JPH01127929A - Vibration type differential pressure sensor - Google Patents

Vibration type differential pressure sensor

Info

Publication number
JPH01127929A
JPH01127929A JP28627487A JP28627487A JPH01127929A JP H01127929 A JPH01127929 A JP H01127929A JP 28627487 A JP28627487 A JP 28627487A JP 28627487 A JP28627487 A JP 28627487A JP H01127929 A JPH01127929 A JP H01127929A
Authority
JP
Japan
Prior art keywords
pressure
differential pressure
vibrating
vibrating beam
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28627487A
Other languages
Japanese (ja)
Other versions
JPH0519090B2 (en
Inventor
Kinji Harada
原田 謹爾
Kyoichi Ikeda
恭一 池田
Hideki Kuwayama
桑山 秀樹
Takashi Kobayashi
隆 小林
Tetsuya Watanabe
哲也 渡辺
Sunao Nishikawa
直 西川
Takashi Yoshida
隆司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP28627487A priority Critical patent/JPH01127929A/en
Publication of JPH01127929A publication Critical patent/JPH01127929A/en
Publication of JPH0519090B2 publication Critical patent/JPH0519090B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0022Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element

Abstract

PURPOSE:To decrease a static pressure error by fixing the other end of a supporting beam whose one end is fixed to a substrate, to one end of a vibrating beam and negating a distortion applied to the vibrating beam by static pressure by a distortion in the reverse direction generated in the supporting beam. CONSTITUTION:In the center of a cylindrical silicon substrate 22, a pressure receiving diaphragm 23 is formed, and as for a vibrating beam 27 and supporting beams 28, 29 for constituting a vibrating beam part 25, each one end thereof is fixed to the diaphragm 23, and a shell 26 holds the inside in a vacuum. According to such constitution, when static pressure Sp is applied to the diaphragm 23, a compressive strain is generated in the supporting beams 28, 29 and they are deformed, and the vibrating beam 27 is displaced to the right but generates no distortion. Subsequently, when pressure Sp+DELTAp is led in from a lead hole 33 and differential pressure DELTAp is applied, a tensile strain is applied to the supporting beams 28, 29 and they are displaced, a compressive strain is applied to the vibrating beam 27, and by a variation of a resonance frequency corresponding to the differential pressure DELTAp, the differential pressure DELTAp can be detected.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半導体の振動梁の差圧に対応した歪みを周波
数信号として検出する振動形差圧センサに係り、特に静
圧特性を改善した振動形差圧センサに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a vibrating differential pressure sensor that detects strain corresponding to the differential pressure of a semiconductor vibrating beam as a frequency signal, and in particular has improved static pressure characteristics. Regarding a vibrating differential pressure sensor.

〈従来の技術〉 シリコンの受圧ダイアフラムの上に形成されて両端が固
定され励振手段で励振された振動梁の共振周波数の変化
から圧力或いは差圧を検出丈る形式のこの発明の改良の
ベースとなる公知の1!助形圧カセンサは、例えば特願
昭59−42632号「圧力センサ」に開示されている
。この提案では圧力センサとして説明しであるが差圧セ
ンサとしても用いることができるので、以下の説明では
差圧センサとして説明する。
<Prior art> The base of the improvement of the present invention is a type in which pressure or differential pressure can be detected from changes in the resonance frequency of a vibrating beam formed on a silicon pressure-receiving diaphragm, fixed at both ends, and excited by an excitation means. Well-known 1! An auxiliary pressure sensor is disclosed, for example, in Japanese Patent Application No. 59-42632 entitled "Pressure Sensor." In this proposal, it is explained as a pressure sensor, but it can also be used as a differential pressure sensor, so in the following explanation, it will be explained as a differential pressure sensor.

この振動形差圧センナについて、第7図と第8図を用い
てそのN要を説明する。
The essential points of this vibrating differential pressure sensor will be explained with reference to FIGS. 7 and 8.

第7図はこの従来の振動形差圧センナのカバーをとった
構成を示す′Am図、第8図は第7図におけるX−X断
面におけるカバーをつけた断面図である。
FIG. 7 is a diagram 'Am showing the configuration of this conventional vibrating differential pressure sensor with the cover removed, and FIG. 8 is a sectional view taken along the line X--X in FIG. 7 with the cover attached.

これ等の図において、1は円筒状のシリコン基板であり
、2はこのシリコン基板1の中央を掘って薄肉部を形成
して上面から圧力Spを下面から圧力(Sp+ΔP)を
受ける受圧部としだ受圧ダイアフラムであり、例えばシ
リコン基板1をエツチングして作られる。ここで、ΔP
は測定しようとする差圧である。
In these figures, 1 is a cylindrical silicon substrate, and 2 is a pressure-receiving part that is formed by digging the center of the silicon substrate 1 to form a thin part and receiving pressure Sp from the top surface and pressure (Sp+ΔP) from the bottom surface. This is a pressure receiving diaphragm, and is made by etching the silicon substrate 1, for example. Here, ΔP
is the differential pressure to be measured.

3は受圧ダイアフラム2の上に形成され、両端がシリコ
ン基板1に固定された振動梁であり、振動@3は受圧ダ
イアフラム2のほぼ中央部に設けられている。
A vibration beam 3 is formed on the pressure receiving diaphragm 2 and has both ends fixed to the silicon substrate 1, and the vibration beam @3 is provided approximately at the center of the pressure receiving diaphragm 2.

