JPH01127145A - Continuous casting apparatus - Google Patents

Continuous casting apparatus

Info

Publication number
JPH01127145A
JPH01127145A JP28458287A JP28458287A JPH01127145A JP H01127145 A JPH01127145 A JP H01127145A JP 28458287 A JP28458287 A JP 28458287A JP 28458287 A JP28458287 A JP 28458287A JP H01127145 A JPH01127145 A JP H01127145A
Authority
JP
Japan
Prior art keywords
mold
coil
unit
refrigerant
electromagnetic stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28458287A
Other languages
Japanese (ja)
Other versions
JPH0790332B2 (en
Inventor
Tsutomu Ikeda
力 池田
Toshihiko Terakawa
寺川 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62284582A priority Critical patent/JPH0790332B2/en
Publication of JPH01127145A publication Critical patent/JPH01127145A/en
Publication of JPH0790332B2 publication Critical patent/JPH0790332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To easily execute change of molds for short time by separately forming a mold unit and an electromagnetic stirring unit and constituting cooling system for the mold with the other system to cooling system for coil. CONSTITUTION:In the case of changing the mold 1 caused by wear and damage under remaining condition of the electromagnetic stirring unit, the mold unit A is taken out from the electromagnetic stirring unit, and the mold unit A is changed. Or, by removing/fitting a holding plates 12, 13 and a key plate 15, only the mold 1 is changed. In this case, as the mold unit A is separately formed with the coil 4 for the electromagnetic unit and a coil cooling jacket 5, the treatment is easy because of light weight. Further, the coil 4 and the outside cable are necessary to separate at the terminal part 41 and change of the mold units A or change of the molds 1 can be simply executed at short time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷部機能および電磁攪拌m能を備えた連続&
S造装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a continuous &
This relates to S-building equipment.

(従来技術) 従来から連続鋳造装置において、鋳型内に導入される溶
融金属に対して′fivA誘導作用による攪拌力を付与
するために、鋳型のまわりにtm誘導コイルを配四した
ものが公知である。この装置では、鋳型を介して溶融金
属を冷却すると同時に、′ITf磁誘導コイルも冷却す
る必要がある。そのために、たとえば特公昭53−85
3Fl公報に示されるように、鋳型のまわりに設けた環
状の冷却ジャケットに電11誘導コイルを内蔵させたも
のが知られているが、この従来装置では次のような問題
がある。
(Prior art) Conventionally, continuous casting equipment has been known to have four tm induction coils arranged around the mold in order to apply stirring force due to the 'fivA induction effect to the molten metal introduced into the mold. be. In this device, it is necessary to cool the 'ITf magnetic induction coil at the same time as cooling the molten metal through the mold. For that purpose, for example,
As shown in Publication No. 3Fl, a device in which an electric 11 induction coil is built into an annular cooling jacket provided around a mold is known, but this conventional device has the following problems.

■ 連続鋳造装置においては、鋳型を形成する銅チュー
ブの摩耗および損傷あるいは鋳造鋳片サイズの変更のた
めにtax ’IIを交換する必要があり、かつ、その
交換作業は、連続鋳造作業の生産性向上のために短時間
で的中、確実であることが要求されるが、F、記従来!
装置では、鋳型のまわりに直径の異なる複数の筒状体を
同心上に配置して外側ケーシングにより包囲することに
より、環状の複数の冷却水通路を協えた冷却ジャケット
を形成し、その内部の環状空間内に電磁誘導コイルを一
体的に組込んでいるため、鋳型のみを取替えることがで
きず、鋳型と、電磁誘導コイルおよび冷却ジャケットと
を一体化したままで取替える必要があり、また、その鋳
型交換時には、外側ケーシングに設けられたターミナル
部において、内部のコイルと、外部ケーブルとの着脱が
必要であり、交換作業が非常に煩雑になり、長時間を要
し、生産性が低下する。
■ In continuous casting equipment, it is necessary to replace the TAX 'II due to wear and tear on the copper tube that forms the mold or due to changes in the size of the cast slab, and the replacement work reduces the productivity of the continuous casting operation. In order to improve, it is required to be accurate and accurate in a short time, but F, conventional!
In this device, a plurality of cylindrical bodies with different diameters are arranged concentrically around a mold and surrounded by an outer casing to form a cooling jacket with a plurality of annular cooling water passages, and the inner annular Because the electromagnetic induction coil is integrated in the space, it is not possible to replace only the mold, but it is necessary to replace the mold, the electromagnetic induction coil, and the cooling jacket as they are integrated. At the time of replacement, it is necessary to attach and detach the internal coil and the external cable at the terminal section provided on the outer casing, which makes the replacement work very complicated and takes a long time, reducing productivity.

■ しかも、予め交′!J!鋳型に電磁誘導コイルを一
体的に組込んだ状態で準備しておく必要があり、このた
め交換鋳型1の数量に相当する予備コイルが必要であり
、イニシャルコストが高くつく。
■ Moreover, exchange in advance! J! It is necessary to prepare a mold with an electromagnetic induction coil integrally assembled therein, and for this reason, spare coils corresponding to the number of replacement molds 1 are required, which increases the initial cost.

