JPH01126555A - Reagent for immunological measurement - Google Patents

Reagent for immunological measurement

Info

Publication number
JPH01126555A
JPH01126555A JP28310387A JP28310387A JPH01126555A JP H01126555 A JPH01126555 A JP H01126555A JP 28310387 A JP28310387 A JP 28310387A JP 28310387 A JP28310387 A JP 28310387A JP H01126555 A JPH01126555 A JP H01126555A
Authority
JP
Japan
Prior art keywords
antibody
solid phase
amount
layer
igg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28310387A
Other languages
Japanese (ja)
Inventor
Miyoko Kusumi
美代子 久住
Shigeo Aoyanagi
重夫 青柳
Akira Matsuyuki
松行 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP28310387A priority Critical patent/JPH01126555A/en
Publication of JPH01126555A publication Critical patent/JPH01126555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PURPOSE:To achieve a wider measuring range, a rise in a detection limit and a higher reproducibility, by using a crystallized glass with a high vital affinity as solid phase to increase an antibody bonding force and bondage of the solid phase. CONSTITUTION:A polylysine layer, a glutaric aldehyde layer and an antibody or antigen layer are formed sequentially and a crystallized glass with a high vital affinity is used to be a solid phase. A bonding force and a bondage between the solid phase and polylysine are increased to enhance the amount of glutaric aldehyde in crosslinking, resulting in a greater antibody bondage and bonding force. This achieves a wider measuring range, a rise in sensitivity to a detection limit and a higher reproducibility.

Description

【発明の詳細な説明】 A産業上の利用分野 本発明は、固相を用いた免疫測定試薬であり、固相に結
晶化ガラスを使い、ポリリジン層とグルタルアルデヒド
層と抗体または抗原層を順次形成して、固相への抗体結
合量及び抗体結合力を増加させ、測定範囲の拡大、検出
限界の感度の上昇、及び再現性の向上を得た免疫測定試
薬に関するものである。
[Detailed Description of the Invention] A. Industrial Application Field The present invention is an immunoassay reagent using a solid phase, in which crystallized glass is used as the solid phase, and a polylysine layer, a glutaraldehyde layer, and an antibody or antigen layer are sequentially formed. The present invention relates to an immunoassay reagent that increases the amount of antibody binding to a solid phase and the antibody binding strength, thereby expanding the measurement range, increasing the sensitivity of the detection limit, and improving reproducibility.

B発明の概要 本発明は、結晶化ガラスを固相として、その固相上に、
ポリリジン層とグルクルアルデヒド層と抗体または抗原
層を順次形成したことからなる免疫測定試薬に関するも
のである。
B Summary of the Invention The present invention uses crystallized glass as a solid phase, and on the solid phase,
The present invention relates to an immunoassay reagent comprising a polylysine layer, a glucuraldehyde layer, and an antibody or antigen layer formed in this order.

C従来の技術 固相を用いる免疫学的測定法には、大きく分けて、競合
法と非競合法に分類される。前者の代表例は、第1抗体
固相法、後者は、サンドイッチ潤定法がある。
C. Conventional Technology Immunoassay methods using solid phases are broadly classified into competitive methods and non-competitive methods. A representative example of the former is the first antibody solid phase method, and the latter is the sandwich liquid method.

このサンドイツチ法は、固相に抗体に吸着させ、そこに
抗原をトラップさせる。次に酵素標識抗体をその抗原に
結合させ、結合した酵素標識抗体量から抗原の量を測定
する方法である。
In this sandwich method, antibodies are adsorbed onto a solid phase and antigens are trapped there. Next, an enzyme-labeled antibody is bound to the antigen, and the amount of the antigen is measured from the amount of bound enzyme-labeled antibody.

上記の原理のため、サンドインチ法の検出感度を上昇さ
せるためには、固相への抗体結合量及び抗体結合力が、
大きく影響してくる。
Due to the above principle, in order to increase the detection sensitivity of the sandwich method, the amount of antibody bound to the solid phase and the antibody binding strength must be
It will have a big impact.

従来、固相の材料としてはポリスチレン、ガラス、アク
リルニトリル−ブタジェン−スチレン共重合樹脂(略し
てABS)などが多く用いられた。
Conventionally, polystyrene, glass, acrylonitrile-butadiene-styrene copolymer resin (abbreviated as ABS), and the like have often been used as materials for the solid phase.

これらの固相への抗体結合方法は、多くは物理的に吸着
させる方法であった。しかし、この方法では、固相の抗
体結合量が少ない、固相の抗体結合力が弱い、測定値の
バラツキが大きい、非特異的吸着が大きいなどの問題点
があった。
Most of the methods for binding antibodies to these solid phases involve physical adsorption. However, this method has problems such as a small amount of antibody bound to the solid phase, weak antibody binding strength of the solid phase, large variations in measured values, and large nonspecific adsorption.

