JPH01127937A - Detection of destruction of ceramics joined body - Google Patents
Detection of destruction of ceramics joined bodyInfo
- Publication number
- JPH01127937A JPH01127937A JP62286623A JP28662387A JPH01127937A JP H01127937 A JPH01127937 A JP H01127937A JP 62286623 A JP62286623 A JP 62286623A JP 28662387 A JP28662387 A JP 28662387A JP H01127937 A JPH01127937 A JP H01127937A
- Authority
- JP
- Japan
- Prior art keywords
- destruction
- joined
- fracture
- ceramic
- ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 41
- 230000006378 damage Effects 0.000 title abstract description 10
- 238000001514 detection method Methods 0.000 title abstract description 5
- 238000000034 method Methods 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 abstract description 15
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 238000012360 testing method Methods 0.000 abstract description 9
- 238000004458 analytical method Methods 0.000 abstract description 5
- 238000005219 brazing Methods 0.000 abstract description 5
- 229910017770 Cu—Ag Inorganic materials 0.000 abstract description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 239000010949 copper Substances 0.000 abstract description 2
- 239000000945 filler Substances 0.000 abstract description 2
- 230000035882 stress Effects 0.000 description 13
- 238000005316 response function Methods 0.000 description 7
- 230000000977 initiatory effect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 1
- 239000011225 non-oxide ceramic Substances 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明はAE(アコースティックエミッション、弾性波
放出)法によるセラミックス接合体の破壊検出方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for detecting fracture of a ceramic bonded body using an AE (acoustic emission, elastic wave emission) method.
(従来の技術)
近年、セラミックス部材の耐熱性、耐熱衝撃性、耐食性
、耐摩耗性等の各種特性を利用して種々の用途への応用
が試みれらている。しかし、セラミックス部材は一般に
脆いという欠点を有していることから、このような欠点
を補うためにセラミックスに高い靭性をもつ金属部材を
例えば適当なろう材を用いて接合したり、また同様にセ
ラミックス部材とセラミックス部材どうしを接合して複
合部材として使用するということが試みられている。こ
のようなセラミックスの接合技術の開発にあたって、得
られた接合体の各種応力に対する機械的強度を測定し、
この強度により接合状態の良否や接合条件による強度比
較等が行われている。(Prior Art) In recent years, attempts have been made to utilize the various properties of ceramic members, such as heat resistance, thermal shock resistance, corrosion resistance, and abrasion resistance, to apply them to various uses. However, ceramic components generally have the disadvantage of being brittle, so in order to compensate for this disadvantage, metal components with high toughness are bonded to ceramics using, for example, an appropriate brazing material, or ceramics are Attempts have been made to bond members and ceramic members together and use them as composite members. In developing this type of ceramic bonding technology, we measured the mechanical strength of the resulting bonded body against various stresses.
This strength is used to compare the quality of the bonding state and the strength of the bonding conditions.
ところで、セラミックス接合体の強度評価においては、
最終破断とともに破壊の開始、あるいは破壊に至る過程
を測定することが、構造材としての信頼性の点で重要で
ある。By the way, when evaluating the strength of ceramic bonded bodies,
From the viewpoint of reliability as a structural material, it is important to measure the final fracture as well as the initiation of fracture or the process leading to fracture.
このような破壊の開始やその過程を評価する方・法とし
て、固体内部での割れ、変形、変態等の局所的、微視的
変化が生じる際に放出されるアコースティックエミッシ
ョン(AE)を計測することが非常に有効である。そし
て、セラミックスの破壊においても亀裂先端でのマイク
ロクラックの生成や主亀裂の伸展過程でAEが発生する
ため、このAEを測定することにより破壊の開始やf&
終破断に至る過程の評価が可能であり、セラミックス接
合体の破壊検出にも応用されている。As a method to evaluate the initiation and process of such fracture, we measure acoustic emissions (AE) emitted when local, microscopic changes such as cracking, deformation, and transformation occur within a solid. This is very effective. Also, in the fracture of ceramics, AE occurs during the formation of microcracks at the crack tip and the extension process of the main crack, so measuring this AE can be used to determine the initiation of fracture and f&
It is possible to evaluate the process leading to final fracture, and it is also applied to fracture detection of ceramic bonded bodies.