θ 冷却系において、コイルの冷却水は導体の絶縁膜を
損傷しないように上質水が要求されるが、その水量は鋳
型冷却水量に比べて生母でよいにも拘らず、従来装置で
は、鋳型の冷却水系とコイルの冷却水系とが一連に形成
され、鋳型を冷部した後の領水を利用してコイルを冷却
するようにしているため、コイルよりも上流側にある鋳
型の冷却水にもきびしい水lit準を課すことになり、
その結果、多穴で上質の冷却水が必要となり、大規模の
水処理設備が必要で、その設備費が高くなる。
θ In the cooling system, high-quality water is required for the coil cooling water so as not to damage the insulation film of the conductor.However, although the amount of water required is a raw material compared to the amount of mold cooling water, in conventional equipment, the mold The cooling water system and the coil cooling water system are formed in series, and the coil is cooled using the water after the mold has been cooled, so it is difficult to use the cooling water for the mold located upstream of the coil. We will impose a water lit standard,
As a result, multiple holes and high-quality cooling water are required, and large-scale water treatment equipment is required, which increases the equipment cost.

0 鋳型と、電磁誘導コイルと、上記鋳型およびコイル
の冷却ジャケットとが一体化されているため、これらを
固定フレームに支持させる支持構造が大型化され、とく
に鋳型振動枠を介して支持さUる場合には、鋳型振動枠
に大きな負向がかかす、鋳型振動装置の駆動力も大ぎな
ものが必要となり、エネルギー損失も大きくなる。
0 Since the mold, the electromagnetic induction coil, and the cooling jacket for the mold and coil are integrated, the support structure that supports them on the fixed frame becomes larger, and in particular, the support structure that supports them through the mold vibration frame becomes larger. In this case, a large negative force is applied to the mold vibrating frame, and a large driving force of the mold vibrating device is required, resulting in large energy loss.

(発明の目的) 本発明は、このような問題を解消するためになされたも
のであり、鋳型の摩耗および損傷あるいは鋳片ナイズの
変更時におけるvJ型の交換を短時間で、容易に行える
ようにして、機械の稼働率を高め、生産性の向上を図り
、かつ、予備コイルを不要にし、しかも、鋳型の冷却系
とコイルの冷却系を別系統にし、コイル冷却用の上質冷
媒(上質冷却水)の使用量を大幅に節減でき、さらに、
鋳型の支持構造を簡素化でき、大幅にコストダウンでき
る連続鋳造装置を提供するものである。
(Purpose of the Invention) The present invention was made in order to solve such problems, and to make it possible to easily replace the vJ type in a short time when the mold is worn out or damaged or when the slab size is changed. This increases machine availability, improves productivity, eliminates the need for spare coils, and separates the mold cooling system and coil cooling system, using high-quality refrigerant for coil cooling (high-quality cooling). Water) consumption can be significantly reduced, and
The purpose of the present invention is to provide a continuous casting device that can simplify the mold support structure and significantly reduce costs.

(発明の構成) 本発明は、両端が開口した[1と、vI型のまわりに設
けた鋳型冷却ジャケットとにより鋳型ユニットが形成さ
れ、一方、鋳Aj内を通過する溶融金属に対して電磁作
用による攪拌力を付与する電磁誘導コイルと、コイルの
まわりに設けたコイル冷却ジャケットとにより環状のl
1tl拌ユニツトが形成され、上記[!冷却ジャケット
には第1の冷媒の供給口および排出口が設けられ、コイ
ル冷却ジャケットには第2の冷媒の供給口および排出口
が設けられ、E記電磁攪伴ユニットは固定フレームに第
1の支持手段により支持され、鋳型ユニットは上記電磁
攪拌ユニットの内径部に着脱自在に挿入された状態で、
第2の支持1段により固定フレームに支持されているも
のである。
(Structure of the Invention) The present invention is characterized in that a mold unit is formed by a mold cooling jacket provided around the mold vI and a mold cooling jacket provided around the mold vI, and on the other hand, an electromagnetic action is applied to the molten metal passing through the mold Aj. An annular l
A 1tl stirring unit is formed and the above [! The cooling jacket is provided with a first refrigerant supply port and a discharge port, the coil cooling jacket is provided with a second refrigerant supply port and a discharge port, and the E electromagnetic stirring unit is provided with a first refrigerant supply port and a discharge port on the fixed frame. The mold unit is supported by a support means and is removably inserted into the inner diameter part of the electromagnetic stirring unit,
It is supported by the fixed frame by one stage of second support.

この構成により、鋳型の摩耗および損(nあるいは鋳片
サイズの変更時に、鋳型の交換を短時間で、容易に行う
ことができ、機械の稼働率を高め、生産性を向上できる
。また、予備コイルを準備する必要もなく、しかも、コ
イル冷却用としての上質冷媒(上質冷却水)の使用量を
大幅に節減でき、かつ、鋳型ユニットの支持構造を簡素
化でき、=1ストダウンが可能となる。
With this configuration, when mold wear and tear (n) or when changing the slab size, the mold can be replaced easily and in a short time, increasing machine operation rate and productivity. There is no need to prepare a coil, and the amount of high-quality refrigerant (high-quality cooling water) used for coil cooling can be significantly reduced, and the supporting structure of the mold unit can be simplified, resulting in a reduction of 1 stroke. .

