oscillator can be left to the well-known skills of mechanical engineers.

〈発明の効果〉 この発明は従来、バツチ方式であつた超音波に
よる金属粉製造を、はじめて連続、量産方式とす
る事に成功した。
<Effects of the Invention> This invention succeeded in converting the conventional batch method of producing metal powder using ultrasonic waves to a continuous, mass production method for the first time.

超音波発振装置の加振面に小量の金属を移し載
せ、これを融かし、加振して霧化する従来の三工
程を、この発明は金属液面下に沈めた加振面を、
液面上に出す一工程に変えた。加振面を液面から
出没させる上下運動だけで、金属微粉を連続生産
する事ができる極めて簡単な製法、装置となつ
た。
The conventional three-step process of transferring a small amount of metal onto the excitation surface of an ultrasonic oscillator, melting it, and atomizing it by vibration is replaced by this invention, which uses an excitation surface submerged below the metal liquid surface. ,
The process was changed to one where the liquid is poured onto the surface. The result is an extremely simple manufacturing method and device that can continuously produce fine metal powder by simply moving the vibrating surface up and down above the liquid surface.

また、この発明の金属粉製造装置は、あえてる
つぼの底に穴を明け、その下の発振器に付けた加
振棒をこの穴から、るつぼ内溶融金属中に立てた
から、加振面の上下駆動機構を、るつぼ下方の広
い空間に設置でき、るつぼ上方空間は完全に金属
粉回収機構で占められ、両機構とも機能を発揮し
やすい配置になつた。
In addition, the metal powder manufacturing apparatus of the present invention purposely makes a hole in the bottom of the crucible, and the excitation rod attached to the oscillator underneath is erected from this hole into the molten metal in the crucible, which drives the excitation surface up and down. The mechanism can be installed in a large space below the crucible, and the space above the crucible is completely occupied by the metal powder collection mechanism, making it easy for both mechanisms to perform their functions.

また発振器支持材とその上下駆動機構とを、金
属液面高さに応じた高さにする上下調整機構を有
するから、加振面による金属汲上げ霧化を続けな
がら、金属液面の変化に対応する事ができ、長時
間の連続運転を可能にした。
In addition, since the oscillator support material and its vertical drive mechanism have a vertical adjustment mechanism that adjusts the height according to the height of the metal liquid level, the oscillator support material and its vertical drive mechanism can be adjusted to changes in the metal liquid level while continuing to pump up and atomize the metal using the vibrating surface. This enabled continuous operation for long periods of time.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明一実施例の立面説明図である。 2…るつぼ、4…超音波発振器、5…加振部
(棒)、8…上下駆動機構、9…上下調整機構、1
0…回収機構。
The figure is an explanatory elevational view of one embodiment of this invention. 2... Crucible, 4... Ultrasonic oscillator, 5... Excitation part (rod), 8... Vertical drive mechanism, 9... Vertical adjustment mechanism, 1
0...Recovery mechanism.

Claims (1)

【特許請求の範囲】 1 超音波発振器の加振部を、その加振面が上を
向く姿勢で溶融金属中に沈めて、超音波振動さ
せ、 この姿勢で上記発振器、加振部全体を繰返し上
下動させて、上記加振面を金属液面から出没さ
せ、 上記加振面により液外へすくい上げられて霧
化、飛散し、凝固した金属の微粉を回収する事を
特徴とする超音波による金属粉製造方法。 2 金属溶融用るつぼ、 このるつぼの下方にある超音波発振器、 この発振器に装着されて上方へ伸び、上記るつ
ぼの底を貫通して、先端の上向き加振面がるつぼ
内の溶融金属液面付近に達した加振棒、 この加振棒の加振面が金属液面から出没を繰返
すよう、上記発振器の支持材を案内機構沿いに繰
返し上下動させる上下駆動機構、 上記発振器支持材とその上下駆動機構とを、金
属液面高さの変動範囲だけ、変位させ得る上下調
整機構、及び 上記加振棒加振面により液外へすくい上げられ
て霧化、飛散し、凝固した金属微粉を受ける回収
機構、 を備えることを特徴とする超音波による金属粉製
造装置。
[Claims] 1. Submerging the vibrating part of the ultrasonic oscillator into molten metal with its excitation surface facing upward, causing ultrasonic vibration, and repeating the entire vibration of the oscillator and the vibrating part in this position. Using ultrasonic waves, the vibrating surface is moved up and down to make it appear and disappear from the metal liquid surface, and the fine metal powder that is scooped out of the liquid by the vibrating surface, atomized, scattered, and solidified is recovered. Metal powder manufacturing method. 2. A crucible for melting metal, an ultrasonic oscillator located below this crucible, attached to this oscillator, extending upward, penetrating the bottom of the crucible, and having an upwardly directed excitation surface at the tip near the molten metal liquid level in the crucible. an excitation rod that has reached the desired height, a vertical drive mechanism that repeatedly moves the support material of the oscillator up and down along a guide mechanism so that the excitation surface of the vibration rod repeatedly appears and disappears from the metal liquid surface, and the support material of the oscillator and its top and bottom. a vertical adjustment mechanism capable of displacing the drive mechanism within the range of variation in the height of the metal liquid level, and a collection mechanism that receives fine metal powder that is scooped out of the liquid by the vibration surface of the vibration rod, atomized, scattered, and solidified. An apparatus for producing metal powder using ultrasonic waves, comprising a mechanism.
JP25254686A 1986-10-23 1986-10-23 Method and apparatus for producing metal powder with ultrasonic wave Granted JPS63105907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25254686A JPS63105907A (en) 1986-10-23 1986-10-23 Method and apparatus for producing metal powder with ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25254686A JPS63105907A (en) 1986-10-23 1986-10-23 Method and apparatus for producing metal powder with ultrasonic wave