この振動梁3は、具体的には例えばn形シリコン塁板1
の上に第1のP+形エピタキシャル層を形成し、その中
央部を切込んで電気的に左右を分離し、この上にn形エ
ピクキシャル層を形成した後、ざらにP十形エピタキシ
ャル層を形成してこの上を酸化膜St 02で保護する
。そして振ill梁3の下部の空洞部5はこのn形エピ
タキシャル層をアンダーエツチングで形成する。
Specifically, this vibration beam 3 is, for example, an n-type silicon base plate 1.
A first P+ type epitaxial layer is formed on top, a cut is made in the center to electrically separate the left and right sides, an n-type epitaxial layer is formed on top of this, and then a P+ type epitaxial layer is roughly formed. This is then protected with an oxide film St02. The hollow portion 5 at the bottom of the illumination beam 3 is formed by under-etching this n-type epitaxial layer.

このようにして形成された振動梁3は、例えば艮8を!
、厚さを11幅をdとすれば、ll−1O0a、h−1
μm、d−5μmの程度の大きさである。
The vibrating beam 3 formed in this way is, for example, the shape of the beam 8!
, if the thickness is 11 and the width is d, then ll-1O0a, h-1
The size is on the order of μm, d-5 μm.

受圧ダイアフラム2の上に形成された振動梁3の周囲は
、例えばシリコンのカバー6を受圧ダイアフラム2に陽
極接合などで接合して覆い、この内部空間7を真空状態
に保持する。
The periphery of the vibrating beam 3 formed on the pressure receiving diaphragm 2 is covered with, for example, a silicon cover 6 bonded to the pressure receiving diaphragm 2 by anodic bonding or the like, and this internal space 7 is maintained in a vacuum state.

この振動梁3、カバー6、空洞部5、内部空間7などで
振動形差圧センサの検出部りを形成している。
The vibrating beam 3, cover 6, cavity 5, internal space 7, etc. form a detection section of the vibrating differential pressure sensor.

以上の構成において、第2のP十形エピタキシャル層で
ある振動#R3に対して第1の左右のP+形エピタキシ
ャル層の間に発振回路を接続して発振を起こさせると、
振動梁3はその固有振動数で自励発振を起こす。
In the above configuration, when an oscillation circuit is connected between the first left and right P+ type epitaxial layers to cause oscillation in response to vibration #R3, which is the second P-type epitaxial layer,
The vibrating beam 3 causes self-oscillation at its natural frequency.

この場合、カバー6の内部空間7が真空状態にされ振I
JJ梁3が真空の中に保持されるので、共振の鋭さを示
すQ値が太き(なり、共振周波数の検出が容易となる。
In this case, the internal space 7 of the cover 6 is evacuated and shaken.
Since the JJ beam 3 is held in a vacuum, the Q value, which indicates the sharpness of resonance, becomes large (which makes it easy to detect the resonance frequency).

第8図に示すように圧力SPと圧力(SP+ΔP)の差
圧ΔPが受圧ダイアフラム2に印加されると振動梁3は
引張応力を受ける。
As shown in FIG. 8, when the pressure difference ΔP between the pressure SP and the pressure (SP+ΔP) is applied to the pressure receiving diaphragm 2, the vibrating beam 3 receives tensile stress.

この引張応力により振動梁3の固有振動数が変化して差
圧ΔPを知ることができる。
This tensile stress changes the natural frequency of the vibrating beam 3, allowing the differential pressure ΔP to be determined.

しかしながら、この様な従来の振動形差圧センサでは、
薄肉の受圧ダイアフラム2の上に形成された振動梁3の
上部に別に作られたシリコンのカバー6を陽極接合など
で接合し、カバー6と受圧ダイアフラム2とで形成され
た内部の空間を真空に引かなければなければならないの
で、振動形差圧センサの圧力特性或いは温度特性が悪く
なり精度低下の原因をなすという問題がある。
However, with such conventional vibrating differential pressure sensors,
A separately made silicone cover 6 is bonded to the top of the vibrating beam 3 formed on the thin pressure receiving diaphragm 2 by anodic bonding or the like, and the internal space formed by the cover 6 and the pressure receiving diaphragm 2 is evacuated. Therefore, there is a problem in that the pressure characteristics or temperature characteristics of the vibrating differential pressure sensor deteriorate, causing a decrease in accuracy.

そこで、本出願人はこの問題を解決するために、昭和6
2年7月2日に特願昭62−166175号F発明の名
称:振動形トランスデユーサの製造方法」を提出してい
る。以下、この提案の概要について説明する。
Therefore, in order to solve this problem, the applicant
On July 2, 1983, the company filed Japanese Patent Application No. 166175/1982 entitled "Method of Manufacturing Vibrating Transducer". The outline of this proposal will be explained below.

第9図はこの提案による撮動形差圧センサの要部である
検出部の製造工程を示す工程図である。
FIG. 9 is a process diagram showing the manufacturing process of the detection section, which is the main part of the imaging type differential pressure sensor according to this proposal.

これは第6図にお番ノる検出部りに対応する振動梁の軸
方向の断面で示した検出部D′の工程を示している。
This shows the process of the detection part D' shown in the axial cross section of the vibrating beam corresponding to the detection part numbered in FIG.

第9図(イ)は検出部D′を作るためのベースとなるn
形のシリコン基板8を示す。
Figure 9(a) shows n which is the base for making the detection part D'.
A shaped silicon substrate 8 is shown.