(実施例) 本発明の実施例を第1図乃至第3図により説明する。(Example) Embodiments of the present invention will be described with reference to FIGS. 1 to 3.

鋳31JユニットAは、両端が開口した!# !L’!
 1と、鋳型1のまわりに設けられた鋳型冷却ジャケッ
ト2とによって構成され、電磁攪拌ユニットBは鋳型ユ
ニット八とは別体で、電磁誘導コイル4と、そのまわり
に設けられたコイル冷却ジVケット5とによって構成さ
れている。上記鋳型1は角形西面のビレットを連rc鋳
造するために角筒状の銅チューブによって形成されてい
る。ただし、鋳型1の断面形状および材質はこの実施例
に限定されるものではない。
Cast 31J unit A is open at both ends! #! L'!
1 and a mold cooling jacket 2 provided around the mold 1, the electromagnetic stirring unit B is separate from the mold unit 8, and consists of an electromagnetic induction coil 4 and a coil cooling jacket V provided around it. 5. The mold 1 is formed of a rectangular cylindrical copper tube for continuous rc casting of billets with a rectangular west face. However, the cross-sectional shape and material of the mold 1 are not limited to this embodiment.

鋳型ユニットへの基板21は平面矩形状に形成され、そ
の中央部に設けられた角孔211に、上記鋳型1よりや
や大径の角筒状に形成された内側筒体29の上端が固着
されている。この筒体29の内面には複数個の間隔調節
用突起291が突設され、このn体29内に!1ffJ
1が挿入され、同筒体29と鋳型1との間に、軸方向両
端が開口した断面角筒状の鋳型冷却用内側冷媒通路37
が形成されている。
The substrate 21 for the mold unit is formed into a rectangular planar shape, and the upper end of an inner cylinder 29 formed into a rectangular tube shape with a slightly larger diameter than the mold 1 is fixed to a square hole 211 provided in the center thereof. ing. A plurality of spacing adjustment protrusions 291 are protruded from the inner surface of this cylindrical body 29, and inside this n body 29! 1ffJ
1 is inserted between the cylindrical body 29 and the mold 1, an inner refrigerant passage 37 for mold cooling having a rectangular cylindrical cross section with both axial ends open.
is formed.

上記筒体29の外側には円筒状の外側ケーシング27が
外嵌され、このケーシング27の下端部が下部端板13
に固着され、vI型1の下端部が押え板14を介して下
部端板13に軸・方向に摺動自在に嵌合され、これによ
って冷却ジャケット2の外側冷媒通路36が形成され、
この冷媒通路36と内側冷媒通路37が下端部において
nいに連通されている。なお、外側冷媒通路36には複
数個の補強兼整流用の仕切り板28が放射状で軸方向に
配置され、この通路36が周方向に複数に区画形成され
ている。
A cylindrical outer casing 27 is fitted on the outside of the cylindrical body 29, and the lower end of this casing 27 is connected to the lower end plate 13.
The lower end of the vI type 1 is fitted to the lower end plate 13 via the holding plate 14 so as to be slidable in the axial and direction, thereby forming the outer refrigerant passage 36 of the cooling jacket 2.
The refrigerant passage 36 and the inner refrigerant passage 37 communicate with each other at the lower end. Note that a plurality of reinforcing and flow-regulating partition plates 28 are arranged radially in the axial direction in the outer refrigerant passage 36, and the passage 36 is divided into a plurality of sections in the circumferential direction.

また、l:&!JJ板21の下部において、内側筒体3
7の上部付近のまわりで外側ケーシング27の上端に中
継室底板26が連設され、この底板26と基板21との
闇に環状周壁25を介して中継室34が形成され、上記
底板26に前述した各外側冷媒通路36に対する複数個
の切欠状の連通孔35が設けられている。
Also, l:&! At the bottom of the JJ plate 21, the inner cylinder 3
A relay chamber bottom plate 26 is connected to the upper end of the outer casing 27 around the upper part of the outer casing 27, and a relay chamber 34 is formed between the bottom plate 26 and the base plate 21 via an annular peripheral wall 25. A plurality of cut-out communication holes 35 are provided for each of the outer refrigerant passages 36.