(発明が解決しようとする問題点)
しかしながら、従来のセラミックス接合体の破壊に対す
るAE法による評価方法は、各種強度試験中に発生する
全AEを計測し、この全AEによるAEE象数やAEE
象率を解析して評価を行っており、これは接合部に起因
するAE以外も評価対象となっているため、またセラミ
ックス接合体の場合は金属部材等の変形に伴うノイズや
治具ずれ等によるノイズも多いため、接合部のみの情報
を得ることはできす、正確な評価をくだすことはできて
いなかった。(Problems to be Solved by the Invention) However, the conventional evaluation method using the AE method for the fracture of ceramic bonded bodies measures the total AE generated during various strength tests, and calculates the number of AEE quadrants and AEE
The evaluation is performed by analyzing the AE rate, and this includes evaluations other than AEs caused by joints, and in the case of ceramic joints, noise due to deformation of metal parts, jig displacement, etc. Since there is a lot of noise caused by the joints, it was not possible to obtain information on only the joints, and it was not possible to give an accurate evaluation.
このように従来のAE法では、接合部の破壊に起因する
AE倍信号みを分離することは困難であり、また検出波
形をそのまま解析する従来のAE法では定量性に欠けて
いるという問題があった。In this way, with the conventional AE method, it is difficult to separate only the AE multiplied signal caused by the breakdown of the joint, and the conventional AE method, which analyzes the detected waveform as it is, lacks quantitative ability. there were.
本発明はこのような従来の事情に対処するべくなされた
もので、セラミックス接合体の接合部近傍での破壊およ
び変形により発生するAEのみを分離検出し、これを定
量化することにより接合部の破壊検出を正確に行うこと
を可能にしたセラミックス接合体の破壊検出方法を提供
することを目的とする。The present invention has been made to deal with such conventional circumstances, and by separately detecting only the AE that occurs due to fracture and deformation near the joint of a ceramic bonded body and quantifying this, it is possible to improve the quality of the joint. It is an object of the present invention to provide a method for detecting fracture of a ceramic bonded body, which enables accurate fracture detection.
[発明の構成]
(問題点を解決するための手段)
本発明のセラミックス接合体の破壊検出方法は、セラミ
ックス接合体の接合部近傍における破壊特性を評価する
にあたり、前記セラミックス接合体に複数のAEE換子
を設置し、このセラミックス接合体に応力を印加して前
記複数のAEE換子によりAE倍信号検出し、この検出
したAE倍信号原波形解析を行うとともに、前記複数の
AE変変換量間AEE号到着時間差より各AE倍信号発
生位置を特定し、接合部近傍での破壊および変形に起因
するAE倍信号分離し、この分離したAE倍信号解析、
評価することを特徴としている。[Structure of the Invention] (Means for Solving the Problems) The method for detecting fracture of a ceramic bonded body of the present invention includes a plurality of AEE A converter is installed, stress is applied to the ceramic bonded body, the AE multiplied signal is detected by the plurality of AEE converters, the original waveform of the detected AE multiplied signal is analyzed, and the amount of AE conversion between the plurality of AE converters is analyzed. Identify the generation position of each AE multiplied signal from the difference in arrival time of the AEE, separate the AE multiplied signal caused by fracture and deformation near the joint, and analyze the separated AE multiplied signal.
It is characterized by evaluation.
−本発明の対象となるセラミックス接合体は、セラミッ
クス部材どうし、あるいはセラミックスと金属部材とを
接合したものであり、このセラミックス部材としては、
アルミナのような酸化物系セラミックスや窒化ケイ素の
ような非酸化物系セラミックス等、各種のセラミックス
部材を適用することが可能である。また、その接合方法
もどのような方法を用いても本発明方法の適用が可能で
あり、例えばTi−Cu−Ag系ろう材を用いたような
活性金属法、メタライズろう付は法、DBC法、同相拡
散接合法等が挙げられる。- The ceramic bonded body that is the object of the present invention is a bonded ceramic member or a ceramic and a metal member, and the ceramic member includes:
Various ceramic members can be used, such as oxide ceramics such as alumina and non-oxide ceramics such as silicon nitride. Furthermore, the method of the present invention can be applied to any bonding method, such as an active metal method using a Ti-Cu-Ag brazing filler metal, a metallization brazing method, and a DBC method. , in-phase diffusion bonding method, etc.