以前、特願昭60−45742で本発明者らが出願した
「免疫学的な測定試薬の調整法とこれによって得た試薬
」では、上記の問題点を解決するために、固相をアミノ
酸処理した後、二官能性アルデヒド処理し、抗体結合さ
せたものであり、その効果は上記問題点を解決するに至
った。
Previously, in the patent application No. 60-45742 entitled "Method for preparing immunological assay reagents and reagents obtained thereby," the solid phase was treated with amino acids in order to solve the above problems. After that, it was treated with a bifunctional aldehyde and bound to an antibody, which has the effect of solving the above problems.

D発明が解決しようとする問題点 しかし、免疫測定試薬としての検出限界、測定範囲及び
再現性のより一層の向上が望まれていた。。
D. Problems to be Solved by the Invention However, it has been desired to further improve the detection limit, measurement range, and reproducibility of the immunoassay reagent. .

本発明は、かかる問題点を解決するためになされたもの
で、固相の抗体結合量が多く、固相の抗体結合力も強く
、測定値のバラツキが小さい、非特異的吸着の少ない免
疫測定試薬を得ることはもちろんの事として、免疫測定
試薬としての測定範囲の拡大、検出限界の感度上昇及び
再現性のより一層の向上を成し得た免疫測定試薬を得る
ことを目的とする。
The present invention has been made to solve these problems, and is an immunoassay reagent that has a large amount of antibody binding on the solid phase, strong antibody binding force on the solid phase, small variation in measured values, and low nonspecific adsorption. The object of the present invention is, of course, to obtain an immunoassay reagent that can expand the measurement range, increase the sensitivity of the detection limit, and further improve reproducibility.

E問題点を解決するための手段 この発明に係わる免疫測定試薬では、ポリリジン層とグ
ルタルアルデヒド層と抗体または抗原層を順次形成した
、生体親和性の高い結晶化ガラスを使い、その結晶化ガ
ラスを固相としたものである。
E Means for Solving Problems The immunoassay reagent according to the present invention uses a highly biocompatible crystallized glass in which a polylysine layer, a glutaraldehyde layer, and an antibody or antigen layer are sequentially formed. It is a solid phase.

F作用 生体親和性の高い結晶化ガラスを固相に使うことにより
、固相とポリリジンの結合力と結合量が増加する。それ
により、架橋するグルクルアルデヒド量が増加し、抗体
結合量及び抗体結合力が増加する。
F action By using crystallized glass with high biocompatibility as the solid phase, the binding strength and amount of binding between the solid phase and polylysine are increased. As a result, the amount of cross-linked gluturaldehyde increases, and the amount of antibody binding and antibody binding strength increase.

G実施例 (11”r−c E A (ガン胎児性抗原)を用いた
抗体結合量の評価 実施例1゜ 第1図は本発明の一実施例を示す免疫測定試薬の調整方
法図である。
G Example (Evaluation of antibody binding amount using 11” r-c E A (carcinoembryonic antigen) Example 1゜ Fig. 1 is a diagram of a method for preparing an immunoassay reagent showing an example of the present invention. .

調整方法は、結晶化ガラスポール(S 1o2−Na2
0−CaO−P2O3−に20−MgO系ガラス、Si
O2−MgO−CaO−Pad。
The adjustment method is to use a crystallized glass pole (S 1o2-Na2
0-CaO-P2O3- to 20-MgO glass, Si
O2-MgO-CaO-Pad.

系ガラス、Ca0−P2O,系配位性結晶化ガラスの内
の一つの材質)(以下、C,Gボールと略す)をA液(
0,1+++g/−ポリリジンを含む0.15mol/
 lホウ酸緩衝液(pH8,5) )中に室温で、1晩
浸濱してポリリジン処理を行った。蒸留水で洗浄し、5
%グルクルアルデヒド水溶液に、30℃で2時間浸漬し
てグルタルアルデヒド処理を行った。蒸留水で洗浄し、
BM (0,1+ng/m#免疫グロブリンG(IgG
と略す)、0.1mol/lリン酸緩衝液(pH7,5
) ) 4℃で1晩浸請した。さらにB液で洗浄した後
、C液(0゜01mol/c’リン酸緩衝液(plt?
、o)、0.1mol/ e NaCl、0.1z牛血
清7にブEン(BSAと略す)、0. lXNaN3混
合液)で洗浄した後、C液に浸漬し、4℃で保存した。
A liquid (hereinafter abbreviated as C, G ball) (one of the materials of Ca0-P2O, system coordination crystallized glass) (abbreviated as C and G balls)
0.15mol/containing 0.1+++g/-polylysine
Polylysine treatment was performed by immersing the sample in a boric acid buffer (pH 8.5) overnight at room temperature. Wash with distilled water,
% glutaraldehyde aqueous solution at 30° C. for 2 hours to perform glutaraldehyde treatment. Wash with distilled water,
BM (0,1+ng/m# Immunoglobulin G (IgG
), 0.1 mol/l phosphate buffer (pH 7.5
)) Soaked overnight at 4°C. After further washing with solution B, solution C (0°01 mol/c' phosphate buffer (plt?
, o), 0.1 mol/e NaCl, 0.1 z bovine serum 7 to 100 ml (abbreviated as BSA), 0. After washing with lXNaN3 mixed solution), it was immersed in solution C and stored at 4°C.