次に、このシリコン基板8を熱酸化してその表面に酸化
膜<S(O□)9を形成する(第9図(ロ))。
Next, this silicon substrate 8 is thermally oxidized to form an oxide film <S(O□) 9 on its surface (FIG. 9(b)).

さらに、第9図(ハ)の工程でこの酸化yA9の中央部
を紙面に垂直方向にフォトエツチングして、満10を形
成する。
Further, in the step shown in FIG. 9(c), the central portion of this oxidized yA9 is photoetched in a direction perpendicular to the plane of the paper to form a full 10.

第9図(ニ)の工程では、105ooCの温度で水素ガ
スH2に塩酸HC1を混合した雰囲気でエツチングをす
ることによりシリコン基板8に溝10を介して溝11を
形成する。
In the step shown in FIG. 9(d), grooves 11 are formed in the silicon substrate 8 through the grooves 10 by etching in an atmosphere containing hydrogen gas H2 and hydrochloric acid HC1 at a temperature of 105 ooC.

次に、第9図(ホ)に示すように、溝11の中に105
0’Cの温度で水素ガスH2の雰囲気中で10”cm″
″3の′a度のホウ素(P形)を選択エピタキシャルし
て第1エビ1112を形成する。
Next, as shown in FIG. 9(E), 105
10"cm" in an atmosphere of hydrogen gas H2 at a temperature of 0'C
A first shrimp 1112 is formed by selectively epitaxializing 3'a degree boron (P type).

この襖、第9図(へ)に示すように、第1エビ層12の
上に105000の温度で水素ガスH2の雰囲気中で1
0”cm−’のll洩のホウ素(P形)を選択エピタキ
シャルして振動梁13となる第2エビII!114を形
成する。
This fusuma, as shown in FIG.
A second shrimp II! 114, which will become the vibrating beam 13, is formed by selectively epitaxializing boron (P type) with a leakage of 0 cm-'.

振動梁13は差圧ΔPがゼロの状態でも初期張力を与え
ておかないと差圧ΔPの印加により座屈を起こして測定
できない状態となる。また、シリコンの共有結合半径は
1.17人であり、ホウ素のそれは0.88人であるの
で、ホウ素が部分的にシリコンの中に注入されるとその
部分は引張歪みを受ける そこぐ、この現象を利用して例えば第2エビ層14のホ
ウ素の温度を調整することによりここに初期張力を与え
るか、或いはn形のシリコン基板8の中のリン(共有結
合半径は1.10人>m度を調整してシリコン基板根8
と第2エビ層14との相対歪みを考慮して初期張力を与
えるようにする。
Even if the differential pressure ΔP is zero, the vibrating beam 13 will buckle due to the application of the differential pressure ΔP and become unmeasurable unless an initial tension is applied to it. Also, the covalent bond radius of silicon is 1.17 and that of boron is 0.88, so when boron is partially implanted into silicon, that part undergoes tensile strain. For example, by adjusting the temperature of boron in the second shrimp layer 14, an initial tension can be given to the boron in the n-type silicon substrate 8 (covalent bond radius is 1.10 > m). Adjust the degree of silicon substrate root 8
The initial tension is given in consideration of the relative strain between the shrimp layer and the second shrimp layer 14.

次に、第9図(ト)に示すように、第2エビ層14の上
に1050’Cの温度で水素ガスH2の雰囲気中で、1
Q”cm−”の′a度のホウ素(n形〉を選択エピタキ
シャルして第3エビ層15を形成する。
Next, as shown in FIG.
A third layer 15 is formed by selectively epitaxially using boron (n-type) having a degree of Q"cm-".

更に、第9図(ヂ)に示すように、第3エビ層15の上
に105000の温度で水素ガスH2の雰囲気中で、1
017cm″″コの81度のリン(n形)を選択エピタ
キシャルして第4エビ[16を形成する。
Furthermore, as shown in FIG. 9(d), 1 liter was applied on top of the third shrimp layer 15 at a temperature of 105,000 ℃ in an atmosphere of hydrogen gas H2.
A fourth shrimp [16] is formed by selectively epitaxializing 81 degree phosphorus (n-type) of 017 cm''.

第9図(す〉は、第9図(チ)に示す選択エピタキシセ
ルの工程の後に8.02の酸化膜9を弗化水素)−IF
でエツチングして除去(工程は図示せず)した状態にお
いて、第1エビ層12と第3エビ層15を除去するエツ
チング工程を示している。
FIG. 9(S) shows the oxide film 9 of 8.02 after the selective epitaxy cell process shown in FIG. 9(H).
This figure shows an etching process for removing the first shrimp layer 12 and the third shrimp layer 15 in a state where the first shrimp layer 12 and the third shrimp layer 15 are removed by etching (step not shown).