本発明方法についてさらに詳述すると、まず複数のAE
E換子を設置したセラミックス接合体に応力を印加する
。この応力は、引張、曲げ、圧縮、せん断等の機械的応
力や熱応力、さらには電場によって加わる応力等のよう
な形態のものでもよい。To explain the method of the present invention in more detail, first, a plurality of AE
Stress is applied to the ceramic bonded body with the E switch installed. This stress may be in the form of mechanical stress such as tension, bending, compression, shear, etc., thermal stress, or stress applied by an electric field.
次に、この応力の印加によって発生するAE倍信号各A
EE換子によって検出する。そして、この検出波形の原
波形解析を行うとともに、各AEE換子間のAEE号到
着時間差により各AE倍信号発生位置を特定する。Next, each AE multiplied signal A generated by applying this stress is
Detected by EE commutator. Then, the original waveform analysis of this detected waveform is performed, and the generation position of each AE multiplied signal is specified based on the AEE arrival time difference between each AEE commutator.
検出波形からの原波形解析は、例えば次のようにして行
う。The original waveform analysis from the detected waveform is performed, for example, as follows.
AEE波形は試験片の応答関数および変換子の応答関数
により変形されて検出波形として検出されるため、この
試験片の応答関数および変換子の応答関数を予め求めて
置くことによりAEE波形を求めることが可能となる。Since the AEE waveform is transformed by the response function of the test piece and the response function of the transducer and detected as the detected waveform, the AEE waveform can be obtained by determining the response function of the test piece and the response function of the transducer in advance. becomes possible.
試験片の応答関数は、破断特性が既知の擬似音源を試験
片の一端より入力し、かつ計測系の応答関数が与えられ
ていれば、これらから求めることが可能であり、同様に
して応答関数が既知の媒体を用いればAEE換子の応答
関数が求まる。The response function of a test piece can be obtained from a pseudo sound source with known fracture characteristics if it is input from one end of the test piece and the response function of the measurement system is given. By using a medium with a known value, the response function of the AEE commutator can be found.
また、各AEE換子間のAEE号到着時間差からの位置
特定は、セラミックス接合体中のAE波の伝搬速度を予
め求めておけば、この伝搬速度を■、各AE変換子への
到着時間をtl、t2、変換子位置をrl、r2とすれ
ば発生位i1rは次式により求まる。In addition, the position can be determined from the difference in arrival time of AEE waves between each AEE converter by determining the propagation speed of the AE wave in the ceramic bonded body in advance. If tl, t2 and the transducer positions are rl and r2, the occurrence position i1r can be found by the following equation.
■
そして、このようにしてAE倍信号発生位置を特定した
後、接合部近傍の破壊および変形によるAE倍信号分離
し、この分離したAE倍信号ついてAE事象数、AE事
象率、さらには原波形解析により定量化されたデータよ
り、接合部の破壊特性を評価する。After identifying the AE multiplied signal generation position in this way, the AE multiplied signal due to destruction and deformation near the joint is separated, and the number of AE events, AE event rate, and even the original waveform are determined for this separated AE multiplied signal. The fracture characteristics of the joint are evaluated from the data quantified through analysis.
(作 用)
そして、上記手段を用いることにより、セラミックス接
合体の接合部近傍の破壊および変形に起因するAE倍信
号みを分離評価することが可能となり、セラミックス接
合体の正確な破壊検出が行える。(Function) By using the above means, it becomes possible to separate and evaluate only the AE multiplied signal caused by the fracture and deformation in the vicinity of the joint of the ceramic bonded body, and it is possible to accurately detect the fracture of the ceramic bonded body. .
(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.
まず、窒化ケイ素を主成分とする外径eln x幅51
nのセラミックス部材1と、一方の端部の外周にM I
OX 1.5のねじ溝を形成し、他方の端部を外径7n
+1に加工しな鋼材(845C)からなる2個の金属部
材2とを用いて、第1図に示すように、セラミックス部
材1と金属部材2の接合すべき面の間に厚さ0.211
の銅板3を熱応力緩衝層として介在させ、それぞれの接
合すべき面の間にTi−Cu−Agろう材を挿入して積
層し、この積層物を真空中、830℃、6分の条件で接
合してセラミックス−金属接合体4を作製した。First, the outer diameter eln x width 51 made of silicon nitride as the main component.
n ceramic member 1 and M I on the outer periphery of one end.
