JPH01127998A - Nuclear power plant having hollow yarn filter - Google Patents

Nuclear power plant having hollow yarn filter

Info

Publication number
JPH01127998A
JPH01127998A JP62285372A JP28537287A JPH01127998A JP H01127998 A JPH01127998 A JP H01127998A JP 62285372 A JP62285372 A JP 62285372A JP 28537287 A JP28537287 A JP 28537287A JP H01127998 A JPH01127998 A JP H01127998A
Authority
JP
Japan
Prior art keywords
condensate
hollow fiber
metal ions
power plant
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62285372A
Other languages
Japanese (ja)
Other versions
JP2555104B2 (en
Inventor
Masato Koshiishi
正人 越石
Kentaro Hirabayashi
健太郎 平林
Yoshihiro Shiozawa
塩沢 義博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62285372A priority Critical patent/JP2555104B2/en
Publication of JPH01127998A publication Critical patent/JPH01127998A/en
Application granted granted Critical
Publication of JP2555104B2 publication Critical patent/JP2555104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To decrease the quantity of metal ions to be introduced into a hollow yarn filter by providing a device which oxidizes the metal ions and deposits the same as clads on the upper stream side of the hollow yarn filter. CONSTITUTION:An oxidizing agent for oxidizing the metal ions to the clads is stored in an oxidizing agent storage tank 14 and is injected between a low- pressure condenser pump 2 and a stagnating pipe 19 by an oxidizing agent injection pump 15 through a flow meter 16, a flow rate control valve 17 and a check valve 18. The condensate into which the oxidizing agent is injected is introduced into the stagnating pipe 19. The metal ions in the condensate are oxidized to the clads during the stagnation in this pipe. Injection of a large quantity of the metal ions into the fuel rod 3 is thereby prevented and the adhesion and deposition of the metal oxides on the inside of the hollow yarn membrane are prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力プラントに係り、特に復水中の金属イ
オンを酸化してクラツド化する装置を有する復水浄化装
置を備えた原子力プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nuclear power plant, and more particularly to a nuclear power plant equipped with a condensate purification device having a device for oxidizing metal ions in condensate to form cladding.

〔従来の技術〕[Conventional technology]

従来、原子力プラント、特に沸騰水型原子炉は第4図に
示すような構成からなり、復水器1で凝縮された復水を
低圧復水ポンプ2により中空糸フィルター3に導き、復
水中のクラッドを除去する。
Conventionally, a nuclear power plant, particularly a boiling water reactor, has a configuration as shown in Fig. 4, in which condensate condensed in a condenser 1 is guided to a hollow fiber filter 3 by a low-pressure condensate pump 2, and the condensate is removed. Remove crud.

中空糸フィルター3を出た復水は、復水脱塩器4に導か
れ、ここでイオン状不純物を除去して高圧復水ポンプ5
に送られる。高圧復水ポンプ5を出た復水は、低圧給水
加熱器6で加熱され、給水ポンプ7の吸込側へ導く。給
水ポンプ7を出た後給水は高圧給水加熱器8を経て原子
炉圧力容器10に送られ、原子炉内で蒸気となり、ター
ビンに導かれ再び復水器で凝縮されて復水となる。
The condensate that has exited the hollow fiber filter 3 is led to a condensate demineralizer 4, where ionic impurities are removed and the condensate is sent to a high-pressure condensate pump 5.
sent to. Condensate exiting the high-pressure condensate pump 5 is heated by a low-pressure feed water heater 6 and guided to the suction side of the feed water pump 7. After leaving the feedwater pump 7, the feedwater is sent to the reactor pressure vessel 10 via the high-pressure feedwater heater 8, becomes steam in the reactor, is led to the turbine, and is condensed again in the condenser to become condensate.