)^板21の上部には、周壁22と、上壁23が連設さ
れ、かつ、上壁23の中央部に環状の上部端板11が連
設され、この上部端板11の内径部に鋳型1の上端が押
え板12とキープレート15を介して着脱自在に固定さ
れ、これによって鋳型1の上端部のまわりに冷媒給排用
空間が形成されている。この冷媒給排用空間の内部には
円弧状の一対の堰24と、一対の仕切り板241が設け
られて冷媒供給v32と、冷1fi排出?38とが区画
形成されている。そして、冷媒供給室32の底部で、基
板21の外側辺部(図面左側)には冷媒供給口31が設
けられているとともに、仕切り板25付近の底部に上記
中継室34に連通ずる連通孔33が設けられている。冷
媒排出v38は、上記鋳型1と内側筒体29との間に形
成された内側冷媒通路37の上端開口部に連通され、こ
の冷媒排出室38の底部で、基板21の外側辺部(図面
右側)に冷媒排出口39が設けられている。また、この
鋳型冷却ジャケット2には必要に応じて下端部その他適
当な箇所にドレン抜き孔(図示省略)が設けられる。
) A peripheral wall 22 and an upper wall 23 are connected to the upper part of the plate 21, and an annular upper end plate 11 is connected to the center of the upper wall 23. The upper end of the mold 1 is removably fixed via a holding plate 12 and a key plate 15, thereby forming a refrigerant supply/discharge space around the upper end of the mold 1. Inside this refrigerant supply/discharge space, a pair of arcuate weirs 24 and a pair of partition plates 241 are provided to supply refrigerant v32 and discharge cold 1fi. 38 are partitioned. At the bottom of the refrigerant supply chamber 32, a refrigerant supply port 31 is provided on the outer side of the board 21 (on the left side in the drawing), and a communication hole 33 that communicates with the relay chamber 34 is provided at the bottom near the partition plate 25. is provided. The refrigerant discharge v38 is communicated with the upper end opening of the inner refrigerant passage 37 formed between the mold 1 and the inner cylindrical body 29, and is connected to the outer side of the substrate 21 (the right side in the drawing) at the bottom of the refrigerant discharge chamber 38. ) is provided with a refrigerant outlet 39. Further, the mold cooling jacket 2 is provided with drain holes (not shown) at the lower end or other appropriate locations as necessary.

一方、電磁攪拌ユニットBのコイル冷却ジ1νケット5
は、鋳型ユニットへの鋳型冷却ジャケット2とは別体で
、鋳型冷却ジャケット2の外側ケーシング27を包囲す
る内1III筒体51と、それより大径の外側ケーシン
グ52と、上下一対の環状端板53.54とによって形
成され、その内部空間に下部環状仕切り板55と、中1
ffia状仕切り板56とが設けられ、上端同志が互い
に連通ずる内側冷媒通路62と、外側冷媒通路63とが
形成されている。内側冷媒通路62には電磁誘導コイル
4が組み込まれ、コイル4は外側ケーシング52に設け
られたターミナル部41で外部ケーブル(図示省略)に
接続されるようになっている。また、このコイル冷部ジ
ャケット5には外部から内側冷媒通路62内に冷媒を供
給する冷媒供給管61と、外側冷媒通路63から外部に
冷媒を排出する冷媒排出管64とが設けられている。
On the other hand, the coil cooling jacket 5 of the electromagnetic stirring unit B
is separate from the mold cooling jacket 2 to the mold unit, and includes an inner 1III cylinder 51 surrounding the outer casing 27 of the mold cooling jacket 2, an outer casing 52 with a larger diameter, and a pair of upper and lower annular end plates. 53 and 54, and a lower annular partition plate 55 and a middle 1
ffia-shaped partition plate 56 is provided, and an inner refrigerant passage 62 and an outer refrigerant passage 63 whose upper ends communicate with each other are formed. An electromagnetic induction coil 4 is installed in the inner refrigerant passage 62, and the coil 4 is connected to an external cable (not shown) at a terminal portion 41 provided in the outer casing 52. Further, this coil cooling section jacket 5 is provided with a refrigerant supply pipe 61 that supplies refrigerant from the outside into the inner refrigerant passage 62, and a refrigerant discharge pipe 64 that discharges the refrigerant to the outside from the outer refrigerant passage 63.

上記電磁攪拌ユニットBは固定フレーム7に設けられた
支持台(第1の支持手段)71に設置されて、ボルト7
2等により固定されている。73゜74は第2の支持手
段としての鋳型振動枠であって、固定フレーム7にm型
& l、tJ¥&置やばね等を介して振初可能に支持さ
れている。そして、上記電磁攪拌ユニットBのコイル冷
却ジャケット5の内径部に、鋳型ユニットAの鋳型冷却
ジャケット2が着脱自在に挿入された状態で、この鋳型
ユニットAの基板21が上記鋳型振動枠73.74上に
、着脱自在に支持される。
The electromagnetic stirring unit B is installed on a support stand (first support means) 71 provided on the fixed frame 7, and the bolts 7
It is fixed by 2nd grade. Reference numerals 73 and 74 designate mold vibrating frames as second support means, which are supported by the fixed frame 7 so as to be able to vibrate via m-shaped &l, tJ\&mounts, springs, and the like. Then, with the mold cooling jacket 2 of the mold unit A removably inserted into the inner diameter part of the coil cooling jacket 5 of the electromagnetic stirring unit B, the substrate 21 of the mold unit A is attached to the mold vibrating frame 73, 74. It is removably supported on the top.

次に、作用について説明する。Next, the effect will be explained.