Form a thread groove of OX 1.5 and the other end with an outer diameter of 7n.
As shown in FIG. 1, a thickness of 0.211 mm is formed between the surfaces of the ceramic member 1 and the metal member 2 to be joined, using two metal members 2 made of steel material (845C) that has not been processed to +1.
A copper plate 3 is interposed as a thermal stress buffering layer, and a Ti-Cu-Ag brazing material is inserted between the surfaces to be bonded to laminate the laminate.The laminate is heated in vacuum at 830°C for 6 minutes. A ceramic-metal bonded body 4 was produced by bonding.
このようにして得たセラミックス−金属接合体4の両端
部に接合面に平行に200 ktlz共振型高感度変換
予うをシリコーングリースを介して取付け、この試験片
を用いて常温、大気中、クロスヘツド速度0.25 r
ari1分の条件で引張試験を行った。A 200 ktlz resonant high-sensitivity converter was attached to both ends of the ceramic-metal bonded body 4 obtained in this manner parallel to the bonding surface via silicone grease, and this test piece was tested at room temperature, in the atmosphere, and at a crosshead. Speed 0.25r
A tensile test was conducted under the condition of 1 minute of ari.
なお、AE計測は2個のAE変換子による事象計数法に
より行い、変換子間のAE到着時間差の分解能0.1μ
・秒、事象弁別しきい値電圧は変換子出力値で25μ■
で計測し、AE源位置標定に用いた伝搬速度は6000
n/秒とした。また、ひずみは伸び計によりセラミック
ス部材をはさむ標点間圧%1101111mの変位測定
より求めた。Note that AE measurement is performed using an event counting method using two AE transducers, and the resolution of the AE arrival time difference between the transducers is 0.1μ.
・Seconds, event discrimination threshold voltage is 25 μ■ in converter output value
The propagation velocity measured at
n/second. In addition, the strain was determined by measuring the displacement of the gauge pressure %1101111m between the ceramic members using an extensometer.
次に、このようにして行った試験結果についてのべる。Next, the results of the tests conducted in this manner will be described.
セラミックス部材の破壊、すなわちクラック6は、第2
図に示すように、セラミックス部材1と金属部材2との
境界部を起点にセラミックス部材1内を進展し、ひずみ
0.2%以下で破断した。破断応力の平均値は3128
Paであった。The destruction of the ceramic member, that is, the crack 6, is caused by the second
As shown in the figure, it propagated within the ceramic member 1 starting from the boundary between the ceramic member 1 and the metal member 2, and broke at a strain of 0.2% or less. The average value of breaking stress is 3128
It was Pa.
そして、応力印加中に発生したAE倍信号りAE変換子
間の到着時間差とAE波の伝搬速度、および原波形解析
により発生位置を特定し、接合部近傍に起因するAE倍
信号みを分離して、試験片中央を座標0とし、各位置◆
こおけるAE倍信号AE事象数として表示したものが第
3図である。Then, the generation position of the AE multiplied signal generated during stress application is identified by the arrival time difference between the AE transducers, the propagation speed of the AE wave, and the original waveform analysis, and only the AE multiplied signal originating near the joint is isolated. With the center of the specimen as the coordinate 0, each position ◆
FIG. 3 shows the AE multiplied signal shown as the number of AE events.
第2図と第3図を比較しても明らかなように、試験片中
央よりも左側に分布しているAE(図中、区間A−A)
が破壊に対応して発生したものである。そして、このA
E倍信号ついて、その発生挙動を応力−ひすみ1線とと
もにグラフ化したちのが第4図である。As is clear from comparing Figures 2 and 3, AE is distributed to the left of the center of the specimen (section A-A in the figure).
occurred in response to the destruction. And this A
Figure 4 shows a graph of the generation behavior of the E-fold signal along with a stress-strain line.
同図から明らかなように、破壊に起因するAEは破断応
力のかなり前から発生し始め、発生頻度を増加しながら
接合体の破断に至ることがわかる。As is clear from the figure, it can be seen that AE caused by fracture begins to occur long before the fracture stress occurs, and as the frequency of occurrence increases, it leads to fracture of the joined body.