このエツチング工程では、図示していないが、アルカリ
の液中に全体が浸積されており、n形のシリコン基板8
と第4エビ層16がp形の第2エビ層14に対してプラ
スの電位となるように直流パルス電[17かうピーク値
が5■で繰返し周期が0.048Z程度の正のパルス電
圧が印加されている。この電圧印加によりn形のシリコ
ン基板8と第4エビ層16はその表面に不溶性膜が形成
されて不動態化される結果そのエツチング速度が第1エ
ビ層12と第3エビ層15に対して大幅に遅くなるので
、これを利用して第1エビ層12と第31ビ腑15を除
去する。さらに、第2エビ層14はドープされたホウ素
のI!麿が4×10+9より大きいときにはエツチング
速度がドープされないシリコンの場合の通常の速度から
大幅に遅れる現菜を利用して、第2エビ層14を残して
全体として第9図(ヌ)に示すように一部に開口部18
をもち、さらにシリコン基板8と第2エビ層14との間
に間隙を持つように形成される。
In this etching step, although not shown, the entire n-type silicon substrate 8 is immersed in an alkaline solution.
A DC pulse voltage [17] is applied with a positive pulse voltage with a peak value of 5 mm and a repetition period of about 0.048 Z so that the fourth shrimp layer 16 has a positive potential with respect to the p-type second shrimp layer 14. is being applied. As a result of this voltage application, an insoluble film is formed on the surfaces of the n-type silicon substrate 8 and the fourth shrimp layer 16 to passivate them, so that the etching rate is lower than that of the first shrimp layer 12 and the third shrimp layer 15. Since it becomes much slower, the first shrimp layer 12 and the 31st shrimp layer 15 are removed by taking advantage of this. Furthermore, the second shrimp layer 14 is doped with boron I! When the etching rate is larger than 4×10+9, the etching speed is much slower than the normal speed for undoped silicon.Using the present material, the second layer 14 is left and the entire etching process is performed as shown in FIG. opening 18 in part
, and a gap is formed between the silicon substrate 8 and the second shrimp layer 14.

第9図(ル)は、熱酸化の工程を示ず。この工程では、
シリコン基板8、第2エビ&!14、および第4エビ層
16の内外の全表面にそれぞれ醇化IBS (St 0
2 > 8 a、14a1および16aを形成させる。
FIG. 9(R) does not show the thermal oxidation process. In this process,
Silicon substrate 8, second shrimp &! 14, and the entire inner and outer surfaces of the fourth shrimp layer 16 are coated with liquefied IBS (St 0
2>8a, 14a1 and 16a are formed.

第9図(オ)はプラズマエツチングの工程を示す。この
工程では、第9図(ル)の工程でシリコン基板8、第2
エビ層14、および第4エピ116の内外の全表面にそ
れぞれ形成された酸化膜8a、14a、および16aの
うち、シリコン基板8と第4エビFPIJ16の外面の
部分に形成された酸化膜をプラズマエツチングにより除
去し、次の工程での選択エピタキシャル成長の準備をす
る。
FIG. 9(e) shows the plasma etching process. In this step, the silicon substrate 8 and the second
Of the oxide films 8a, 14a, and 16a formed on the entire inner and outer surfaces of the shrimp layer 14 and the fourth epitaxial layer 116, the oxide films formed on the outer surfaces of the silicon substrate 8 and the fourth shrimp FPIJ 16 are exposed to plasma. It is removed by etching to prepare for selective epitaxial growth in the next step.

第9図(ワ)の工程では、全体を105000の温度で
水素H2の雰囲気中でシリコン基板8と第4エビll!
116の外面の部分にn形の選択エビクキシャル成長を
さける。この選択エピタキシャル成長により、シリコン
基板8と第4エビ層16との間に形成された開口部18
が埋められてシェル20が形成され内部に棒状の第4エ
ビ層で形成された振動梁13をもつ振動形差圧センサの
検出部が形成される。
In the process shown in FIG. 9 (wa), the entire silicon substrate 8 and the fourth shrimp 11 are placed in an atmosphere of hydrogen H2 at a temperature of 105,000 ℃.
Selective eviaxial growth of n-type is avoided on the outer surface portion of 116. Through this selective epitaxial growth, an opening 18 is formed between the silicon substrate 8 and the fourth shrimp layer 16.
is buried to form a shell 20, and a detecting section of a vibrating differential pressure sensor having a vibrating beam 13 formed of a rod-shaped fourth shrimp layer inside is formed.

この第9図(ワ)の工程では水素tl 2の雰囲気中で
選択エピタキシャル成長をさせたので、シリコンの単結
晶で出来たシリコン基板8とシェル20との間に形成さ
れた中空室21の中には水素1−12が封入されている
In the process shown in FIG. 9(W), selective epitaxial growth was performed in an atmosphere of hydrogen tl 2, so that the hollow chamber 21 formed between the silicon substrate 8 made of single crystal silicon and the shell 20 was is filled with hydrogen 1-12.

そこで、第9図(力)に示すように9000Gで真空と
した雰囲気の中にこの検出部を持゛っ振動形差圧センサ
を入れて、シリコンの結晶格子の間を通してこの水素H
2を脱気して真空とする。このようにして得られた真空
度は1×10″″3丁Orr以下となる。
Therefore, as shown in Figure 9 (force), a vibrating differential pressure sensor with this detection part was placed in a vacuum atmosphere at 9000G, and this hydrogen H was passed between the silicon crystal lattices.
2 is degassed to create a vacuum. The degree of vacuum thus obtained is 1×10″″3 Orr or less.

〈発明が解決しようとする問題点〉 以上のようにして、先順に係る振動形差圧センサは振動
梁と共にカバーもシリコン基板と一体に製造することが
でき、従来の公知の振動形差圧センサの欠点を除去する
ことができるが、なお次に説明する欠点を持つ。
<Problems to be Solved by the Invention> As described above, in the vibrating differential pressure sensor according to the prior art, both the vibrating beam and the cover can be manufactured integrally with the silicon substrate. However, it still has the following drawbacks.