上記連続&2r造装置により連続vI造を行う時は、上
部より鋳型1内に溶融金属(図示省略)を導入し、鋳型
ユニットへの冷媒供給口31から鋳qll冷却ジャケッ
ト2内に第1の冷媒たとえば通常の冷却水を供給すると
ともに、電磁攪拌ユニットBの冷媒供給管61から冷却
ジャケット5内に第2の冷媒たとえば上質冷却水を゛供
給し、かつ、電磁誘導コイル4に通電し、図外の鋳型他
振動装畝により鋳型振動枠73.74を介して鋳型ユニ
ットAを振動させ、鋳型1を微小振動させることにより
、上記鋳型1内に導入された溶融金属が鋳型1内で冷却
されつつ、下部より送り出され、断面角形の鋳片(ビレ
ット)が連続鋳造される。
When continuous vI manufacturing is performed using the above continuous & 2r manufacturing equipment, molten metal (not shown) is introduced into the mold 1 from the upper part, and the first refrigerant is introduced into the casting qll cooling jacket 2 from the refrigerant supply port 31 to the mold unit. For example, in addition to supplying normal cooling water, a second refrigerant, such as high-quality cooling water, is supplied from the refrigerant supply pipe 61 of the electromagnetic stirring unit B into the cooling jacket 5, and the electromagnetic induction coil 4 is energized. By vibrating the mold unit A via the mold vibrating frames 73 and 74 by the vibration device ridges of the mold and causing the mold 1 to minutely vibrate, the molten metal introduced into the mold 1 is cooled within the mold 1. It is fed out from the bottom, and a billet with a rectangular cross section is continuously cast.

この連続鋳3i!i時において、鋳型ユニットへの冷媒
供給口31から供給された第1の冷媒すなわら通常の冷
却水は実線矢印に示すように冷媒供給室32から連通孔
33を経て一旦中継室34に流入され、この中継?34
から連通孔35を経て外側冷媒通路36に流入される。
This continuous casting 3i! At time i, the first refrigerant, that is, normal cooling water, supplied from the refrigerant supply port 31 to the mold unit once flows from the refrigerant supply chamber 32 through the communication hole 33 into the relay chamber 34 as shown by the solid arrow. Is this relay? 34
The refrigerant then flows into the outer refrigerant passage 36 through the communication hole 35 .

そして、この通路36内で、各仕切り板28により整流
された後、内側筒体29の下’41Ft1口部から内側
冷媒通路37に流入され、ここで、鋳を1の冷却な、ら
びにその内部を通過する溶融金属の冷却が行われる。鋳
型冷却後の排水は、内側冷媒通路37の上端開口部から
一旦冷媒排出室38に回収された模、排出口39から鋳
型冷却ジャケット2の外部に排出される。
After being rectified by each partition plate 28 in this passage 36, the coolant flows into the inner refrigerant passage 37 from the lower 41Ft1 opening of the inner cylinder 29, where the casting is cooled and its interior cooled. Cooling of the molten metal passing through takes place. The waste water after cooling the mold is once collected into the refrigerant discharge chamber 38 through the upper end opening of the inner refrigerant passage 37 and then discharged to the outside of the mold cooling jacket 2 through the discharge port 39 .

このとき、内側冷媒通路37を狭くしであるので、この
通路37を通過する冷却水の流速が速く、かつ、上記外
側冷媒通路36における整流作用と相俟って熱交換効率
が高められ、鋳型1および鋳型1内の溶融金属が効率よ
く冷却される。なお、この鋳型1の冷却用として、多量
の冷却水が用いられるが、その冷却水の水質基準は比較
的緩く、従って、通常の冷却水を使用することができる
At this time, since the inner refrigerant passage 37 is narrowed, the flow rate of the cooling water passing through this passage 37 is high, and together with the rectification effect in the outer refrigerant passage 36, the heat exchange efficiency is increased, and the mold 1 and the molten metal in the mold 1 are efficiently cooled. Although a large amount of cooling water is used to cool the mold 1, the water quality standards for the cooling water are relatively loose, so normal cooling water can be used.

一方、上記連続鋳造時において、図外の鋳型県動装打に
より鋳型振動枠73.74を介して鋳型ユニットAが微
小振動され、鋳型1が微小振動され、かつ、上記?fi
1M誘導コイル4の通電により、電磁誘導作用が発揮さ
れ、鋳型1内の溶融金属に攪拌力が付与され、これによ
って溶融金属の内部組織が均質化されながら連続鋳造さ
れるとともに、冷却後の鋳片の送り出しが円滑に行われ
る。この場合、鋳型ユニットAと、電磁攪拌ユニットB
とが互いに独立して支持されているので、鋳型振動装置
にかかる負荷を軽減でき、その駆動力を小さくでき、エ
ネルギー損失を少なくできる。
On the other hand, during the above-mentioned continuous casting, the mold unit A is slightly vibrated via the mold vibrating frames 73 and 74 by the mold movement device (not shown), and the mold 1 is slightly vibrated, and the above-mentioned? fi
When the 1M induction coil 4 is energized, an electromagnetic induction effect is exerted, and a stirring force is applied to the molten metal in the mold 1, which homogenizes the internal structure of the molten metal and performs continuous casting. The pieces are fed out smoothly. In this case, mold unit A and electromagnetic stirring unit B
and are supported independently from each other, the load on the mold vibrating device can be reduced, its driving force can be reduced, and energy loss can be reduced.

