JPH01127049A - Method for separating mixed ion-exchange resin - Google Patents
Method for separating mixed ion-exchange resinInfo
- Publication number
- JPH01127049A JPH01127049A JP62286669A JP28666987A JPH01127049A JP H01127049 A JPH01127049 A JP H01127049A JP 62286669 A JP62286669 A JP 62286669A JP 28666987 A JP28666987 A JP 28666987A JP H01127049 A JPH01127049 A JP H01127049A
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- separation
- anion
- density
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003456 ion exchange resin Substances 0.000 title claims abstract description 29
- 229920003303 ion-exchange polymer Polymers 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 11
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 title claims description 39
- 239000007788 liquid Substances 0.000 claims abstract description 40
- 238000000926 separation method Methods 0.000 claims abstract description 39
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 30
- 239000011347 resin Substances 0.000 claims abstract description 21
- 229920005989 resin Polymers 0.000 claims abstract description 21
- 239000003729 cation exchange resin Substances 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000007667 floating Methods 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 3
- 239000002699 waste material Substances 0.000 abstract description 6
- 239000002901 radioactive waste Substances 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract description 2
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 229940023913 cation exchange resins Drugs 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 10
- 238000004062 sedimentation Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000002285 radioactive effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000001612 separation test Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- GUTLYIVDDKVIGB-BJUDXGSMSA-N cobalt-58 Chemical compound [58Co] GUTLYIVDDKVIGB-BJUDXGSMSA-N 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- ZCYVEMRRCGMTRW-NJFSPNSNSA-N iodine-129 atom Chemical compound [129I] ZCYVEMRRCGMTRW-NJFSPNSNSA-N 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000002925 low-level radioactive waste Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)発明の目的
[産業上の利用分野]
この発明は原子力発電プラン!・において原子炉1次冷
却材(水)の純化などに使用した混床樹脂(混合イオン
交換樹脂)の分離技術に関するものである。[Detailed description of the invention] (a) Purpose of the invention [Field of industrial application] This invention is a nuclear power generation plan! - Concerns separation technology for mixed bed resin (mixed ion exchange resin) used for purification of nuclear reactor primary coolant (water).
従来、原子力発電プラントにて発生した使用済樹脂は、
廃樹脂タンク中に貯蔵されているが、貯蔵量が増加しつ
つあるプラントでは、タンク容量が不足することが懸念
され、その対策が望まれている。例えば、加圧水型原子
力発電プラント全体では、使用済樹脂の貯’jamは混
床樹脂で約150tonといわれており、その溝成は、
陰イオン交換樹脂が約100tOn%陽イオン交換樹脂
が約50tonである。また、この使用済樹脂は高レベ
ルの放射能(1,0mC1以下/戒−樹脂)を持ってお
り、核種分析の結果、コバルト60の放射能が大部分を
成すことが判明した。特に、コバルト60は陽イオン交
換樹脂に吸着されているが、コバルト60の半減期が約
5.3年であることから、貯蔵して放射能の減衰を待つ
ことにも限り(貯蔵容積上の)があり、使用済樹脂の処
理・処分にあたって何等かの対策を講じることが緊要の
課題となった。Traditionally, used resin generated at nuclear power plants is
It is stored in waste resin tanks, but there is concern that the tank capacity will be insufficient in plants where the storage amount is increasing, and countermeasures are desired. For example, in a pressurized water nuclear power plant as a whole, the spent resin storage jam is said to be approximately 150 tons of mixed bed resin, and the groove structure is as follows:
The amount of anion exchange resin is approximately 100 tons, and the amount of cation exchange resin is approximately 50 tons. Furthermore, this used resin has a high level of radioactivity (1.0 mC1 or less/Kai-resin), and as a result of nuclide analysis, it was found that the radioactivity was mostly cobalt-60. In particular, cobalt-60 is adsorbed on cation exchange resin, but since the half-life of cobalt-60 is approximately 5.3 years, there is a limit to storing it and waiting for the radioactivity to decay (based on the storage volume). ), it became an urgent issue to take some kind of measures to treat and dispose of used resin.
本発明は、使用済のU合イオン交換樹脂から陰イオン交
換樹脂を低レベル廃棄物として取出すことにより、約1
00tonの使用済樹脂の減容を提案するものである。The present invention enables the removal of anion exchange resin from used U-combined ion exchange resin as low-level waste.