このような振動形差圧センサを用いて、例えば500K
Qf/cm’ k:も及ぶ^いD圧5p(7)Wで例え
ば(10m m H20〜10 K Q f / Om
 2)のような微小な差圧ΔPを測定する場合には、振
動形差圧センサの受圧ダイアフラムの一方の面には静圧
SPが他方の面には静圧(SP+ΔP)が印加されるの
で、この静圧SPにより基板、受圧ダイアフラム、振i
ll梁がε5−8p l/Esだけ収縮する。但し、E
sは体積圧縮率、!は振#梁の長さである。
Using such a vibrating differential pressure sensor, for example, 500K
Qf/cm'k: For example, at a high D pressure of 5p(7)W (10mm H20~10K Qf/Om
When measuring a minute differential pressure ΔP like in 2), static pressure SP is applied to one side of the pressure receiving diaphragm of the vibrating differential pressure sensor, and static pressure (SP + ΔP) is applied to the other side. , due to this static pressure SP, the substrate, pressure receiving diaphragm, vibration i
ll beam contracts by ε5-8p l/Es. However, E
s is the volumetric compressibility,! is the length of the beam.

従って、振動梁にはεSだけの圧縮歪が加わり、このた
め振動梁の共振周波数が変化して静圧誤差を生じるとい
う問題が生じる。
Therefore, a compressive strain of εS is applied to the vibrating beam, which causes a problem in that the resonant frequency of the vibrating beam changes and a static pressure error occurs.

く問題点を解決するための手段〉 この発明は、以上の問題点を解決するために、周囲に固
定部を持ちその内側に差圧によって変形する受圧ダイア
フラムを持つ半導体の基板と、この基板に形成され差圧
によって受圧ダイアプラムの表面付近に生じる歪みを測
定する少なくとも1個以上の振動梁と、一端が基板に固
定され他端がこの振動梁の少なくとも一端に所定の角度
で結合された支持梁と、基板に一体に形成され振動梁と
支持梁の周囲を覆うシェルと、固定部と接合され差圧を
成す一方の圧力を導入する導圧孔を持つ半導体の基台を
有するようにしたものである。
Means for Solving the Problems> In order to solve the above problems, the present invention provides a semiconductor substrate having a fixed portion around the periphery and a pressure-receiving diaphragm that is deformed by differential pressure inside the substrate; at least one vibrating beam that measures the strain generated near the surface of the pressure-receiving diaphragm due to differential pressure; and a support beam having one end fixed to the substrate and the other end coupled at a predetermined angle to at least one end of the vibrating beam. A shell that is integrally formed on the substrate and covers the vibrating beam and the support beam, and a semiconductor base that is connected to the fixed part and has a pressure conducting hole that introduces one pressure that forms a differential pressure. It is.

く作 用〉 基板に一端が固定された支持梁の他端を振動梁の少なく
とも一端に固定するようにして静圧によって振動梁に加
わる歪みを静圧によって支持梁に生じる逆方向の歪みで
打ち消す。
Function: One end of the support beam is fixed to the substrate, and the other end of the support beam is fixed to at least one end of the vibration beam, so that the strain applied to the vibration beam due to static pressure is canceled out by the strain in the opposite direction generated in the support beam due to static pressure. .

以下、本発明の実施例について図面に基づいて説明する
。第1図は本発明のシェルを除いた1実施例を示す射視
図、第2図はシェルを付したそのX−x断面の構成を示
す断面図、第30は第1図における振動梁の近傍を拡大
して示した拡大図である。
Embodiments of the present invention will be described below based on the drawings. Fig. 1 is a perspective view showing one embodiment of the present invention excluding the shell, Fig. 2 is a sectional view showing the configuration of the X-x cross section with the shell attached, and Fig. 30 is a view of the vibrating beam in Fig. 1. FIG. 3 is an enlarged view showing the vicinity.

これ等の図において、22は円筒状のシリコンの基板で
あり、23はこの基板22の中央を掘って薄肉部を形成
して静圧SP s  (Sr+ΔP)を受ける受圧部と
した受圧ダイアフラムであり、例えばシリコンをエツチ
ングして作られ、その周囲は円環状に厚肉の固定部24
とされている。
In these figures, 22 is a cylindrical silicon substrate, and 23 is a pressure-receiving diaphragm that is formed by digging the center of this substrate 22 to form a thin part and serving as a pressure-receiving part that receives static pressure SP s (Sr+ΔP). , made by etching silicone, for example, and surrounded by a thick-walled fixing part 24 in an annular shape.
It is said that

25は差圧による歪みを検出する振動梁部、26は内部
を例えば真空に保持するシェルであり、これ等はM9図
で説明した製造方法と同様にしで製造される。
Reference numeral 25 is a vibrating beam portion for detecting strain due to differential pressure, and reference numeral 26 is a shell for maintaining the inside in a vacuum, and these are manufactured by the same manufacturing method as explained in FIG. M9.