上記の原子力プラント復水給水系における中空糸フィル
ターは中空糸膜でクラッド状不純物を除去することを主
目的としている。つまり、中空糸膜は、中空の糸で膜面
にサブミクロン径の孔がおいており、復水が膜の外側か
ら孔を通り内側の中空部に入る際、孔部で不純物を物理
的に除去するため、クラッド状の不純物は除去されるが
、イオン状不純物の除去は目的としていない。塔の監視
は、規定量の不純物を捕捉したことを差圧で検知し、ろ
過器を逆洗する。この逆洗を行うことにより、中空糸フ
ィルターに付着したクラッドを除去し、ろ過器入口と出
口の差圧を回復させて、長時間に渡って使用することが
できる。この中空糸膜フィルターの逆洗方法についての
従来の技術は以下の通りである。
The main purpose of the hollow fiber filter in the above-mentioned nuclear power plant condensate water supply system is to remove crud-like impurities using the hollow fiber membrane. In other words, hollow fiber membranes are hollow fibers with submicron-sized pores on the membrane surface, and when condensate passes from the outside of the membrane through the pores and enters the hollow interior, the pores physically remove impurities. Although cladding impurities are removed, the purpose is not to remove ionic impurities. The tower is monitored by detecting by differential pressure that a specified amount of impurities has been captured, and the filter is backwashed. By performing this backwashing, the crud attached to the hollow fiber filter is removed, the pressure difference between the inlet and the outlet of the filter is restored, and the filter can be used for a long time. The conventional technique for backwashing this hollow fiber membrane filter is as follows.

まず1つは、スクラビングと呼ばれる方法で、ろ過器に
逆洗用水を供給した後に、ろ過器に繋がれた空気導入ラ
インを経て空気を導入し、気泡を通過させることにより
中空糸膜フィルターを振動させて、中空糸膜外面に付着
したクラッドを除去するものである。
The first is a method called scrubbing. After backwashing water is supplied to the filter, air is introduced through the air introduction line connected to the filter, and air bubbles are passed through, causing the hollow fiber membrane filter to vibrate. This removes the cladding attached to the outer surface of the hollow fiber membrane.

もう一つは、エアーサージと呼ばれる方法で、ろ過器に
逆洗用水を供給した後に、ろ過器の復水出口側に、圧縮
空気を導入して、逆洗水を中空糸膜内側から外側へ透過
させて、中空糸膜に付着したクラッドを除去するもので
ある。
The other method is called air surge. After supplying backwash water to the filter, compressed air is introduced to the condensate outlet side of the filter to direct the backwash water from the inside of the hollow fiber membrane to the outside. The cladding adhered to the hollow fiber membrane is removed by passing through the hollow fiber membrane.

なお、この種の中空糸フィルターの逆洗方法に関連する
ものとしては、特開昭60−19002号「中空糸膜フ
ィルターの逆洗方法」が挙げられる。
Incidentally, examples related to this type of backwashing method for hollow fiber filters include JP-A-60-19002 ``Method for backwashing hollow fiber membrane filters''.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては、復水が中空糸膜、フィルター
を通過する際に、復水中の金属イオンが金属酸化物とし
て中空糸膜内側に付着、析出し、フィルター差圧が徐々
に上昇すること、及び逆洗を行っても金属酸化物が除去
しきれず、差圧回復率が低下する可能性があった。
In the above conventional technology, when condensate passes through a hollow fiber membrane and a filter, metal ions in the condensate adhere to and precipitate inside the hollow fiber membrane as metal oxides, and the filter differential pressure gradually increases; Even if backwashing is performed, metal oxides may not be completely removed, resulting in a decrease in differential pressure recovery rate.

本発明の目的は、中空糸膜内側に金属イオンが付着酸化
物として析出することを防止するために。
The purpose of the present invention is to prevent metal ions from depositing as attached oxides on the inside of hollow fiber membranes.