Publications (2)

Publication Number Publication Date
JPS63105907A JPS63105907A (en) 1988-05-11
JPH0112802B2 true JPH0112802B2 (en) 1989-03-02

Family

ID=17238877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25254686A Granted JPS63105907A (en) 1986-10-23 1986-10-23 Method and apparatus for producing metal powder with ultrasonic wave

Country Status (1)

Country Link
JP (1) JPS63105907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43281E1 (en) 1998-08-07 2012-03-27 Masakazu Higuma Endoscope capable of being autoclaved

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010070880A (en) * 2001-06-16 2001-07-27 김명진 Manufacturing method of Metal Powder and facility of the same by Ultrasonic Atomizing Nozzle
CN110666183A (en) * 2019-11-19 2020-01-10 衡东县金源铝银粉有限公司 Atomizing chamber for preparing firework aluminum powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43281E1 (en) 1998-08-07 2012-03-27 Masakazu Higuma Endoscope capable of being autoclaved

Also Published As

Publication number Publication date
JPS63105907A (en) 1988-05-11

Similar Documents

Publication Publication Date Title
CN110280746B (en) Method for single-source high-intensity ultrasonic-assisted casting of large-specification 2XXX series aluminum alloy round ingot
US6165411A (en) Apparatus for producing metal to be semimolten-molded
CN1768979A (en) Method for preparing QTi3.5-10 graphite semi-solid state slurry
CN1740369A (en) Prepn process of semi-solid Al2O-Sn slurry
CN109047785A (en) A kind of device and method efficiently preparing low melting point globular metallic powder by drop centrifugal atomization
US5988257A (en) Method and the directional solidification of a molten metal and a casting apparatus for the practice thereof
CN109093128A (en) A kind of device and method preparing superfine low melting point globular metallic powder by drop atomization
JPH0112802B2 (en)
CN204842891U (en) Half multi -functional solid -state thick liquids preparation facilities
JP4253549B2 (en) Manufacturing method of molding material
CN112570721A (en) Device and method for preparing superfine nearly spherical metal powder
JPH05156378A (en) Method for melting waste aluminum and melting furnace
JP3918711B2 (en) Metal material semi-solidification equipment
CN207479613U (en) A kind of equipment for preparing hypoxemia globular metallic powder
CN216159614U (en) Melting furnace is used in aluminium ingot production
JPH08215793A (en) Continuous ingot-making method and continuous ingot-making apparatus
JPH0797642A (en) Method and apparatus for refining aluminum
RU2015834C1 (en) Method and apparatus of directed crystallization
KR950005294B1 (en) Method and device for metal powder in liquid
JP7256385B2 (en) Manufacturing method and manufacturing apparatus for titanium alloy ingot
JPH0737112Y2 (en) Chip melting furnace
JPS60162703A (en) Production of metallic powder
JPH0218313A (en) Production of polycrystalline silicon sheet
WO2005007931A1 (en) Metal loading method and device
JPS6121923A (en) Stirrer for molten glass

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term