1!動梁部25の詳細は第3図に示しである。この図に
おいて、27は断面が矩形の棒状の振動梁であり、その
一端27aは基板22の受圧ダイアフラム23に一体に
固定され他端27t)は断面が矩形の棒状の支持梁28
.29の各一端28a129aに一体に固定されている
。支持梁28,29は撮動@27に対して角度αだけ傾
斜してその他端28b、29bが基板22の受圧ダイア
フラム23に一体に固定されている。さらに、振動梁2
7の側面には空間30,31が、支持梁28.29の側
面も空間32が、振!!JJ@27の底面にも空rMJ
33<第2図)がそれぞれ形成されている。
1! Details of the moving beam section 25 are shown in FIG. In this figure, 27 is a bar-shaped vibration beam with a rectangular cross section, one end 27a of which is integrally fixed to the pressure receiving diaphragm 23 of the substrate 22, and the other end 27t) is a rod-shaped support beam 28 with a rectangular cross section.
.. 29 is integrally fixed to each one end 28a129a. The support beams 28 and 29 are inclined at an angle α with respect to the imaging @27, and the other ends 28b and 29b are integrally fixed to the pressure receiving diaphragm 23 of the substrate 22. Furthermore, the vibration beam 2
There are spaces 30 and 31 on the sides of the support beams 28 and 29, and spaces 32 on the sides of the support beams 28 and 29. ! There is also an empty rMJ on the bottom of JJ@27
33<Fig. 2) are formed respectively.

従って、振動梁27、支持梁28.29はこれ等の各一
端が受圧ダイアフラム23に固定されている以外は空間
に浮いている。
Therefore, the vibrating beam 27 and the supporting beams 28, 29 are floating in space except that one end of each of them is fixed to the pressure receiving diaphragm 23.

固定部24の底面は中央に圧力<Sp+ΔP)を導入す
る導圧孔33を持つ円板状のシリコンの基台34が例え
ば陽極接合などにより接合されている。
A disk-shaped silicon base 34 having a pressure guiding hole 33 for introducing pressure (<Sp+ΔP) in the center is bonded to the bottom surface of the fixed part 24 by, for example, anodic bonding.

次に、以上のように構成された第1図、第2図に示す実
施例の動作について、第4図と第5図に示″Ij動作説
明図を用いて説明する。第4図は静圧Spが印加された
ときの振e梁部25の変形を、第5図は差圧ΔPが印加
されたときの振!ll@部25の変形をぞれぞれ示して
いる。
Next, the operation of the embodiment shown in FIGS. 1 and 2 constructed as above will be explained using the "Ij operation explanatory diagrams shown in FIGS. FIG. 5 shows the deformation of the oscillating beam section 25 when the pressure Sp is applied, and the deformation of the oscillating beam section 25 when the differential pressure ΔP is applied.

まづ、静圧SFが加わったときの動作について第4図を
用いて説明する。
First, the operation when static pressure SF is applied will be explained using FIG. 4.

静圧Spが受圧ダイアフラム23に印加されると、当初
は実線のような形状をしている振動梁27、支持梁28
.29が、振vJ梁27にはその長さに応じてεs =
Sp l+ /Esなる圧m歪が、支持梁28.29に
はεs ””Sp 12/Esなる圧縮歪が生じること
によって、支持’!28.29は振動梁27に対してα
なる角度で結合されているので点線で示したように変形
し、振動梁27の右端はΔχiだけ右に変位する。
When the static pressure Sp is applied to the pressure receiving diaphragm 23, the vibration beam 27 and the support beam 28, which initially have a shape like a solid line,
.. 29, but for the swing vJ beam 27, εs =
A compressive strain of Sp 1+ /Es is generated in the support beam 28.29, and a compressive strain of εs ``''Sp 12/Es is generated in the support beam 28.29, so that the support '! 28.29 is α for the vibration beam 27
Since they are connected at an angle, the beams are deformed as shown by the dotted line, and the right end of the vibrating beam 27 is displaced to the right by Δχi.

従って、Δχ響−εSの関係になるように選定すると、
静圧Spが受圧ダイアフラム23に加わっても、結果と
して振IJI梁27には歪みが加わらないことになる。
Therefore, if the selection is made so that the relationship is Δχ Hibiki - εS,
Even if the static pressure Sp is applied to the pressure receiving diaphragm 23, no strain is applied to the swing IJI beam 27 as a result.

次に、差圧ΔPが振動梁の方向に圧縮応力σdとして加
わったときの動作について第5図を用いて説明する。
Next, the operation when a differential pressure ΔP is applied as a compressive stress σd in the direction of the vibrating beam will be described using FIG. 5.

差圧ΔPが印加されない状態でば振動梁27、支持梁2
8,29は実線で示すような形状になっている。
When the differential pressure ΔP is not applied, the vibration beam 27 and the support beam 2
8 and 29 have shapes as shown by solid lines.

次に、振動梁27の長手方向に差圧ΔPにより圧縮応力
σdが加わると、振動梁27の一端27aにはその良さ
に応じて圧縮歪εdが加わり、−方で支持梁28.2つ
の両端にはその長さに応じて逆に引張歪εa′−12ν
εd/i’+(シ:ポアソン比)が加わる。
Next, when a compressive stress σd is applied in the longitudinal direction of the vibrating beam 27 due to the differential pressure ΔP, a compressive strain εd is applied to one end 27a of the vibrating beam 27 depending on its quality. The tensile strain εa′−12ν depends on its length.
εd/i'+ (Sh: Poisson's ratio) is added.

このεdとεd′の歪みにより支持梁2日、29の各一
端28a、29aはΔχ2だけ変位する。
Due to the distortion of εd and εd', each end 28a, 29a of the support beam 29 is displaced by Δχ2.