This project proposes a volume reduction of 1,000 tons of used resin.
[従来の技術]
前述の通り放射能を帯びた使用済樹脂は、従来、単に貯
M蓄積されており、格別の分離技術を施すことはなかっ
たが、本発明に最も近い従来技術としては特開昭55−
28738号に開示された[混合イオン交換樹脂の再生
方法]がある。前記出願に開示された技術は、水による
逆洗分離に関するもので、陽イオン交換樹脂と陰イオン
交換樹脂の密度差を利用している。ここで、陽イオン交
換樹脂の密度が例え陰イオン交換樹脂の密度より大であ
っても、沈降速度に関与する他の因子である粒径が作用
し、例えば、粒径の小さい陽イオン交換樹脂の沈降速度
は逆に比較的粒径の大きい陰イオン交換樹脂の沈降速度
より小さくなることが述べられている。そして、この出
願の技術の第3工程には陽イオン交換樹脂と陰イオン交
換樹脂の中間の密度を有する力性ソーダ溶液を加え、陰
イオン交換樹脂のみを分離液(力性ソーダ溶液)中に浮
上させ両イオン交換樹脂を分離する技術が開示されてい
る。[Prior art] As mentioned above, used resin tinged with radioactivity has conventionally been simply accumulated and no special separation technology has been applied to it. 1977-
There is a [method for regenerating mixed ion exchange resin] disclosed in No. 28738. The technology disclosed in the above application relates to backwash separation using water, and utilizes the density difference between a cation exchange resin and an anion exchange resin. Here, even if the density of the cation exchange resin is greater than the density of the anion exchange resin, the particle size, which is another factor involved in the sedimentation rate, comes into play; for example, a cation exchange resin with a small particle size On the contrary, it is stated that the sedimentation rate of the anion exchange resin is smaller than that of an anion exchange resin having a relatively large particle size. In the third step of the technique of this application, a hydric soda solution having a density between that of the cation exchange resin and the anion exchange resin is added, and only the anion exchange resin is contained in the separated liquid (the hydric soda solution). A technique for separating both ion exchange resins by levitation has been disclosed.
[発明が解決しようとする問題点]
しかしながら、前記出願の技術は樹脂搭を用いた樹脂再
生のための技術であって、樹脂搭での逆洗分離では、沈
降速度に関与する因子、特に、密度・粒径のバラツキが
問題となり、1#麿の良い分離が不可能であること、及
び、前)ホの第3工程として開示される分離液として力
性ソーダの使用は、放射能を帯びた原子力発電プラント
の使用済樹脂の分離には、使用流イオン交換樹脂から放
射能同位体(よう素129.よう素131・・・陰イオ
ン。[Problems to be Solved by the Invention] However, the technology of the above application is a technology for resin regeneration using a resin tower, and in backwash separation in the resin tower, factors related to the sedimentation rate, particularly, Variation in density and particle size becomes a problem, making it impossible to achieve good separation of 1# particles, and the use of hydrocarbon soda as the separation liquid disclosed in the third step of (a) above (e) is radioactive. In the separation of spent resin from nuclear power plants, radioactive isotopes (iodine 129, iodine 131...anions) are extracted from the used ion exchange resin.
コバルト58、コバルト60・・・陽イオン等)が溶離
し分離液を汚染してしまう問題がある。分離液が汚染し
てしまうと、汚染の低い陰イオン交換樹脂のみをそっと
取り出すという所期の目的を達成できないばかりではな
く、分離液中にほとんどのイオンが溶離してしまうため
(例えば、除染係数が100以上となる。)分離液の処
理が困難となる。There is a problem in that cobalt-58, cobalt-60, cations, etc.) elute and contaminate the separation liquid. If the separation liquid becomes contaminated, not only will it not be possible to achieve the intended purpose of gently removing only the anion exchange resin with low contamination, but most of the ions will be eluted into the separation liquid (for example, during decontamination). (The coefficient becomes 100 or more.) Processing of the separated liquid becomes difficult.