中空糸フィルターで処理される前に復水中の金属イオン
を酸化し、クラッド状にすることにより、中空糸フィル
ターへ流入する金属イオンの量を低減することにある。
The purpose of this method is to reduce the amount of metal ions flowing into the hollow fiber filter by oxidizing the metal ions in the condensate to form a cladding before being treated with the hollow fiber filter.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、原子炉、タービン、発電機、中空糸フィル
ター、復水脱塩器及び給水加熱器を順次含む原子力プラ
ントにおいて、前記中空糸フィルターの上流側にに金属
イオンを酸化させてクラッドとして析出する装置を設け
ることにより達成される。
The above purpose is to oxidize metal ions and deposit them as cladding on the upstream side of the hollow fiber filter in a nuclear power plant that sequentially includes a nuclear reactor, turbine, generator, hollow fiber filter, condensate demineralizer, and feedwater heater. This can be achieved by providing a device to do this.

〔作用〕[Effect]

中空糸フィルターに流入した復水中のクラッドの大部分
は、中空糸膜の外側から内側への孔の大きさ(直径約0
.1μm)よりも大きいために、膜の外側に付着し、内
側に流入することはない。これに対し、金属イオンが中
空糸膜フィルターへ流入した場合には、膜の孔の大きさ
よりイオンの粒径が小さいために、膜の内側に流入して
いく。この際、金属イオンが金属酸化物として膜内面に
付着する可能性が慰る。従って、中空糸膜フィルターへ
流入する復水中の金属イオンをあらかじめ、酸化剤など
によりクラツド化することにより、膜の中側へ流入する
金属イオンの量を削減することができ、膜内側への金属
酸化物の析出を低減することが可能となる。− 例えば復水中へ酸化剤としてH2O2を注入した場合、
復水中の金属イオン、特にイオン鉄とH2O2は下記の
反応を生ずる。
Most of the crud in the condensate that has flowed into the hollow fiber filter is caused by the size of the pores from the outside to the inside of the hollow fiber membrane (diameter approximately 0).
.. 1 μm), it adheres to the outside of the membrane and does not flow into the inside. On the other hand, when metal ions flow into a hollow fiber membrane filter, they flow into the inside of the membrane because the particle size of the ions is smaller than the pore size of the membrane. At this time, there is a possibility that metal ions will adhere to the inner surface of the membrane as metal oxides. Therefore, by cladding the metal ions in the condensate flowing into the hollow fiber membrane filter with an oxidizing agent in advance, the amount of metal ions flowing into the inside of the membrane can be reduced, and the amount of metal ions flowing into the inside of the membrane can be reduced. It becomes possible to reduce the precipitation of oxides. - For example, when H2O2 is injected into condensate as an oxidizing agent,
Metal ions, especially ionic iron and H2O2 in the condensate undergo the following reactions.

この反応によってイオン鉄は酸化鉄となり、クラツド化
される。上記の反応を十分進ませるために酸化剤を注入
した後、復水・を滞留管へ導く。滞留管は、復水がこの
中に停滞する時間を長くし、イオン鉄の酸化反応を促進
するものであり、復水の流速を十分に下げられる様に、
容量の大きいものとする。この滞留管を経ても、復水中
にクラッド化されていないイオン鉄が残ることが考えら
れるので、滞留管出口から低圧復水ポンプへの再循環ラ
インを設けて、滞留管から出た復水の一部を循環させる
。復水ポンプ吸込部へ戻された復水は、再び酸化剤を注
入され、滞留管へ導かれるので、イオン鉄のクラツド化
効率を向上させることが可能で、さらに、再循環ライン
を流れる復水の流量を調節することにより、中空糸フィ
ルターに流入する復水中の金属イオン濃度を、ある一定
濃度以下に抑制することができる。
Through this reaction, ionic iron becomes iron oxide and becomes clad. After injecting an oxidizing agent to allow the above reaction to proceed sufficiently, condensate is introduced into the retention pipe. The retention pipe prolongs the time the condensate stays in it and promotes the oxidation reaction of ionized iron.In order to sufficiently reduce the flow rate of the condensate,
It should have a large capacity. Even after passing through this retention pipe, it is possible that ionized iron that has not been clad remains in the condensate, so a recirculation line is installed from the retention pipe outlet to the low-pressure condensate pump, and the condensate discharged from the retention pipe is Circulate some. The condensate returned to the condensate pump suction section is again injected with an oxidizer and guided to the retention pipe, making it possible to improve the cladding efficiency of ionized iron.Furthermore, the condensate flowing through the recirculation line By adjusting the flow rate, the metal ion concentration in the condensate flowing into the hollow fiber filter can be suppressed to below a certain level.