このように、各AE変換子間の到着時間差と検出波形を
原波形解析することによりAE倍信号発生位置を特定す
ることが可能となり、これにより接合部近傍の破壊およ
び変形に起因するAE倍信号分離し、この分離したAE
を解析することにより破壊の開始や破断に至る過程を正
確に評価することが可能となる。In this way, by analyzing the original waveform of the arrival time difference between each AE transducer and the detected waveform, it is possible to specify the AE multiplied signal generation position, and this makes it possible to identify the AE multiplied signal caused by destruction and deformation near the joint. Separate this separated AE
By analyzing this, it becomes possible to accurately evaluate the initiation of fracture and the process leading to fracture.
そして、この実施例の結果からも明らかなように、破断
に至る過程と分離したAE倍信号対応するので、破断応
力未満の応力を印加することにより、非破壊検査を行う
ことも可能である。As is clear from the results of this example, since the AE multiplied signal corresponds to the process leading to breakage, it is also possible to perform non-destructive testing by applying stress less than the breakage stress.
[発明の効果]
以上説明したように本発明のセラミックス接合体の破壊
検出方法によれば、接合部近傍の破壊および変形に起因
するAEのみを分離、評価することが可能となり、接合
体の破壊の開始および破壊に至る過程、さらには破壊の
開始場所と応力を正確に評価することが可能となる。[Effects of the Invention] As explained above, according to the fracture detection method of a ceramic bonded body of the present invention, it is possible to separate and evaluate only AE caused by fracture and deformation near the bonded part, and it is possible to detect fracture of the bonded body. It becomes possible to accurately evaluate the initiation and process leading to fracture, as well as the fracture initiation location and stress.
第1図は本発明の一実施例におけるセラミックス−金属
接合体とAE変換子を示す平面図、第2図は本発明の一
実施例におけるセラミックス−金属接合体中のクラック
の進展を示す拡大図、第3図は第2図に対応したAE発
生位置分布を示すグラフ、第4図はその応力−ひずみ曲
線とAE発生頻度とを示すグラフである。
1・・・・・・・・・セラミックス部材2・・・・・・
・・・金g部材
4・・・・・・・・・セラミックス−金属接合体う・・
・・・・・・・AE変換子
出願人 株式会社 東芝
同 青 木 顯一部
同 小幅義彦
代理人 弁理士 須 山 佐 −Fig. 1 is a plan view showing a ceramic-metal bonded body and an AE converter in an embodiment of the present invention, and Fig. 2 is an enlarged view showing the development of cracks in the ceramic-metal bonded body in an embodiment of the present invention. , FIG. 3 is a graph showing the AE occurrence position distribution corresponding to FIG. 2, and FIG. 4 is a graph showing the stress-strain curve and the AE occurrence frequency. 1... Ceramic member 2...
...Gold member 4...Ceramics-metal bonded body...
・・・・・・・・・AE converter applicant: Toshiba Corporation, Aoki Akira, Yoshihiko Obaba, agent, patent attorney, Sasa Suyama −
Claims (1)
性を評価するにあたり、 前記セラミックス接合体に複数のAE変換子を設置し、
このセラミックス接合体に応力を印加して前記複数のA
E変換子によりAE信号を検出し、この検出したAE信
号の原波形解析を行うとともに、前記複数のAE変換子
間のAE信号到着時間差より各AE信号の発生位置を特
定し、接合部近傍での破壊および変形に起因するAE信
号を分離し、この分離したAE信号を解析、評価するこ
とを特徴とするセラミックス接合体の破壊検出方法。(1) In evaluating the fracture characteristics near the joint of the ceramic bonded body, a plurality of AE transducers are installed in the ceramic bonded body,
By applying stress to this ceramic bonded body, the plurality of A
An AE signal is detected by an E transducer, and the original waveform of the detected AE signal is analyzed.The generation position of each AE signal is identified based on the AE signal arrival time difference between the plurality of AE transducers, and A method for detecting fracture of a ceramic bonded body, characterized by separating an AE signal caused by fracture and deformation of a ceramic bonded body, and analyzing and evaluating the separated AE signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62286623A JPH01127937A (en) | 1987-11-13 | 1987-11-13 | Detection of destruction of ceramics joined body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62286623A JPH01127937A (en) | 1987-11-13 | 1987-11-13 | Detection of destruction of ceramics joined body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01127937A true JPH01127937A (en) | 1989-05-19 |
Family
ID=17706807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62286623A Pending JPH01127937A (en) | 1987-11-13 | 1987-11-13 | Detection of destruction of ceramics joined body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01127937A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002040004A (en) * | 2000-07-27 | 2002-02-06 | Hitachi Metals Ltd | Fusion defect detection method of resin tube fusion part |