この発明は上記の如き事情に鑑みてなされたものであっ
て、放射能で汚染された使用済の混合イオン交換樹脂か
ら汚染の低い陰イオン交換樹脂を分離し、放射性廃棄物
とし−Cの廃樹脂の減容を図かることができ、しかも、
分離液を汚染することのない混合イオン交換樹脂の分離
方法を提供することを目的としている。This invention was made in view of the above-mentioned circumstances, and it separates an anion exchange resin with low contamination from a used mixed ion exchange resin contaminated with radioactivity and treats it as radioactive waste. It is possible to reduce the volume of resin, and
It is an object of the present invention to provide a method for separating mixed ion exchange resins without contaminating the separation liquid.
(ハ)発明の構成
「問題を解決するための手段]
この目的に対応して、この発明の混合イオン交換樹脂の
分離方法は、陽イオン交換樹脂及び陰イオン交換樹脂か
らなる混合イオン交換樹脂を分離液中において撹拌し、
前記混合イオン交換樹脂中の陰イオン交換樹脂のみを前
記分離液の上層に浮揚させ、前記浮揚した陰イオン交換
樹脂を捕捉分離する方法において、前記分離液として密
度1.03!?/ci〜1.20g/ciの砂糖水を用
いることを特徴としている。(c) Structure of the invention "Means for solving the problem" In response to this objective, the method for separating a mixed ion exchange resin of the present invention uses a mixed ion exchange resin consisting of a cation exchange resin and an anion exchange resin. Stir in the separated liquid,
In the method of floating only the anion exchange resin in the mixed ion exchange resin to the upper layer of the separation liquid and capturing and separating the floating anion exchange resin, the separation liquid has a density of 1.03! ? It is characterized by using sugar water of 1.20 g/ci to 1.20 g/ci.
以下、この発明の詳細を一実施例を示す図面に基づいて
説明する。Hereinafter, details of the present invention will be explained based on the drawings showing one embodiment.
第1図は本発明の小規模分離試験に用いた試験装置の概
念図であり、第1図において符号1は容器(ビーカー)
である。容器1内には分離液としての砂糖水3が入れら
れており、陽イオン交換樹脂及び陰イオン交換樹脂から
なる混合イオン交換樹脂2は、この分離液(砂糖水)3
中にチャージされる。容器1の底部近傍にはモータ駆動
により回転する撹拌羽根5が配置されており、この撹拌
羽根5をゆっくりU転さぼると、混合イオン交換樹脂2
は分離液中に舞い上げられる。FIG. 1 is a conceptual diagram of the test apparatus used in the small-scale separation test of the present invention, and in FIG.
It is. A sugar water 3 as a separated liquid is placed in the container 1, and a mixed ion exchange resin 2 consisting of a cation exchange resin and an anion exchange resin is mixed with this separated liquid (sugar water) 3.
It is charged inside. A stirring blade 5 rotated by a motor is arranged near the bottom of the container 1, and when the stirring blade 5 is slowly rolled down, the mixed ion exchange resin 2
is lifted up into the separated liquid.
分離液中に舞い上げられた混合イオン交換樹脂2は、そ
の構成が陽イオン交換樹脂(密度1.2g/cri’)
2a及び陰イオン交換樹脂(密度1.1!7/ci)2
bの混合物であることから、例えば、密度1.057/
cfflの砂糖水を分離液として用いた場合、陽イオン
交換樹脂2aは矢印aの軌跡をたどり分離中を急速に沈
降し、容器1の底部に沈積するが、陰イオン交換樹脂2
bは矢印すの軌跡をたどり上界、分離液3の上層に暫く
の間浮揚する。もちろんそのままの状態で放置すれば陰
イオン交換樹脂2bも分離液中をゆっくりと沈降し、容
器1の底部に沈積してしまうが、一般的に、陰イオン交
換樹脂を分離する場合、この浮揚した状態で陰イオン交
換樹脂を捕捉する。第1図の例では、チューブポンプ6
を用いて分離液上層部に浮揚した陰イオン交換樹脂2b
を分離液3と共に吸入ロアより吸引し、前記吸引した分
離液及び陰イオン交換樹脂は容器1の上面に配設された
金網8上に排出され、ここで陰イオン交換樹脂2bのみ
が捕捉され、吸引された分離液は金網8を通過して容器
1内に戻される。The mixed ion exchange resin 2 lifted into the separated liquid has a composition of a cation exchange resin (density 1.2 g/cri').