本実施例では、IgGを抗ガン胎児性抗原(抗CEAと
略す)−IgGとして被覆C0Gボールを調整した。
In this example, coated C0G balls were prepared using anti-carcinoembryonic antigen (abbreviated as anti-CEA)-IgG as IgG.

第2図は競合反応による抗体結合量の測定操作図であり
、第1図の方法で調整された抗CEA−IgG被覆C0
Gボールを”’I−CE A溶液(約2×10’Cpm
Iカウント・バー 乏二フフ1)100μ t’、CE
A溶液(0〜11000n/m1)100p l 、 
C液1007z pの混合溶液で1晩反応させ、洗浄後
、γ−ウェルカウンターで計測しな。
Figure 2 is a diagram showing the procedure for measuring the amount of antibody binding by competitive reaction, and shows the anti-CEA-IgG coated C0 prepared by the method shown in Figure 1.
Add the G ball to the ``I-CE A solution (approximately 2 x 10'Cpm
I count bar 1) 100μ t', CE
A solution (0-11000n/ml) 100pl,
React overnight with a mixed solution of Solution C 1007zp, wash, and then measure using a γ-well counter.

第1図で調整した抗CEA−IgG被覆C0Gボールを
第2図の通り、”’I−CE Aにより、抗体結合量を
測定した。結果は、第3図に示す。
The amount of antibody bound to the anti-CEA-IgG-coated C0G balls prepared in FIG. 1 was measured by I-CEA as shown in FIG. 2. The results are shown in FIG. 3.

比較例1゜ 第1図と同様の方法で、抗CEA−IgG被覆ポリスチ
レンボールを調整し、第2図と同様の方法で、抗体結合
量を測定した。
Comparative Example 1 An anti-CEA-IgG coated polystyrene ball was prepared in the same manner as in FIG. 1, and the amount of antibody bound was measured in the same manner as in FIG.

結果は、第3図に示す。The results are shown in FIG.

第3図は、実施例1と比較例1の結果であり、C,Gボ
ールとポリスチレンボールの抗体結合量変化図である。
FIG. 3 shows the results of Example 1 and Comparative Example 1, and is a diagram of changes in the amount of antibody binding between C and G balls and polystyrene balls.

図においてhlは実施例1、(b)は比較例1の結果を
示している。
In the figure, hl shows the results of Example 1, and (b) shows the results of Comparative Example 1.

図より、抗体結合量はC0Gボールの方がポリスチレン
ボールより相対的に大であることが判明した。
From the figure, it was found that the amount of antibody bound to the C0G balls was relatively larger than that of the polystyrene balls.

これは、C0Gがポリスチレンに比べて生体親和性が強
いためである。
This is because C0G has stronger biocompatibility than polystyrene.

(2)酵素標識抗体の固相への非特異的吸着の評価実施
例2゜ 第4図は酵素免疫測定(Enzyme Immuno 
As5ay :ET人と略す)を行う時のIgG−CO
D(グルコースオキシダーゼ)標識抗体調整方法図であ
り、第5図は非特異的吸着の評価方法の操作図である。
(2) Evaluation Example 2 of non-specific adsorption of enzyme-labeled antibodies to solid phase Figure 4 shows enzyme immunoassay (Enzyme Immunoassay).
IgG-CO when performing As5ay (abbreviated as ET person)
FIG. 5 is a diagram of a method for preparing a D (glucose oxidase) labeled antibody, and FIG. 5 is an operational diagram of a method for evaluating non-specific adsorption.