さらに、電磁攪拌ユニットB゛において、冷媒供給管6
1から供給された第2の冷媒すなわち上質の冷却水は、
内側冷媒通路62内に流入され、コイル4内を通過し、
この間にコイル4が冷却される。コイル冷却後の上質冷
却水は、内側冷媒通路62の上端から外側冷媒通路63
に導かれ、冷媒排出管63を経て外部に排出される。
Furthermore, in the electromagnetic stirring unit B', the refrigerant supply pipe 6
The second refrigerant, that is, the high-quality cooling water supplied from 1, is
The refrigerant flows into the inner refrigerant passage 62, passes through the coil 4,
During this time, the coil 4 is cooled. The high-quality cooling water after cooling the coil flows from the upper end of the inner refrigerant passage 62 to the outer refrigerant passage 63.
The refrigerant is guided through the refrigerant discharge pipe 63 and discharged to the outside.

この場合、コイル4の冷却水には導体の絶縁膜を損傷し
ないように上質の冷141水が必要であるが、コイル4
は鋳型1に比べて昇温率が低いので、水石は少なくてよ
い。しかも、鋳型1の冷却系とコイル4の冷却系を別に
形成しであるので、多部の冷却水が要求される鋳型1の
冷却系には通常の冷却水を用い、上質の冷却水が要求さ
れるコイル4の冷却系にはその使用水量を必要最小限に
抑えることかでき、これによって水処迎設備の低廉化が
可能となる。
In this case, high-quality cold 141 water is required for the cooling water of the coil 4 so as not to damage the insulating film of the conductor.
Since the temperature increase rate is lower than that of mold 1, less water stone is required. Moreover, since the cooling system for mold 1 and the cooling system for coil 4 are formed separately, regular cooling water is used for the cooling system for mold 1, which requires a large amount of cooling water, and high-quality cooling water is required. The amount of water used in the cooling system of the coil 4 can be kept to the minimum necessary, thereby making it possible to reduce the cost of water treatment equipment.

次に、鋳型1が摩耗もしくは損傷した場合、電磁攪拌ユ
ニットBを残したままで、第1図二点鎖線に示すように
鋳型ユニット八を電磁攪拌ユニットBから抜き取り、そ
の45 型ユニットAを交換し、あるいは押え板12.
13およびキープレート15の着脱により鋳型1のみを
交換する。この場合、鋳型ユニット八を電磁II伴ユニ
ットBのコイル4およびコイル冷却ジャケット5とは別
体に形成しであるので、従来のコイル内蔵型のものに比
べて軽量で、取扱いが容易であり、かつ、ターミナル部
41でコイル4と外部ケーブルとを切離す必要もなく、
鋳型ユニットへの交換もしくは鋳型1の交換を短時間で
頗る簡単に行うことができる。これに伴って機械の稼働
率を高め、生産性を向上できる。
Next, if mold 1 is worn or damaged, remove mold unit 8 from electromagnetic stirring unit B as shown by the two-dot chain line in Figure 1, leaving electromagnetic stirring unit B in place, and replace mold unit A. , or presser plate 12.
Only the mold 1 is replaced by attaching and detaching the mold 13 and the key plate 15. In this case, since the mold unit 8 is formed separately from the coil 4 and coil cooling jacket 5 of the electromagnetic II companion unit B, it is lighter and easier to handle than the conventional type with a built-in coil. Moreover, there is no need to separate the coil 4 and the external cable at the terminal section 41.
The mold unit or the mold 1 can be replaced in a short time and easily. Along with this, it is possible to increase the operating rate of the machine and improve productivity.

なお、上記実施例では、鋳型ユニットAにおる冷媒給排
部および中継室34を鋳型1の上部に設けているが、鋳
型1の下部に設けてもよく、また、鋳型1の冷却のため
の第1の冷媒の循環経路およびコイル4の冷却のための
第2の冷媒の循環経路の形状は、上記実施例に限定され
ず、鋳型1の形状、寸法等に応じて任意に設定しうるち
のである。
In the above embodiment, the refrigerant supply/discharge part and the relay chamber 34 in the mold unit A are provided in the upper part of the mold 1, but they may be provided in the lower part of the mold 1. The shapes of the first refrigerant circulation path and the second refrigerant circulation path for cooling the coil 4 are not limited to the above embodiments, and may be arbitrarily set according to the shape, dimensions, etc. of the mold 1. It is.

(発明の効果) 以上のように本発明は、鋳型ユニットと、電磁攪拌ユニ
ットとを別体に形成し、鋳型の冷却系と、コイルの冷却
系を別系統に構成したものであり、これによってつぎの
ような作用効果がある。
(Effects of the Invention) As described above, in the present invention, the mold unit and the electromagnetic stirring unit are formed separately, and the mold cooling system and the coil cooling system are configured as separate systems. It has the following effects.