H2O2を注入した時のFez+イオン初濃度とFez
+イオン反応率の関係を第5図に示す。この結果により
以下の事が分る。H2O2濃度を上げるとFe2+イオ
ン反応率が上がる。Fe”+イオン初濃度が高い程Fe
2+イオン反応率が上がる。
Initial concentration of Fez+ ions and Fez when H2O2 is injected
The relationship between +ion reaction rate is shown in FIG. This result reveals the following. Increasing the H2O2 concentration increases the Fe2+ ion reaction rate. The higher the initial concentration of Fe”+ ions, the more Fe
2+ ion reaction rate increases.

本結果より酸化剤を注入してFez+イオンをクラツド
化できるので、中空糸フィルターへのFe2+イオンな
どの金属イオンの持ち込み量を低減でき、該フィルター
内の中空糸膜内側の面でのクラッドの生成、そして目づ
まりを低減することができる。
From this result, it is possible to clad Fez+ ions by injecting an oxidizing agent, which reduces the amount of metal ions such as Fe2+ ions brought into the hollow fiber filter, and prevents the formation of cladding on the inner surface of the hollow fiber membrane in the filter. , and clogging can be reduced.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図〜第3図により説明する
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

不純物を含む復水を中空糸フィルター3復水脱塩器で処
理する構成は従来と変えることはない。
The configuration for treating condensate containing impurities with the hollow fiber filter 3 condensate demineralizer remains unchanged from the conventional one.

第1図は、低圧復水ポンプ2の吐出部に金属イオン除去
設備を設けた原子力プラントの復水給水系の全体構成を
示す。金属イオンを酸化し、クラツド化する為の酸化剤
は、酸化剤貯蔵タンク14に貯えられ、酸化剤注入ポン
プ15により、流量計16、流量調節弁17.逆止弁1
8を経て、低圧復水ポンプ2と滞留管19の間に注入さ
れる。ここで、復水中の金属イオン量調整は、酸化剤の
注入量により行なう。流量計16.調節計及び流量調節
弁17は注入する酸化剤の流量を調節するためのもので
、流量計16にて流量を検出し、調節話を介して流量調
節弁17の開度を変化させることにより流量調節を行う
ことができ、この流量設定は、中空糸フィルター3の入
口サンプリングにより行なう。酸化剤が注入された復水
は、滞留管19へ導かれ、この中に停滞している間に、
復水中の金属イオンは酸化しクラツド化する。例えば、
イオン鉄に対し酸化剤としてHzOzを使用した場合、
イオン鉄Fe”+は、下記反応を起こし、酸化鉄として
復水中に存在することになる。
FIG. 1 shows the overall configuration of a condensate water supply system for a nuclear power plant, in which metal ion removal equipment is provided at the discharge part of a low-pressure condensate pump 2. An oxidizing agent for oxidizing and cladding metal ions is stored in an oxidizing agent storage tank 14, and is sent to a flow meter 16, a flow rate regulating valve 17. Check valve 1
8 and is injected between the low pressure condensate pump 2 and the retention pipe 19. Here, the amount of metal ions in the condensate is adjusted by adjusting the amount of oxidizing agent injected. Flow meter 16. The controller and flow rate control valve 17 are used to adjust the flow rate of the oxidizing agent to be injected.The flow rate is detected by the flow meter 16, and the flow rate is adjusted by changing the opening degree of the flow rate control valve 17 via the control valve. Adjustment can be made, and this flow rate setting is carried out by inlet sampling of the hollow fiber filter 3. The condensate into which the oxidizing agent has been injected is led to the retention pipe 19, and while it is stagnant therein,
Metal ions in condensate oxidize and form cladding. for example,
When HzOz is used as an oxidizing agent for ionic iron,
The ionized iron Fe''+ causes the following reaction and is present in the condensate as iron oxide.