2a and anion exchange resin (density 1.1!7/ci) 2
Since it is a mixture of b, for example, the density is 1.057/
When cffl sugar water is used as the separation liquid, the cation exchange resin 2a rapidly settles during the separation following the trajectory of arrow a and is deposited at the bottom of the container 1, but the anion exchange resin 2
b follows the trajectory of the arrow and floats for a while in the upper layer of the separation liquid 3. Of course, if left as is, the anion exchange resin 2b will also slowly settle in the separation liquid and settle at the bottom of the container 1, but generally when separating the anion exchange resin, this floating trap the anion exchange resin in the state. In the example of FIG. 1, the tube pump 6
Anion exchange resin 2b floated in the upper layer of the separated liquid using
is sucked together with the separated liquid 3 from the suction lower, and the sucked separated liquid and anion exchange resin are discharged onto the wire mesh 8 disposed on the top surface of the container 1, where only the anion exchange resin 2b is captured. The suctioned separated liquid passes through the wire mesh 8 and is returned into the container 1.
ここで、使用する分離液であるが、粒子分離は沈降速度
比との関連でとらえられ、一方、沈降速度(V)は
yoc(ρ −ρ)×D2 で与えられる。Regarding the separation liquid used here, particle separation is considered in relation to the sedimentation velocity ratio, and on the other hand, the sedimentation velocity (V) is given by yoc (ρ − ρ)×D2.
S
但し、ρ、・・・粒子速度
り、・・・粒径
ρ ・・・分離液密度
そして、イオン交換樹脂には種類があり、粒径、密度に
差があるため、現在、原子力発電プラントにて使用中の
イオン交換樹脂の仕様で試算してみると、
陰イオン・・・ρ51=1.1
陽イオン・・・ρ、2=1.2
Dl、02=0.4〜0.6(±20%)ρo−1,0
5(液)
(ρ2−ρo)×D
Vi = (1,1−1,05)Xo、8=0.032
または
Vi = (1,13−05)Xl、2=0.072
v2= (1,2−1,05)xo、8=0.096
または
V2= (1,2−1,05)Xl、2=0.216
よって、Vl <V2 (陽イオン交換樹脂の沈降速
度)従って、粒径のバラツキが20%以内ならば密度1
.05g/ciの分離液を使用することで分 −離でき
ることがわかる。S However, ρ...particle velocity,...particle size ρ...separated liquid density, and since there are different types of ion exchange resins with differences in particle size and density, currently nuclear power plants According to the specifications of the ion exchange resin in use, anion...ρ51=1.1 Cation...ρ,2=1.2 Dl,02=0.4~0.6 (±20%)ρo-1,0
5 (liquid) (ρ2-ρo)×D Vi = (1,1-1,05)Xo, 8=0.032 or Vi = (1,13-05)Xl, 2=0.072 v2= (1 , 2-1,05) xo, 8 = 0.096 or V2 = (1,2-1,05) If the diameter variation is within 20%, the density is 1
.. It can be seen that separation is possible by using a separation liquid of 0.05 g/ci.
そこで、第1図の実施例(実験例)では原子力発電プラ
ントの試運転時に使用した混合イオン交換樹脂(放射能
汚染なし)を用いて小規模分離試験を行った。この試験
例で用いた混合イオン交換樹脂は、陰イオン交換樹脂(
ρ=1.1゜D1=0.4〜0.6)がd金イオン交換
樹脂中の3分の2、陽イオン交換樹脂(ρ−1,2゜0
2=0.4〜0.6)が混合イオン交換樹脂中の3分の
1を占める混合イオン交換樹脂である。Therefore, in the example (experimental example) shown in FIG. 1, a small-scale separation test was conducted using a mixed ion exchange resin (without radioactive contamination) that was used during the test run of a nuclear power plant. The mixed ion exchange resin used in this test example was an anion exchange resin (
ρ=1.1゜D1=0.4~0.6) is two-thirds of the d gold ion exchange resin, and the cation exchange resin (ρ-1,2゜0
2=0.4 to 0.6) is the mixed ion exchange resin that accounts for one-third of the mixed ion exchange resin.
そして、分離液は密度1.05g/cfflの砂糖水で
ある。試験の結果、分離精度は陽イオン交換樹脂側での
99%以上の高精度の分離ができた。The separated liquid is sugar water with a density of 1.05 g/cffl. As a result of the test, high-precision separation of 99% or more was achieved on the cation exchange resin side.