■ 鋳型の摩耗および損傷あるいは鋳ハサイズの変更時
に、鋳型ユニットのみを電rIIi攪拌ユニットから取
外すことができ、その取板いが容易となり、かつ、コイ
ルのターミナル部でコイルと外部ケーブルとの接続を切
離す必要がなく、鋳型の交換を短時間で、容易に行うこ
とができる。これによって闘械の稼働率を高め、連続鋳
造の生産性を向上できる。
■ When the mold is worn out or damaged, or when the caster size is changed, only the mold unit can be removed from the electric rIIi stirring unit, making it easy to remove the mold unit, and connecting the coil to the external cable at the coil terminal. There is no need to separate the mold, and the mold can be replaced easily and in a short time. This increases the operating rate of the fighting machine and improves the productivity of continuous casting.

■ しかも、コイルを残したままで鋳型の交換が可能で
あるので、従来のように予備コイルを準備する必要がな
く、イニシャルコストを安くできる。
■ Moreover, since the mold can be replaced while leaving the coil in place, there is no need to prepare a spare coil as in the past, and the initial cost can be reduced.

■ &f型の冷却系と、コイルの冷却系とが別系統であ
るから、水質基準の緩く多量の冷媒を必要とする鋳型の
冷却系には通常の冷却水を用い、水質基準の厳しいコイ
ルの冷却系にのみ、上質の冷媒(上質冷却水)を使用す
ることにより、上質冷却水の使用量を大幅に節減でき、
その水処]!TI設備を小型でき、設備費を低廉化でき
、大幅なコストダウンを図ることができる。
■ Since the &f type cooling system and the coil cooling system are separate systems, regular cooling water is used for the mold cooling system, which has loose water quality standards and requires a large amount of refrigerant, and for the coil cooling system, which has strict water quality standards. By using high-quality refrigerant (high-quality cooling water) only in the cooling system, the amount of high-quality cooling water used can be significantly reduced.
That water place]! TI equipment can be made smaller, equipment costs can be lowered, and costs can be significantly reduced.

■ 鋳型ユニットを電磁攪拌ユニットとは別の支持手段
で支持しているので、鋳型ユニットの支持構造を簡素化
でき、その支持手段に鋳型振動装置を用いる場合であっ
ても、同装置にかかる負荷を軽減しつるとともに、その
駆動力を小さくでき、エネルギー損失も少なくできる。
■ Since the mold unit is supported by a support means separate from the electromagnetic stirring unit, the supporting structure of the mold unit can be simplified, and even if a mold vibration device is used as the support means, the load on the device can be reduced. In addition to reducing the strain, the driving force can be reduced, and energy loss can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の実施例を示す縦断面図、第2図お
よび第3図は第1図の[−n線および■−■轢断面図で
ある。 A・・・鋳型ユニット、B・・・電磁攪拌ユニット、1
・・・鋳型、2・・・鋳型冷却ジャケット、4・・・電
磁誘導コイル、5・・・コイル冷却ジャケット、7・・
・固定フレーム、31・・・第1の冷媒供給口、32・
・・冷媒供給室、34・・・中M室、36・・・外側冷
媒通路、37・・・内側冷媒通路、38・・・冷媒排出
室、39・・・第1の冷媒排出口、61・・・第2の冷
媒供給管、62・・・内側冷媒通路、63・・・外側冷
媒通路、64・・・第2の冷媒排出管、71・・・支持
台(第1の支持手段)、73.74・・・鋳型振動枠(
第2の支持手段)。 特許出願人    株式会社神戸製鋼所代 理 人  
  弁理士  小谷悦司同      弁理士  板谷
康犬 同      弁理士  長1)1 第  1   図
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of the device of the present invention, and FIGS. 2 and 3 are cross-sectional views taken along the line [-n and -■] of FIG. A... Mold unit, B... Electromagnetic stirring unit, 1
... Mold, 2... Mold cooling jacket, 4... Electromagnetic induction coil, 5... Coil cooling jacket, 7...
・Fixed frame, 31...first refrigerant supply port, 32・
... Refrigerant supply chamber, 34... Middle M chamber, 36... Outer refrigerant passage, 37... Inner refrigerant passage, 38... Refrigerant discharge chamber, 39... First refrigerant discharge port, 61 ...Second refrigerant supply pipe, 62...Inner refrigerant passage, 63...Outer refrigerant passage, 64...Second refrigerant discharge pipe, 71...Support stand (first support means) , 73.74...Mold vibrating frame (
second support means). Patent applicant: Kobe Steel, Ltd. Agent
Patent Attorney Etsushi Kotani Patent Attorney Yasunu Itaya Patent Attorney Cho1) 1 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、両端が開口した鋳型と、鋳型のまわりに設けた鋳型
冷却ジャケットとにより鋳型ユニットが形成され、一方
、鋳型内を通過する溶融金属に対して電磁作用による攪
拌力を付与する電磁誘導コイルと、コイルのまわりに設
けたコイル冷却ジャケットとにより環状の電磁攪拌ユニ
ットが形成され、上記鋳型冷却ジャケットには第1の冷
媒の供給口および排出口が設けられ、コイル冷却ジャケ
ットには第2の冷媒の供給口および排出口が設けられ、
上記電磁攪拌ユニットは固定フレームに第1の支持手段
により支持され、鋳型ユニットは上記電磁攪拌ユニット
の内径部に着脱自在に挿入された状態で、第2の支持手
段により固定フレームに支持されていることを特徴とす
る連続鋳造装置。
1. A mold unit is formed by a mold with both ends open and a mold cooling jacket provided around the mold, and an electromagnetic induction coil that applies an electromagnetic stirring force to the molten metal passing through the mold. , and a coil cooling jacket provided around the coil form an annular electromagnetic stirring unit, the mold cooling jacket is provided with a first refrigerant supply port and a discharge port, and the coil cooling jacket is provided with a second refrigerant supply port. A supply port and a discharge port are provided,
The electromagnetic stirring unit is supported by a first support means on a fixed frame, and the mold unit is supported on the fixed frame by a second support means while being removably inserted into the inner diameter of the electromagnetic stirring unit. A continuous casting device characterized by:
JP62284582A 1987-11-11 1987-11-11 Continuous casting equipment Expired - Lifetime JPH0790332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284582A JPH0790332B2 (en) 1987-11-11 1987-11-11 Continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284582A JPH0790332B2 (en) 1987-11-11 1987-11-11 Continuous casting equipment