以上の方法により、復水中の金属イオンをクラツド化し
てイオン量を低減させた後、中空糸フィルター3へ導く
ことにより、多量の金属イオンが中空糸膜フィルターに
流入することを防止し、中空糸膜内側に金属酸化物が付
着析出することを抑制する効果がある。
By the above method, the metal ions in the condensate are cladded to reduce the amount of ions, and then guided to the hollow fiber filter 3 to prevent a large amount of metal ions from flowing into the hollow fiber membrane filter. This has the effect of suppressing the adhesion and precipitation of metal oxides on the inside of the film.

第2図は、滞留管19出口から低圧復水ポンプ2吸込部
への再循環ライン20を配置した復水浄化装置の構成を
示す。つまり、滞留管19を出た復水の一部を、再循環
ライン20を経て低圧復水ポンプ2吸込部へ戻すことに
より、酸化剤と金属イオンとの反応時間を長くするとと
もに、ポンプによる撹拌効果を期待し、酸化効率の向上
を図るものであり、また、再び酸化剤の注入を受け、滞
留管19へ導かれる為、中空糸、フィルター3へ復水が
流入する時点では、金属イオン濃度を低減することがで
き、より高い効率で金属イオンをクラツド化することが
できる。
FIG. 2 shows the configuration of a condensate purification device in which a recirculation line 20 is arranged from the outlet of the retention pipe 19 to the suction section of the low-pressure condensate pump 2. In other words, by returning a portion of the condensate that has exited the retention pipe 19 to the suction section of the low-pressure condensate pump 2 via the recirculation line 20, the reaction time between the oxidizer and the metal ions is lengthened, and the stirring by the pump is This is expected to improve the oxidation efficiency, and since the oxidizing agent is injected again and the condensate is guided to the retention pipe 19, the metal ion concentration will be lower by the time the condensate flows into the hollow fibers and filter 3. can be reduced and metal ions can be clad with higher efficiency.

第3図は、再循環ライン20における流量を。FIG. 3 shows the flow rate in the recirculation line 20.

中空糸フィルター3へ流入する復水中の金属イオン濃度
に応じて調節する機構を設けた復水浄化装置の構成を示
す。まず、酸化剤注入前後における鉄イオン濃度を表価
するために、低圧復水ポンプ出口23と滞留管出口22
にサンプリング点を設けて、各々の点における金属イオ
ン濃度を測定する。酸化剤注入前後における鉄イオン濃
度の減少率と、再循環ライン20上に設けた流量計25
にて検出した流量の情報とを調整装置26に入力する。
The configuration of a condensate purification device is shown which is equipped with a mechanism for adjusting the metal ion concentration in condensate flowing into the hollow fiber filter 3. First, in order to express the iron ion concentration before and after oxidizing agent injection, the low pressure condensate pump outlet 23 and the retention pipe outlet 22
Sampling points are provided at each point, and the metal ion concentration at each point is measured. Decrease rate of iron ion concentration before and after oxidizer injection and flow meter 25 installed on recirculation line 20
The information on the flow rate detected in is inputted to the adjustment device 26.