IgG−COD標識抗体調整方法は、まずGOD約3n
tg10.3rrvlを4倍量の0.1mol/ l!
リン酸緩衝液(p[17,0)に溶かし、GOD: G
MBS(ザクシンイミジル−4−マレイミドブチレイI
・)=1:50の比で添加し、それを0.1mol/ 
lリン酸緩衝液(ptte。
In the IgG-COD labeled antibody preparation method, first, GOD of about 3n
tg10.3rrvl is 4 times the amount, 0.1mol/l!
Dissolved in phosphate buffer (p[17,0), GOD: G
MBS (Succinimidyl-4-maleimidobutyreI)
・) = 1:50 ratio, and it was added at a ratio of 0.1 mol/
l phosphate buffer (ptte.

0)で平衡化したセファデックスG 25 (1x30
カラム)を用いて12+nj/hrで脱塩し、1−ずつ
分取し、マレイミドCODを得た。次に、IgGに2 
rneの0.1mol/I! リ ン酸CI衝ン(1(
pl[6,O)   5 m  −ol/ l  ED
T人を加え、S−アセチルメルカプト乙(まくを(S−
アセチルメルカプ1−こはく醋酸:  I gG = 
300:  1の比で)ジメチルフォルマイトに溶解し
添加する。室温で30分間攪拌後、0.1 mol/l
l・リス−塩酸(p[17,0) O。
Sephadex G 25 (1x30
Column) was used to desalt at a rate of 12+nj/hr, and 1- portions were collected to obtain maleimide COD. Next, add 2 to IgG.
0.1 mol/I of rne! Phosphate CI bomb (1(
pl[6,O) 5 m-ol/l ED
Add T and add S-acetyl mercapto (S-
Acetyl mercap 1-succinic acid: IgG =
300:1) in dimethylformite and added. After stirring at room temperature for 30 minutes, 0.1 mol/l
l.Lis-hydrochloric acid (p[17,0) O.

In(0,1mol/j  EDT人(pH7,0)0
.02mj!、   1  mol/J  ヒドロキシ
ジアミン水溶’a (pH7,0) 0. imlを各
々加え、30℃4分間反応させた。D i&で平衡化し
たセファデックスG 25 (IX30カラム)を用い
て、12m1/hrの速度で脱塩し、1 meずつ分取
し、水冷中コロジオンバッグで濃縮し、SH−IgGを
得た。得られたマレイミドCODとSH−IgGを等モ
ル混和し、30℃1時間静置後、4℃で1晩静置した。
In(0.1mol/j EDT person(pH7.0)0
.. 02mj! , 1 mol/J Hydroxydiamine water soluble 'a (pH 7,0) 0. iml was added to each and reacted for 4 minutes at 30°C. Desalting was performed at a rate of 12 ml/hr using Sephadex G 25 (IX30 column) equilibrated with Di&, fractionated into 1 me portions, and concentrated in a collodion bag while cooling with water to obtain SH-IgG. The obtained maleimide COD and SH-IgG were mixed in equimolar amounts, left at 30°C for 1 hour, and then left at 4°C overnight.

0.1mol/4リン酸緩衝液(pH6,5)、5 m
Iol/l! EDT人で平衡化したセファクリル30
0 (1x90カラム)に、6ml’/hrで上記試料
を溶出し、1−ずつ分取し、I gG −COD標識抗
体を得た。これを0.1%NaN3.0.1%BSAと
なるように添加し、4℃で保存する。
0.1 mol/4 phosphate buffer (pH 6,5), 5 m
Iol/l! Cephacryl 30 equilibrated with EDT humans
The above sample was eluted at 6 ml'/hr on 0 (1x90 column) and fractionated into 1-unit fractions to obtain IgG-COD-labeled antibodies. This was added to give 0.1% NaN3.0.1% BSA and stored at 4°C.

非特異的吸着は、第5図に示すように、第1図で得られ
た抗CEA−IgG被覆C,Gボールを、C液で希釈し
た抗CEA−IgG−GOD標識抗体0、1rnlとC
液Q、2mj!に室温で1晩静置し、蒸留水で洗浄後、
0.5a+ol/ lグルコース、0.01mol/j
酢酸緩衝液(pH5,1) 0.3mlを加え、37℃
2時間静置した。
As shown in Fig. 5, non-specific adsorption was performed using anti-CEA-IgG-coated C, G balls obtained in Fig. 1 with anti-CEA-IgG-GOD-labeled antibodies 0 and 1 rnl diluted in solution C and C.
Liquid Q, 2mj! After leaving it at room temperature overnight and washing with distilled water,
0.5a+ol/l glucose, 0.01mol/j
Add 0.3 ml of acetate buffer (pH 5,1) and heat at 37°C.
It was left to stand for 2 hours.