Publications (2)

Publication Number Publication Date
JPH01127145A true JPH01127145A (en) 1989-05-19
JPH0790332B2 JPH0790332B2 (en) 1995-10-04

Family

ID=17680323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284582A Expired - Lifetime JPH0790332B2 (en) 1987-11-11 1987-11-11 Continuous casting equipment

Country Status (1)

Country Link
JP (1) JPH0790332B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04327351A (en) * 1991-04-25 1992-11-16 Kobe Steel Ltd Method for flowing cooling water into mold built in stirrer
JPH04333353A (en) * 1991-05-10 1992-11-20 Kawasaki Steel Corp Method for continuously casting steel utilizing static magnetic field
WO2009068300A1 (en) * 2007-11-29 2009-06-04 Sms Siemag Ag Brake/stirring coil arrangement on strand casting molds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945067A (en) * 1982-09-08 1984-03-13 Mitsubishi Heavy Ind Ltd Continuous casting device
JPS59229265A (en) * 1983-06-10 1984-12-22 Mitsubishi Heavy Ind Ltd Construction for attaching electromagnetic coil
JPS6056148U (en) * 1983-09-26 1985-04-19 三菱電機株式会社 electromagnetic stirring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945067A (en) * 1982-09-08 1984-03-13 Mitsubishi Heavy Ind Ltd Continuous casting device
JPS59229265A (en) * 1983-06-10 1984-12-22 Mitsubishi Heavy Ind Ltd Construction for attaching electromagnetic coil
JPS6056148U (en) * 1983-09-26 1985-04-19 三菱電機株式会社 electromagnetic stirring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04327351A (en) * 1991-04-25 1992-11-16 Kobe Steel Ltd Method for flowing cooling water into mold built in stirrer
JPH04333353A (en) * 1991-05-10 1992-11-20 Kawasaki Steel Corp Method for continuously casting steel utilizing static magnetic field
WO2009068300A1 (en) * 2007-11-29 2009-06-04 Sms Siemag Ag Brake/stirring coil arrangement on strand casting molds

Also Published As

Publication number Publication date
JPH0790332B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
US5634510A (en) Integrated manufacturing system
US3741280A (en) Mould for the production of metal ingots
JP4808216B2 (en) Apparatus for supporting and vibrating continuous casting molds for continuous casting of liquid metals, in particular liquid steel materials, and methods for assembly or removal and maintenance
EP0754515B1 (en) Method and apparatus for giving vibration to molten metal in twin roll continuous casting machine
KR101189517B1 (en) Internally cooled guiding roller
JP2008504967A5 (en)
JPH01127145A (en) Continuous casting apparatus
US20010042609A1 (en) High speed continuous casting device and relative method
US4126175A (en) Electromagnetic mould for the continuous and semicontinuous casting of hollow ingots
KR19990007029A (en) Casting method and casting mold for manufacturing metal casting member
EP1404471B1 (en) Crystallizer with rollers for a continuous casting machine
RU2433883C2 (en) Crystalliser suspension
KR20080055417A (en) Horizontal continuous casting apparatus
KR102133133B1 (en) Apparatus of manufacturing roll for hot rolling
EP0095111A2 (en) Roll caster with isothermal shell cooling
WO1996001707A1 (en) Stationary mold for use with twin-roll caster
JP3025366B2 (en) Mold unit of continuous casting machine, mold structure and mold unit recombination method
RU2161546C1 (en) Method of continuous multistrand horizontal casting of flat ingots, plant for method embodiment, multistrand mold and plant pulling device
JP2006095586A (en) Mold device for twin/triple-casting, and continuous casting method
JPH05293597A (en) Continuous casting mold for hollow round cast billet
CN213916026U (en) Synchronous vibration support roller device with frame
JPH0417949A (en) Apparatus for continuously casting hollow cast billet
JPH09239495A (en) Mold structure for billet in continuous casting equipment
WO1988000867A1 (en) Cluster casting machine and method
CN112222366A (en) Synchronous vibration support roller device with frame