この調整装置26の出力信号によって、金属イオン濃度
の減少率が小さい場合には、再循環流量を増すよう、減
少率が大きい場合には、再循環流量を減らすように、再
循環ライン20上の流量調整弁24の開度を調節する。
The output signal of the regulator 26 causes the recirculation flow rate on the recirculation line 20 to be increased when the rate of decrease in metal ion concentration is small, and to decrease the recirculation flow rate when the rate of decrease is large. The opening degree of the flow rate regulating valve 24 is adjusted.

この機構の設備により、中空糸フィルター3へ流入する
復水中の金属イオン濃度を、常に一定の値以下に保つこ
とができる。
With this mechanism, the metal ion concentration in the condensate flowing into the hollow fiber filter 3 can always be kept below a certain value.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、中空糸フィルターへ流出する復水中の
金属イオン濃度を低減することにより中空糸膜内側への
金属イオン付着、金属酸化物の析出を抑制し、中空糸膜
の孔の閉塞を防止することができるので、中空糸膜フィ
ルター逆洗時の差圧回復率を向上させ、且、中空糸膜フ
ィルターの寿命を長期化できる効果がある。
According to the present invention, by reducing the metal ion concentration in the condensate flowing into the hollow fiber filter, metal ion adhesion to the inside of the hollow fiber membrane and precipitation of metal oxides are suppressed, and pore clogging of the hollow fiber membrane is prevented. Since this can be prevented, the differential pressure recovery rate during backwashing of the hollow fiber membrane filter can be improved, and the life of the hollow fiber membrane filter can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になる金属イオンをクラツド
化する装置を備えた復水浄化装置を有する原子力プラン
トの構成図、第2図は、再循環ラインを設けた復水浄化
装置の構成図、第3図は。 再循環ラインに流量調節機構を設けた復水浄化装置の構
成図、第4図は、従来の原子力プラント復水給水系の全
体構成を示す図、第5図は本発明の実施例におけるFe
z+イオン初濃度とFez+イオン反応率の関係を示す
グラフである。
Figure 1 is a block diagram of a nuclear power plant having a condensate purification system equipped with a device for cladding metal ions, which is an embodiment of the present invention, and Figure 2 is a diagram of a condensate purification system equipped with a recirculation line. The configuration diagram, Figure 3. A block diagram of a condensate purification system in which a flow rate adjustment mechanism is provided in the recirculation line, FIG. 4 is a diagram showing the overall structure of a conventional nuclear power plant condensate water supply system, and FIG.
It is a graph showing the relationship between the initial concentration of z+ ions and the reaction rate of Fez+ ions.

Claims (1)

【特許請求の範囲】 1、原子炉、タービン、発電機、中空糸フィルター、復
水脱塩器及び給水加熱器を順次含む原子力プラントにお
いて、前記中空糸フィルターの上流側に金属イオンを酸
化させてクラッドとして析出する装置を設けたことを特
徴とする原子力プラント。 2、原子炉、タービン、復水器、中空糸フィルター、復
水脱塩器及び給水加熱器を順次含む原子力プラントにお
いて、前記中空糸フィルターの上流側に金属イオンを酸
化させて析出する装置を設けると共に、前記金属イオン
析出装置と中空糸フィルターとの間に滞留装置を設けた
ことを特徴とする原子力プラント。 3、原子炉、タービン、復水器、中空糸フィルター、復
水脱塩器及び給水加熱器を順次含む原子力プラントにお
いて、前記中空糸フィルターの上流側に金属イオンを酸
化させて析出する装置を設けると共に、前記金属イオン
析出装置と中空糸フィルターとの間に滞留装置を設け、
かつ該滞留装置の下流から復水器側へ戻すラインを設け
たことを特徴とする原子力プラント。
[Claims] 1. In a nuclear power plant that sequentially includes a nuclear reactor, a turbine, a generator, a hollow fiber filter, a condensate demineralizer, and a feed water heater, metal ions are oxidized on the upstream side of the hollow fiber filter. A nuclear power plant characterized by being equipped with a device for depositing cladding. 2. In a nuclear power plant that sequentially includes a nuclear reactor, a turbine, a condenser, a hollow fiber filter, a condensate demineralizer, and a feedwater heater, a device for oxidizing and precipitating metal ions is provided upstream of the hollow fiber filter. A nuclear power plant, further comprising a retention device between the metal ion precipitation device and the hollow fiber filter. 3. In a nuclear power plant that sequentially includes a nuclear reactor, a turbine, a condenser, a hollow fiber filter, a condensate demineralizer, and a feed water heater, a device for oxidizing and precipitating metal ions is provided upstream of the hollow fiber filter. At the same time, a retention device is provided between the metal ion precipitation device and the hollow fiber filter,
A nuclear power plant, further comprising a line returning from downstream of the retention device to the condenser side.
JP62285372A 1987-11-13 1987-11-13 Nuclear power plant with hollow fiber filter Expired - Lifetime JP2555104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285372A JP2555104B2 (en) 1987-11-13 1987-11-13 Nuclear power plant with hollow fiber filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285372A JP2555104B2 (en) 1987-11-13 1987-11-13 Nuclear power plant with hollow fiber filter