0、1mlサンプリングし、2X10−’11o1/ 
lルミノール、0.2@ol/l炭酸緩衝液(pH9,
8) 0.5mj、8X10−3mol/lフェリシア
ン化カリ水溶71i0.5mlを各添加し、15秒待ち
、16〜45秒間の発光量を算出することによって求め
た。
0, 1ml sampling, 2X10-'11o1/
l luminol, 0.2@ol/l carbonate buffer (pH 9,
8) 0.5 ml of 0.5 mj, 8×10 −3 mol/l potassium ferricyanide aqueous solution 71i was added to each, waited 15 seconds, and determined by calculating the luminescence amount for 16 to 45 seconds.

比較例2゜ 第1図と同様に調整した抗CEA−1gG被覆ポリスチ
レンボールを用いて、第5図の用にポリスチレンボール
の非特異的吸着量を求めた。
Comparative Example 2 Using anti-CEA-1gG coated polystyrene balls prepared in the same manner as in FIG. 1, the amount of non-specific adsorption of the polystyrene balls was determined as shown in FIG.

実施例2と比較例2で、酵素標識抗体の固相への非特異
的吸着を比較した。なお、評価法は、添加IgG−CO
D標識抗体に対すルIgG−COD標識抗体の固体への
吸着量の割合(%)とした。
In Example 2 and Comparative Example 2, nonspecific adsorption of an enzyme-labeled antibody to a solid phase was compared. The evaluation method is based on added IgG-CO
It was expressed as the ratio (%) of the amount of IgG-COD labeled antibody adsorbed onto a solid relative to the D labeled antibody.

結果を表1に示す。The results are shown in Table 1.

表IC,Gボールとポリスチレンボールにおける非特異
的吸着の比較 サンドイッチ測定法の感度を左右する主な要因の1つで
ある酵素標識抗体の固相への非特異的吸着は両者に差が
ないという結果を得た。これは抗体を固相へ吸着後、牛
血清アルブミンによるブロックがC,Gの場合でも、ポ
リスチレンと同程度に有効であるためである。
Table IC, Comparison of nonspecific adsorption between G balls and polystyrene balls There is no difference between the two in terms of nonspecific adsorption of enzyme-labeled antibodies to the solid phase, which is one of the main factors that determines the sensitivity of the sandwich assay method. Got the results. This is because, after adsorbing the antibody to the solid phase, blocking by bovine serum albumin is as effective as polystyrene even in the case of C and G.

(3)検出限界、測定範囲の評価 第6図は測定範囲および検出限界の比較操作図である。(3) Evaluation of detection limit and measurement range FIG. 6 is a comparison diagram of measurement range and detection limit.

以下にその操作を示す。第1図の操作で得られた抗CE
A−IgG被覆C,Gボールおよび抗CEA−IgG被
覆ポリスチレンボールをCEA標準液(C液で希釈)0
.bt!!とC液0.2mjに室温で6時間静置し、蒸
留水で洗浄後、Cw!iLで希釈した抗CEA−IgG
−GOD標識抗体0.1mjとC液0.2−に室温で1
晩静置し、蒸留水で洗浄後、0.5mol/jグルコー
ス、0.01mol/j酢酸緩衝液(pH5,1) 0
.3−を加え、37℃2時間静置した。0.1−サンプ
リングし、2X10−’+ol/ l ルミノール、0
.2mol/j炭酸緩衝液(pH9,8)0.5m#、
 6X10−’mol/j 7 xリシアン化カリ水溶
液0.5−を各添加し、15秒待ち、16〜45秒間の
発光量を算出する。
The operation is shown below. Anti-CE obtained by the procedure shown in Figure 1
A-IgG coated C, G balls and anti-CEA-IgG coated polystyrene balls were mixed with CEA standard solution (diluted with C solution) 0
.. bt! ! Cw! Anti-CEA-IgG diluted in iL
-GOD-labeled antibody 0.1mj and C solution 0.2-1 at room temperature
After leaving to stand overnight and washing with distilled water, add 0.5 mol/j glucose, 0.01 mol/j acetate buffer (pH 5,1) 0
.. 3- was added, and the mixture was left standing at 37°C for 2 hours. 0.1-sampled, 2X10-'+ol/l Luminol, 0
.. 2mol/j carbonate buffer (pH 9,8) 0.5m#,
Add 6 x 10-' mol/j 7 x 0.5- of potassium ricyanide aqueous solution, wait for 15 seconds, and calculate the amount of luminescence for 16 to 45 seconds.

実施例2と比較例2について検出限界および測定範囲を
比較した。第7図は、その結果であり、CEA濃度−発
光量変化図である。図において、(e)は実施例2、(
d)は比較例2の結果を示している。
The detection limits and measurement ranges of Example 2 and Comparative Example 2 were compared. FIG. 7 shows the results and is a CEA concentration-emission amount change diagram. In the figure, (e) is Example 2, (
d) shows the results of Comparative Example 2.