このΔχ2がΔχ2キOとなるように各梁を設計すると
、圧縮歪εdが振動梁27に加わり差圧ΔPに対応した
共振周波数の変化となり、これにより差圧ΔPが検出で
きる。
If each beam is designed so that this Δχ2 becomes Δχ2 kiO, a compressive strain εd is applied to the vibrating beam 27, resulting in a change in the resonance frequency corresponding to the differential pressure ΔP, and thereby the differential pressure ΔP can be detected.

第6図は本発明における振動梁部の第2の実施例の構成
を示す縦断面図である。
FIG. 6 is a longitudinal cross-sectional view showing the structure of a second embodiment of the vibrating beam section according to the present invention.

この実施例は、第3図に示す振vJ梁27の他端27b
tfi紙面に対して上下に変位するのを防止するために
、支持梁33の一端33aを支持#R28,29の一端
288N 29aに固定し、その他端33bを受圧ダイ
アフラム23に固定するようにしたものである。このよ
うに構成しても第3図に示す実施例と同様に動作する。
In this embodiment, the other end 27b of the swing vJ beam 27 shown in FIG.
One end 33a of the support beam 33 is fixed to one end 288N 29a of the support #R28, 29, and the other end 33b is fixed to the pressure receiving diaphragm 23 in order to prevent vertical displacement with respect to the surface of the paper. It is. Even with this configuration, it operates in the same way as the embodiment shown in FIG.

なお、いずれの実施例も振り梁27の一端は基板に結合
し、他端のみに支持梁を設ける構成として説明したが、
これに限らず振動梁の両端に支持梁を設ける構成として
も同様に動作づる。
In each of the embodiments, one end of the swing beam 27 is connected to the substrate, and a support beam is provided only at the other end.
The present invention is not limited to this, and a structure in which support beams are provided at both ends of the vibrating beam can also operate in the same manner.

なお、バラツキのためにこれ等の支持梁28.29.3
3による静圧補償では補償の程度が不十分な場合には、
第1図および第2図における固定部24の上面或いは内
部に例えば拡散などにより歪みゲージを形成したり、或
いは振動梁27と同じよう4【振#J梁を別に設けてこ
れを静圧センリ゛として用い、その出力で振動梁での静
圧補償のバラツキ分を電気直路で補償するようにすると
、より完全な静圧補償を達成できる。また、この静圧セ
ンサは基台34側に設けても良い。
In addition, due to variations, these support beams 28.29.3
If the static pressure compensation according to 3 is insufficient,
A strain gauge may be formed on the upper surface or inside the fixing part 24 in FIGS. 1 and 2 by diffusion, or a 4 [vibration #J beam may be provided separately in the same way as the vibrating beam 27 and this may be used as a static pressure sensor. If the output is used to compensate for variations in static pressure compensation in the vibrating beam using a direct electrical path, more complete static pressure compensation can be achieved. Further, this static pressure sensor may be provided on the base 34 side.

〈発明の効果〉 以上、実施例と共に具体的に説明したように本発明によ
れば、振動梁の少なくとも一端に支持梁を設けることに
よって静圧に対して引張歪を生じさせるようにして静圧
による圧縮歪みを補償するようにしたので、静圧誤差を
小さくすることができる。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, a support beam is provided at at least one end of the vibrating beam to generate tensile strain against static pressure, thereby reducing the static pressure. Since the compressive strain caused by this is compensated for, the static pressure error can be reduced.

【図面の簡単な説明】 第1図はシェルを除いた本発明の1実施例の構成を示す
射視図、第2図は第1図のX−X断面を示す断面図、第
3図は第1図における振動梁部を拡大した拡大図、第4
図は第1図と第2図に示す実施例の静圧が印加されたと
きの動作を説明する動作説明図、第5図は第1図と第2
図に示す実施例の差圧が印加されたときの動作を説明す
る動作説明図、第6図は本発明の振動梁部の第2の実施
例の構成を示す断面図、第7図はシェルを除いた公知の
従来の振動形差圧センサの構成を示す射視図、第8図は
第7図のX−X断面を示す断面図、第9図は先願の従来
の振動形差圧センナを製造する工程を説明する工程図で
ある。 1・・・シリコン基板、2・・・受圧ダイアフラム、3
・・・邊動梁、5・・・空洞部、6・・・カバー、7・
・・内部空間、8・・・シリコン基板、12・・・第1
エビ層、13・・・振動梁、14・・・第2エビ層、1
5・・・第3エビ層、16・・・第4エビ層、18・・
・間口部、20・・・シェル、21・・・中空室、22
・・・基板、23・・・受圧ダイアフラム、24・・・
固定部、25・・・振動梁部、26・・・シェル、27
・・・振動梁、28.29.33・・・支持梁。 第  1  図 第2図 第3図 第4図 第 5図 第6図 第7図 第8図 検出部D    S+)士Ap 第9図
[Brief Description of the Drawings] Fig. 1 is a perspective view showing the configuration of one embodiment of the present invention excluding the shell, Fig. 2 is a cross-sectional view taken along the line XX in Fig. 1, and Fig. 3 is An enlarged view of the vibrating beam section in Fig. 4.
The figure is an explanatory diagram of the operation of the embodiment shown in Figures 1 and 2 when static pressure is applied, and Figure 5 is the operation diagram of the embodiment shown in Figures 1 and 2.
An operation explanatory diagram illustrating the operation of the embodiment shown in the figure when differential pressure is applied, FIG. 6 is a sectional view showing the configuration of the second embodiment of the vibrating beam section of the present invention, and FIG. 7 is a shell FIG. 8 is a sectional view taken along the line X-X in FIG. 7, and FIG. 9 is a conventional vibrating differential pressure sensor of the prior application. It is a process diagram explaining the process of manufacturing senna. 1... Silicon substrate, 2... Pressure receiving diaphragm, 3
... Swing beam, 5... Hollow part, 6... Cover, 7.
...Internal space, 8...Silicon substrate, 12...First
Shrimp layer, 13... Vibration beam, 14... Second shrimp layer, 1
5...Third shrimp layer, 16...Fourth shrimp layer, 18...
・Frontage part, 20... Shell, 21... Hollow chamber, 22
...Substrate, 23...Pressure diaphragm, 24...
Fixed part, 25... Vibration beam part, 26... Shell, 27
... Vibration beam, 28.29.33... Support beam. Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Detection section D S+) Ap Fig. 9