なお、本例では分離液としての砂糖水の密度を1.05
g/cdとしたが、分離液の密度は分+l!を液中にお
いて陽イオン交換樹脂が沈降すれば足りるので、その上
限は、陽イオン交換樹脂の密度である1、2g/cri
rまで適用することができる。In addition, in this example, the density of sugar water as the separation liquid was set to 1.05.
g/cd, but the density of the separated liquid is min+l! It is sufficient that the cation exchange resin settles in the liquid, so the upper limit is 1.2 g/cri, which is the density of the cation exchange resin.
It can be applied up to r.
[作用]
分離液として砂糖水を用いるので、酸・アルカリを用い
る場合と巽なり、使用済イオン交換樹脂からの放射能同
位体くイオン)の溶離がなく、かつ、砂糖水の使用が事
後の放射性廃棄物としての廃樹脂の処理・処分(触媒の
使用、酸化溶解)に悪影響を及ぼさない。[Effect] Since sugar water is used as the separation liquid, there is no elution of radioactive isotopes (ions) from used ion exchange resins, unlike when using acids or alkalis, and the use of sugar water is easy after the fact. It does not have a negative effect on the treatment and disposal of waste resin as radioactive waste (use of catalyst, oxidative dissolution).
(ハ)発明の効果
以上の説明から明らかなように、従来の樹脂塔での逆洗
分離では、沈降速度に関与する因子、密度粒径のバラツ
キが問題となり、精度の良い分離は不可能であったが、
また、分離液として酸やアルカリの使用は使用済イオン
交換樹脂からの放射能同位体の溶離の問題があったが、
本発明ににれば分離容器の容積上の制約は特になく、か
つ、分離液として砂糖水を用いるので、前述した問題が
なく、しかも、分離精度99%以上の極めて精度の高い
分離を行うことができる。(c) Effects of the invention As is clear from the above explanation, in conventional backwash separation using a resin column, there are problems with factors related to sedimentation rate and variations in density particle size, making accurate separation impossible. There was, but
In addition, the use of acids and alkalis as separation liquids had the problem of eluting radioactive isotopes from used ion exchange resins.
According to the present invention, there is no particular restriction on the volume of the separation container, and since sugar water is used as the separation liquid, there is no problem mentioned above, and moreover, extremely high-precision separation with a separation accuracy of 99% or more can be performed. Can be done.
従って、高精度の分離は処理時間の短縮、処理液の節約
をもたらし、再生樹脂の品質の低下(特に、塩素イオン
の流出)が避けられる。Therefore, high-precision separation results in shortening of processing time, saving of processing liquid, and avoids deterioration in quality of recycled resin (particularly leakage of chlorine ions).
更に、廃棄物処理上の効果としては、処理時間(作業時
間)の短縮により、作業者の放射線被曝が低減されるこ
とはもとより、事後処理、例えば過酸化水素水による酸
化処理が簡単になる。また、隘イオン交換樹脂が分離除
去されることによって、要処理放射性廃棄物母が3分の
1に減容されるので、酸化溶解処理が容易となり、廃棄
物処理コストの低減に大きく寄与する等効果を奏する。Furthermore, as an effect on waste treatment, not only is the radiation exposure of workers reduced by shortening the treatment time (work time), but also the post-treatment, for example, oxidation treatment with hydrogen peroxide solution, becomes easier. In addition, by separating and removing the ion exchange resin, the volume of the radioactive waste material that requires treatment is reduced to one-third, which facilitates oxidation and dissolution treatment, which greatly contributes to reducing waste treatment costs. be effective.
第1図は本発明の一実施例に係わる小規模分離試験に用
いた試験装置の概念図である。
1・・・容器 2・・・U合イオン交換樹脂 2a
・・・陽イオン交換樹脂 2b・・・陰イ゛オン交換
樹脂3・・・砂糖水 5・・・撹拌羽根 6・・・
チューブポンプ 7・・・吸入口 8・・・金網第
4図FIG. 1 is a conceptual diagram of a test apparatus used in a small-scale separation test according to an embodiment of the present invention. 1... Container 2... U ion exchange resin 2a
... Cation exchange resin 2b ... Anion exchange resin 3 ... Sugar water 5 ... Stirring blade 6 ...