図よりC,Gの方が、ポリスチレンよりCEAの検出限
界、測定範囲いずれも優れていることが判明した。
From the figure, it was found that C and G were superior to polystyrene in both the detection limit and measurement range of CEA.

これは、C0Gの抗体結合量が、大であることと、固相
への抗体結合の際、抗体の免疫活性が失われにくいこと
の2点が挙げられる。また、C0Gとポリスチレンの測
定上限が同値なのは、添加した酵素標識抗体量が制限因
子になっているためと考える。
This is due to two reasons: the amount of antibody binding to C0G is large, and the immunoactivity of the antibody is less likely to be lost when the antibody is bound to the solid phase. Furthermore, the reason that the measurement upper limits for C0G and polystyrene are the same is considered to be because the amount of enzyme-labeled antibody added is a limiting factor.

(4)検出限界における再現性の評価 実施例2と比較例2で検出限界における口内変動と日間
変動を比較した。結果を表2に示す。
(4) Evaluation of reproducibility in detection limit Example 2 and Comparative Example 2 were compared for intraoral variation and daily variation in detection limit. The results are shown in Table 2.

表2C,Gボールとポリスチレンボールの検出における
再現性の比較 口内変動 測定回数n = 8 日間変動 測定回数n = 6 表中()は、CEA濃度を示す。
Table 2 Comparison of reproducibility in detection of C and G balls and polystyrene balls Intraoral variation Number of measurements n = 8 Daily variation Number of measurements n = 6 The parentheses in the table indicate the CEA concentration.

検出限界でのC,Gボールの再現性が、ポリスチレンボ
ールよりも優れている。これは、C0Gボールの抗体結
合量が多く、比較する固相の個体差が、ポリスチレンボ
ールよりも小さいためである。
The reproducibility of C and G balls at the detection limit is better than that of polystyrene balls. This is because the amount of antibody bound to the C0G ball is large, and the individual differences in the solid phase to be compared are smaller than that of the polystyrene ball.

(5)固相の抗体結合調整法の評価 比較例3゜ 第8図は、比較例3を示す操作方法図である。(5) Evaluation of solid phase antibody binding adjustment method Comparative example 3゜ FIG. 8 is an operating method diagram showing Comparative Example 3.

調整方法は、B液に4℃で1晩浸漬し、さらにB液で洗
浄した後、C液で3回洗浄した後、Ct&に浸漬し、4
℃で保存する。
The preparation method was to soak in liquid B overnight at 4°C, wash with liquid B, wash three times with liquid C, and then soak in Ct&.
Store at °C.

比較例4゜ 第9図は、比較例4を示す操作方法図である。Comparative example 4゜ FIG. 9 is an operating method diagram showing Comparative Example 4.

調整方法は、C0GボールをA液中に室温で、1晩浸漬
してポリリジン処理を行った。蒸留水で洗浄し、B液で
4℃で1晩浸漬した。さらにB液で洗浄した後、C液で
3回洗浄した後、C液に浸漬し、4℃で保存する。
The preparation method was to immerse the C0G ball in liquid A at room temperature overnight to perform polylysine treatment. It was washed with distilled water and immersed in solution B at 4°C overnight. Further, after washing with B solution and three times with C solution, it is immersed in C solution and stored at 4°C.

比較例5゜ 第10図は、比較例5を示す操作方法図である。Comparative example 5゜ FIG. 10 is an operation method diagram showing Comparative Example 5.

調整方法は、C,Gボールを5%グルタルアルデヒド水
溶液に、30℃で2時間浸漬してグルタルアルデヒド処
理を行った。蒸留水で洗浄し、B液4℃で1晩浸漬した
。さらにB液で洗浄した後、C液で3回洗浄した後、C
液に浸漬し、4℃で保存する。
The preparation method was to perform glutaraldehyde treatment by immersing C and G balls in a 5% glutaraldehyde aqueous solution at 30° C. for 2 hours. It was washed with distilled water and immersed in Solution B at 4°C overnight. After further washing with B solution and 3 times with C solution, C
Immerse in liquid and store at 4°C.

実施例2と比較例3,4.5について測定範囲及び検出
限界を第6図の方法で比較した。第11図はその結果で
、処理条件の比較図である。
The measurement range and detection limit of Example 2 and Comparative Examples 3 and 4.5 were compared using the method shown in FIG. FIG. 11 shows the results and is a comparison diagram of the processing conditions.

図において、(e)は比較例3、(f)は比較例4、(
g)は比較例5の結果を示している。
In the figure, (e) is Comparative Example 3, (f) is Comparative Example 4, (
g) shows the results of Comparative Example 5.