Claims (1)

【特許請求の範囲】[Claims] 周囲に固定部を持ちその内側に差圧によって変形する受
圧ダイアフラムを持つ半導体の基板と、この基板に形成
され前記差圧によって前記受圧ダイアフラムの表面付近
に生じる歪みを測定する少なくとも1個以上の振動梁と
、一端が前記基板に固定され他端がこの振動梁の少なく
とも一端に所定の角度で結合された支持梁と、前記基板
に一体に形成され前記振動梁と支持梁の周囲を覆うシェ
ルと、前記固定部と接合され前記差圧を成す一方の圧力
を導入する導圧孔を持つ半導体の基台を有することを特
徴とする振動形差圧センサ。
A semiconductor substrate having a fixed part around it and a pressure receiving diaphragm deformed by differential pressure inside the semiconductor substrate, and at least one or more vibrations formed on this substrate to measure the strain generated near the surface of the pressure receiving diaphragm due to the differential pressure. a support beam having one end fixed to the substrate and the other end coupled at a predetermined angle to at least one end of the vibration beam; and a shell integrally formed with the substrate and surrounding the vibration beam and the support beam. A vibrating differential pressure sensor, characterized in that it has a semiconductor base having a pressure guiding hole which is connected to the fixed part and introduces one pressure forming the differential pressure.
JP28627487A 1987-11-12 1987-11-12 Vibration type differential pressure sensor Granted JPH01127929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28627487A JPH01127929A (en) 1987-11-12 1987-11-12 Vibration type differential pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28627487A JPH01127929A (en) 1987-11-12 1987-11-12 Vibration type differential pressure sensor

Publications (2)

Publication Number Publication Date
JPH01127929A true JPH01127929A (en) 1989-05-19
JPH0519090B2 JPH0519090B2 (en) 1993-03-15

Family

ID=17702243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28627487A Granted JPH01127929A (en) 1987-11-12 1987-11-12 Vibration type differential pressure sensor

Country Status (1)

Country Link
JP (1) JPH01127929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085115A (en) * 2007-10-01 2009-04-23 Mazda Motor Corp Fuel injection device of rotary piston engine
DE102017010600A1 (en) 2016-11-21 2018-05-24 Yokogawa Electric Corporation resonant converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085115A (en) * 2007-10-01 2009-04-23 Mazda Motor Corp Fuel injection device of rotary piston engine
DE102017010600A1 (en) 2016-11-21 2018-05-24 Yokogawa Electric Corporation resonant converter
JP2018084441A (en) * 2016-11-21 2018-05-31 横河電機株式会社 Vibration type transducer
US11211916B2 (en) 2016-11-21 2021-12-28 Yokogawa Electric Corporation Resonant transducer

Also Published As

Publication number Publication date
JPH0519090B2 (en) 1993-03-15

Similar Documents

Publication Publication Date Title
US11226251B2 (en) Method of making a dual-cavity pressure sensor die
US5188983A (en) Polysilicon resonating beam transducers and method of producing the same
EP0451992B1 (en) Detection of vibrations of a microbeam through a shell
US5473944A (en) Seam pressure sensor employing dielectically isolated resonant beams and related method of manufacture
US11255740B2 (en) Pressure gauge chip and manufacturing process thereof
JPH03148878A (en) Electron apparatus sensor
JPH10508090A (en) Dielectrically separated resonant microsensor
US5880509A (en) Semiconductor pressure sensor and its manufacturing method
EP0467811B1 (en) Micro-pressure-sensor
JPH01127929A (en) Vibration type differential pressure sensor
JP2006029984A (en) Oscillating type pressure sensor
JPH01127931A (en) Vibration type differential pressure sensor
JPH01127930A (en) Vibration type differential pressure sensor
JPH01138432A (en) Vibration type differential pressure sensor
JPH0468576B2 (en)
JPH0468575B2 (en)
JPH04304679A (en) Pressure sensor
JPH0468574B2 (en)
JPH01127928A (en) Vibration type distortion sensor
JPH0810169B2 (en) Vibration type differential pressure sensor
JPH01297521A (en) Manufacture of vibrating type transducer
JPH0519088B2 (en)
JPH0510839A (en) Semiconductor pressure sensor
JPS61114139A (en) Differential pressure sensor
JPH0420827A (en) Vibrating transducer