Tube pump 7... Suction port 8... Wire mesh Figure 4
Claims (1)
オン交換樹脂を分離液中において撹拌し、前記混合イオ
ン交換樹脂中の陰イオン交換樹脂のみを前記分離液の上
層に浮揚させ、前記浮揚した陰イオン交換樹脂を捕捉分
離する方法において、前記分離液として密度1.03g
/cm^3〜1.20g/cm^3の砂糖水を用いるこ
とを特徴とする混合イオン交換樹脂の分離方法A mixed ion exchange resin consisting of a cation exchange resin and an anion exchange resin is stirred in a separated liquid, and only the anion exchange resin in the mixed ion exchange resin is floated to the upper layer of the separated liquid, and the floating anions are In the method of capturing and separating exchange resin, the separation liquid has a density of 1.03 g.
A method for separating a mixed ion exchange resin characterized by using sugar water of /cm^3 to 1.20g/cm^3
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62286669A JPH01127049A (en) | 1987-11-13 | 1987-11-13 | Method for separating mixed ion-exchange resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62286669A JPH01127049A (en) | 1987-11-13 | 1987-11-13 | Method for separating mixed ion-exchange resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01127049A true JPH01127049A (en) | 1989-05-19 |
Family
ID=17707423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62286669A Pending JPH01127049A (en) | 1987-11-13 | 1987-11-13 | Method for separating mixed ion-exchange resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01127049A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008019468A1 (en) * | 2006-08-18 | 2008-02-21 | Iogen Energy Corporation | Process for obtaining an organic salt or organic acid from an aqueous sugar stream |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS533754A (en) * | 1976-06-30 | 1978-01-13 | Ibm | Method of testing propagating delay of level sensing array embedded logical device with one side delay dependancy |
-
1987
- 1987-11-13 JP JP62286669A patent/JPH01127049A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS533754A (en) * | 1976-06-30 | 1978-01-13 | Ibm | Method of testing propagating delay of level sensing array embedded logical device with one side delay dependancy |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008019468A1 (en) * | 2006-08-18 | 2008-02-21 | Iogen Energy Corporation | Process for obtaining an organic salt or organic acid from an aqueous sugar stream |
US7718070B2 (en) | 2006-08-18 | 2010-05-18 | Iogen Energy Corporation | Method of obtaining an organic salt or acid from an aqueous sugar stream |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9208915B2 (en) | Ion exchange regeneration and nuclide specific selective processes | |
US20160289790A1 (en) | Selective regeneration of isotope-specific media resins in systems for separation of radioactive isotopes from liquid waste materials | |
US3764553A (en) | Removal of radioisotopes from waste solutions | |
US7708890B2 (en) | Method of rendering a radioactive and aqueous heat transfer liquid in a nuclear reactor to a reduced radwaste quantitative state and returning the remaining waste water volumes to an environmental release point for liquid effluents | |
EP0909447B1 (en) | method for producing nickel or cobalt hexacyanoferrates | |
EP0789831B1 (en) | Decontamination process | |
EP1487748B1 (en) | Electrochemical process for decontamination of radioactive materials | |
DE2607292C2 (en) | Process for the removal of radioactive corrosion products from ion exchange resins used in nuclear reactor operation | |
JPH0527094A (en) | Processing for solid radioactive waste | |
JPH01127049A (en) | Method for separating mixed ion-exchange resin | |
JP3119538B2 (en) | Decontamination method for radioactive waste resin | |
JP2001239138A (en) | Device for treating liquid | |
JPS5815016B2 (en) | How to clean ion exchange resin | |
JPH0926499A (en) | Method for treating decontaminated waste liquid | |
Savkin | Development and trials of a technology for reprocessing of NPP liquid radioactive wastes | |
JP2024066666A (en) | Radioactive waste liquid treatment system, radioactive waste liquid treatment method, charge determination device, and charge determination method | |
Harjula et al. | Development of a selective cesium and strontium removal system for the JAERI Tokai-Mura site-laboratory tests | |
Harjula et al. | Pilot scale testing of inorganic ion exchangers for precoat applications | |
JPS63188796A (en) | Method of processing decontaminated waste liquor | |
JP2024135760A (en) | Radioactive liquid waste treatment method and radioactive liquid waste treatment system | |
JPH0329897A (en) | Method of removing radioactive substances from radioactive solid waste storage pool | |
JPS6283003A (en) | Filter desalting device | |
JPS59136141A (en) | Regenerating method of ion exchange resin for condensate desalting device | |
JPH0242543B2 (en) | ||
JPS6137000B2 (en) |