Publications (2)

Publication Number Publication Date
JPH01127998A true JPH01127998A (en) 1989-05-19
JP2555104B2 JP2555104B2 (en) 1996-11-20

Family

ID=17690695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285372A Expired - Lifetime JP2555104B2 (en) 1987-11-13 1987-11-13 Nuclear power plant with hollow fiber filter

Country Status (1)

Country Link
JP (1) JP2555104B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127998A (en) * 1987-11-13 1989-05-19 Hitachi Ltd Nuclear power plant having hollow yarn filter
JP2012228676A (en) * 2011-04-27 2012-11-22 Toshiba Corp Filtration apparatus and power plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127998A (en) * 1987-11-13 1989-05-19 Hitachi Ltd Nuclear power plant having hollow yarn filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127998A (en) * 1987-11-13 1989-05-19 Hitachi Ltd Nuclear power plant having hollow yarn filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127998A (en) * 1987-11-13 1989-05-19 Hitachi Ltd Nuclear power plant having hollow yarn filter
JP2012228676A (en) * 2011-04-27 2012-11-22 Toshiba Corp Filtration apparatus and power plant

Also Published As

Publication number Publication date
JP2555104B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
JPH0298648A (en) Method and device for monitoring soluble component and non-soluble particle
US5398269A (en) Water quality control method and device for nuclear power plant, and nuclear power plant
JPH07236818A (en) Backwashing of inner pressure type hollow yarn module
JPH01127998A (en) Nuclear power plant having hollow yarn filter
JP4299961B2 (en) Reactor water quality control method
JP3653609B2 (en) Nuclear power plant and its operating method
JPH01143687A (en) Condensate purifying equipment
JP2001235584A (en) Nuclear power plant and its operation method
JP3509846B2 (en) Power plant heater drain water treatment method
JPH0785797B2 (en) Condensate filter
US6810100B2 (en) Method for treating power plant heater drain water
CN218454009U (en) Oil field reinjection water processing system
JPH0411929A (en) Operation of membrane module
JPS63221886A (en) Purifying method and apparatus using hollow yarn membrane filter
JP4518695B2 (en) Condensate treatment system and operation method thereof
JPH01203096A (en) Operation process for hollow yarn membrane filter
JPH0198998A (en) Controller for water quality of condensate/feed water system of reactor
JPH07128488A (en) Reactor power plant
JP2000218109A (en) Treatment of waste water
JPS61213693A (en) Condensate and feedwater system for nuclear power plant
JPH01218611A (en) Apparatus for purifying feed water
JPH0763888A (en) Method and device for filtering reactor water
JPH09239362A (en) Device for supplying makeup water to condenser
JPS61245093A (en) Feedwater system of nuclear power generating plant
JP2963788B2 (en) Control rod drive