KR100804234B1 (en) * | 2001-12-21 | 2008-02-18 | 재단법인 포항산업과학연구원 | The Device of Tensile Test for The Detection of Acoustic Emission |
JP2012042440A (en) * | 2010-08-23 | 2012-03-01 | Tokyo Metropolitan Univ | Flaw detection inspection method of flexible solar battery, and inspection equipment for the same |
JP2014142273A (en) * | 2013-01-24 | 2014-08-07 | Ihi Inspection & Instrumentation Co Ltd | Strength inspection method and data output device for strength evaluation |
-
1987
- 1987-11-13 JP JP62286623A patent/JPH01127937A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002040004A (en) * | 2000-07-27 | 2002-02-06 | Hitachi Metals Ltd | Fusion defect detection method of resin tube fusion part |
KR100804234B1 (en) * | 2001-12-21 | 2008-02-18 | 재단법인 포항산업과학연구원 | The Device of Tensile Test for The Detection of Acoustic Emission |
JP2012042440A (en) * | 2010-08-23 | 2012-03-01 | Tokyo Metropolitan Univ | Flaw detection inspection method of flexible solar battery, and inspection equipment for the same |
JP2014142273A (en) * | 2013-01-24 | 2014-08-07 | Ihi Inspection & Instrumentation Co Ltd | Strength inspection method and data output device for strength evaluation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040182160A9 (en) | Non-destructive evaluation of wire insulation and coatings | |
JP3735006B2 (en) | Internal microcrack detection method and apparatus using nonlinear ultrasonic waves | |
CN109737899A (en) | A kind of metal material crack-type defect depth measurement device and method | |
JPH01127937A (en) | Detection of destruction of ceramics joined body | |
JP6061767B2 (en) | Method and apparatus for exploring delamination inside concrete | |
US6302314B1 (en) | Method for examining bonded-metal by ultrasonic examination | |
Murav’ev et al. | Acoustic assessment of the internal stress and mechanical properties of differentially hardened rail | |
Yonezu et al. | Advanced indentation technique for strength evaluation of hard thin films | |
US3937073A (en) | Method of non-destructively testing aluminum-to-copper welds | |
Veidt et al. | Experimental investigation of the acousto-ultrasonic transfer characteristics of adhesively bonded piezoceramic transducers | |
Czerny et al. | Application of in-situ non-invasive failure detection methods for wire bonds | |
Huang et al. | Stiffness measurement and defect detection in laminated composites by dry-coupled plate waves | |
Yao et al. | Acoustic Emission of Metallic Specimen with Surface Defect During Fatigue Crack Growth | |
Song et al. | Ultrasonic Nondestructive Testing Technology for Residual Stresses of Aluminum Alloy Plates | |
Matvienko et al. | The acoustic-emission properties of oxide tensosensitive indicators and signal recognition during the formation of cracks in a brittle coating layer | |
Nazarchuk et al. | Some methodological foundations for selecting and processing AE signals | |
Grondel et al. | Study of fatigue crack in riveted plate by acoustic emission and Lamb wave analysis | |
Kautz et al. | Ultrasonic Velocity Technique for Monitoring Property Changes in Fiber‐Reinforced Ceramic Matrix Composites | |
JP7077051B2 (en) | Wire bonding equipment and wire bonding method | |
Richard et al. | Study of Cr 2 O 3 coatings Part II: Adhesion to a cast-iron substrate | |
Aggelis et al. | Acoustic emission for fatigue damage monitoring in cross-welded aluminum plates | |
Chen et al. | Parametric study on contact sensors for MASW measurement-based interfacial debonding detection for SCCS | |
Aljets et al. | Acoustic emission source location during the monitoring of composite fracture using a closely arranged sensor array | |
Duke et al. | Study of the stress wave factor technique for evaluation of composite materials: Virginia Polytechnic Institute and State University Blacksburg (United States), N89-21256/7/GAR, 61pp.(Jan. 1989) | |
Edwards et al. | Rail defect detection using ultrasonic surface waves |