図より、第1図の方法で、調整したC、Gの方がCEA
の検出限界及び測定範囲のいずれにおいても優れている
ことが判明した。
From the figure, C and G adjusted using the method shown in Figure 1 have a higher CEA.
It was found that the detection limit and measurement range were excellent.

第1図の調整法はボールをポリリジンで被覆後、グルタ
ルアルデヒドで架橋されるため、固相が安定する。この
様な安定した固相に結合した抗体により、抗体結合量及
び抗体結合力が増加した。
In the preparation method shown in FIG. 1, the ball is coated with polylysine and then crosslinked with glutaraldehyde, so that the solid phase is stabilized. Antibody bound to such a stable solid phase increased the amount of antibody bound and the antibody binding strength.

今回は酵素をCODの場合のみ記したが、ベルオキシグ
ーゼ、アルカリ性ホスファクーゼ、β−D−ガラクトン
ダーゼなどを用いても、同様の結果を得ている。
This time, we have only described the case of COD as an enzyme, but similar results have been obtained using peroxyguse, alkaline phosphacuse, β-D-galactonase, and the like.

また、標識体も酵素のみならず蛍光発光物質、放射性同
位元素でも同様な結果を掃ている。
Furthermore, similar results have been obtained not only with enzymes but also with fluorescent substances and radioactive isotopes.

標識抗体としての標識物を酵素(グルコースオキシグー
ゼ、西洋ワサビペルオキシダーゼ、β−D−ガラクトシ
グーゼ、グルコース6リン酸、脱水素酵素、アルカリホ
スファターゼ等)、発光物質(フルオレセインイソチオ
シアネート、テトラメチルローダミンイソチオシアネ−
1・等)、化学発光物質(アミノエチルエチルイソルミ
ノール、アミノブチルエチルイソルミノール、アミノペ
ンチルエチルイソルミノール、アミノヘキシルエチルイ
ソルミノール等)、放射性同位元素(’H,”C,”p
、 128I、 1llI等) H発明の効果 ポリリジン層とグルタルアルデヒド層と抗体または抗原
層を順次形成した、生体親和性の高い結晶化ガラスを固
相としたので、ポリリジンの被覆属が上昇し、グルクル
アルデヒド処理によって、ポリリジンの一部のアミノ基
が互いにグルタルアルデヒドで、架橋されるため固相が
安定する。この様な安定した固相に結合した抗体により
、抗体結合量及び抗体結合力が増加する。
Labeled substances as labeled antibodies include enzymes (glucose oxyguse, horseradish peroxidase, β-D-galactosigase, glucose 6-phosphate, dehydrogenase, alkaline phosphatase, etc.), luminescent substances (fluorescein isothiocyanate, tetramethylrhodamine isothiocyanate, etc.). Ne-
1, etc.), chemiluminescent substances (aminoethylethylisoluminol, aminobutylethylisoluminol, aminopentylethylisoluminol, aminohexylethylisoluminol, etc.), radioisotopes ('H, "C,"p
, 128I, 1llI, etc.) H Effects of the Invention Since the solid phase is crystallized glass with high biocompatibility, in which a polylysine layer, a glutaraldehyde layer, and an antibody or antigen layer are sequentially formed, the coverage of polylysine increases and By treatment with chloraldehyde, some amino groups of polylysine are crosslinked with each other with glutaraldehyde, thereby stabilizing the solid phase. Antibody bound to such a stable solid phase increases the amount of antibody binding and the antibody binding strength.

そのため、他の調整法よりも測定範囲が拡大し、検出限
界が上昇し、再現性が向上するという効果がある。
Therefore, the measurement range is expanded, the detection limit is increased, and the reproducibility is improved compared to other adjustment methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す免疫測定試薬の調整方
法図、第2図は競合反応による抗体結合量の測定操作図
、第3図はC,Gボールとポリスチレンボールの抗体結
合量変化図、第4図はIgG−COD標準抗体i整方法
図、第5図は非特異的吸着の評価方法の操作図、第6図
は測定範囲および検出限界の比較操作図、第7図はCE
A濃度−発光量変化図、第8図は比較例3を示す操作方
法図、第9図は比較例4を示す操作方法図、第2O図は
比較例5を示す操作方法図、第11図はその結果で、処
理条件の比較図である。
Figure 1 is a diagram of a method for preparing an immunoassay reagent showing an embodiment of the present invention, Figure 2 is a diagram of a procedure for measuring the amount of antibody bound by competitive reaction, and Figure 3 is a diagram of the amount of antibody bound to C and G balls and polystyrene balls. Figure 4 is a diagram of how to prepare the IgG-COD standard antibody, Figure 5 is a diagram of how to evaluate non-specific adsorption, Figure 6 is a diagram of comparison of measurement range and detection limit, and Figure 7 is a diagram of how to prepare the standard antibody for IgG-COD. C.E.
A: Concentration vs. luminescence amount change diagram; Figure 8 is an operating method diagram showing Comparative Example 3; Figure 9 is an operating method diagram showing Comparative Example 4; Figure 2O is an operating method diagram showing Comparative Example 5; shows the results and is a comparison diagram of processing conditions.

Claims (3)

【特許請求の範囲】[Claims] (1)ポリリジン層とグルタルアルデヒド層と抗体また
は抗原層を順次形成した結晶化ガラスを固相としたこと
を特徴とする免疫測定用試薬。
(1) An immunoassay reagent characterized in that the solid phase is crystallized glass in which a polylysine layer, a glutaraldehyde layer, and an antibody or antigen layer are sequentially formed.
(2)前記抗体は、抗ガン胎児性抗原−免疫グロブリン
Gとしたことを特徴とする特許請求の範囲第1項記載の
免疫測定用試薬。
(2) The immunoassay reagent according to claim 1, wherein the antibody is anti-carcinoembryonic antigen-immunoglobulin G.
(3)前記結晶化ガラスは、SiO_2−Na_2O−
CaO−P_2O_5−K_2O−MgO系ガラス、S
iO_2−MgO−CaO−P_2O_5系ガラス、C
aO−P_2O_5系配位性結晶化ガラスの内の一つの
材質であることを特徴とする特許請求の範囲第1項記載
の免疫測定用試薬。
(3) The crystallized glass is SiO_2-Na_2O-
CaO-P_2O_5-K_2O-MgO glass, S
iO_2-MgO-CaO-P_2O_5 glass, C
The reagent for immunoassay according to claim 1, characterized in that it is made of one of aO-P_2O_5-based coordination glass ceramics.
JP28310387A 1987-11-11 1987-11-11 Reagent for immunological measurement Pending JPH01126555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28310387A JPH01126555A (en) 1987-11-11 1987-11-11 Reagent for immunological measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28310387A JPH01126555A (en) 1987-11-11 1987-11-11 Reagent for immunological measurement

Publications (1)

Publication Number Publication Date
JPH01126555A true JPH01126555A (en) 1989-05-18

Family

ID=17661255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28310387A Pending JPH01126555A (en) 1987-11-11 1987-11-11 Reagent for immunological measurement

Country Status (1)

Country Link
JP (1) JPH01126555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001837A1 (en) * 1991-07-22 1993-02-04 Sintetica S.A. Conjugated moieties for chelating paramagnetic metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001837A1 (en) * 1991-07-22 1993-02-04 Sintetica S.A. Conjugated moieties for chelating paramagnetic metals

Similar Documents

Publication Publication Date Title
CN108535491A (en) A kind of latex enhancing immune of Troponin I is than turbid detection kit
JPS63292061A (en) Selective immunological measuring method of complete flaw-free pracollagen peptide (iii type) and procollagen (iii type)
JPH01126555A (en) Reagent for immunological measurement
JPS58149700A (en) Composite containing peroxidase, its preparation and reagent
JPH01126554A (en) Reagent for immunological measurement
JPS59102161A (en) Antigen detection reagent by anti-passive agglutination
JPS6215464A (en) Non-specific reaction absorbent for reverse passive agglutination reaction
JPH01126557A (en) Reagent for immunological measurement
JPH04503404A (en) Solid-phase immunoassay with labeled complex
JPH01126549A (en) Reagent for immunological measurement
JPH01126553A (en) Reagent for immunological measurement
JPH01126556A (en) Reagent for immunological measurement
JPH01126552A (en) Reagent for immunological measurement
JPH0566985B2 (en)
JPS583671B2 (en) Methods of increasing the ability of apoglucose oxidase to bind flavin adenine dinucleotide and its derivatives, homogeneous specific binding assays, homogeneous immunoassays for measuring complexes and ligands in liquid media, Reagents and
JPS587560A (en) Reagent for measuring copper, zinc-super oxidedismutase
JPH01126550A (en) Reagent for immunological measurement
JPS5960260A (en) Enzyme immunological measurement
JPH01126551A (en) Reagent for immunological measurement
JPS6140066B2 (en)
JPH08313530A (en) Method for measuring total hemoglobin and measuring kit
Taylor et al. Confusion between specific and nonspecific binding of carcinoembryonic antigen and blood-group antigens by eluted antibody preparations
JPS63145960A (en) Non-singular adsorption inhibitor for labeled antibody
JPS6385358A (en) Enzymatic immunoassay of blood release type triiode thyronine
JPH0432766A (en) Serum diagnostic method