JPH01126552A - Reagent for immunological measurement - Google Patents

Reagent for immunological measurement

Info

Publication number
JPH01126552A
JPH01126552A JP62283104A JP28310487A JPH01126552A JP H01126552 A JPH01126552 A JP H01126552A JP 62283104 A JP62283104 A JP 62283104A JP 28310487 A JP28310487 A JP 28310487A JP H01126552 A JPH01126552 A JP H01126552A
Authority
JP
Japan
Prior art keywords
antibody
solid phase
amount
solution
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62283104A
Other languages
Japanese (ja)
Inventor
Miyoko Kusumi
美代子 久住
Shigeo Aoyanagi
重夫 青柳
Akira Matsuyuki
松行 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP62283104A priority Critical patent/JPH01126552A/en
Publication of JPH01126552A publication Critical patent/JPH01126552A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • C23C14/566Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To enable a wider measuring range, a rise in sensitivity to a detection limit, by using alumina ceramics with a high vital affinity as solid phase to increase an antibody bondage and bonding force. CONSTITUTION:A polylysine layer, a glutaric aldehyde layer and an antibody or antigen layer are formed sequentially and alumina ceramics with a high vital affinity is used to be a solid phase. With such an arrangement, a bonding force and a bondage between the solid phase and polylysine are increased to enhance the amount of glutaric aldehyde in crosslinking, resulting in a greater antibody bondage and bonding force. This achieves a wider measuring range, a rise in sensitivity to a detection limit and the like.

Description

【発明の詳細な説明】 A産業上の利用分野 本発明は、固相を用いた免疫測定試薬であり、固相にア
ルミナセラミックスを使い、ポリリジン層とグルタルア
ルデヒド層と抗体または抗原層を順次形成して、固相へ
の抗体結合量及び抗体結合力を増加させ、測定範囲の拡
大、検出限界の感度の上昇、及び再現性の向上を得た免
疫測定試薬に関するものである。
[Detailed Description of the Invention] A. Industrial Application Field The present invention is an immunoassay reagent using a solid phase, in which alumina ceramics is used as the solid phase, and a polylysine layer, a glutaraldehyde layer, and an antibody or antigen layer are sequentially formed. The present invention relates to an immunoassay reagent that increases the amount of antibody bound to a solid phase and the antibody binding force, thereby expanding the measurement range, increasing the sensitivity of the detection limit, and improving reproducibility.

B発明の概要 本発明は、アルミナセラミックスを固相として、その固
相上に、ポリリジン層とグルクルアルデヒド層と抗体ま
たは抗原層を順次形成したことからなる免疫測定試薬に
関するものである。
B. Summary of the Invention The present invention relates to an immunoassay reagent comprising an alumina ceramic solid phase, on which a polylysine layer, a gluculaldehyde layer, and an antibody or antigen layer are sequentially formed.

C従来の技術 固相を用いろ免疫学的測定法には、大きく分けて、11
合法と非競合法に分類される。前者の代表例は、第1抗
体固相法、後者は、サンドイッチ測定法がある。
C Conventional techniques Immunoassay methods using solid phases can be roughly divided into 11
Classified into legal and non-competitive laws. A representative example of the former is the first antibody solid phase method, and the latter is the sandwich measurement method.

このサンドイツチ法は、固相に抗体を吸着させ、そこに
抗原をトラップさせる。次に酵素標識抗体をその抗原に
結きさせ、結合した酵素標識抗体量から抗原の量を測定
する方法である。
In this sandwich method, antibodies are adsorbed onto a solid phase and antigens are trapped there. Next, an enzyme-labeled antibody is bound to the antigen, and the amount of the antigen is measured from the amount of bound enzyme-labeled antibody.

上記の原理のため、サンドイツチ法の検出感度を上昇さ
せるためには、固相への抗体結合量及び抗体結合力が、
大きく影響してくる。
Due to the above principle, in order to increase the detection sensitivity of the sandwich method, the amount of antibody bound to the solid phase and the antibody binding strength must be
It will have a big impact.

従来、固相の材料としてはポリスチレン、ガラス、アク
リルニトリル−ブタジェン−スチレン共重合樹脂(略し
てABS)などが多く用いられた。
Conventionally, polystyrene, glass, acrylonitrile-butadiene-styrene copolymer resin (abbreviated as ABS), and the like have often been used as materials for the solid phase.

これらの固相への抗体結合方法は、多くは物理的に吸着
させる方法であった。しかし、この方法では、固相の抗
体結合量が少ない、固相の抗体結合力が弱い、測定値の
バラツキが大きい、非特異的吸着が大きいなどの問題点
があった。
Most of the methods for binding antibodies to these solid phases involve physical adsorption. However, this method has problems such as a small amount of antibody bound to the solid phase, weak antibody binding strength of the solid phase, large variations in measured values, and large nonspecific adsorption.

以前、特願昭60−45742で本発明者らが出願した
「免疫学的な測定試薬の調整法とこれによって得た試薬
」では、上記の問題点を解決するために、固相をアミノ
酸処理した後、二官能性アルデヒド処理し、抗体結合さ
せたものであり、その効果は上記問題点を解決するに至
った。
Previously, in the patent application No. 60-45742 entitled "Method for preparing immunological assay reagents and reagents obtained thereby," the solid phase was treated with amino acids in order to solve the above problems. After that, it was treated with a bifunctional aldehyde and bound to an antibody, which has the effect of solving the above problems.

D発明が解決しようとする問題点 しかし、免疫測定試薬としての検出限界、測定範囲及び
再現性のより一層の向上が望まれていた。
D. Problems to be Solved by the Invention However, it has been desired to further improve the detection limit, measurement range, and reproducibility of the immunoassay reagent.

本発明は、かかる問題点を解決するためになされたもの
で、固相の抗体結合量が多く、固相の抗体結合力も強く
、測定値のバラツキが小さい、非特異的吸着の少ない免
疫測定試薬を得ることはもちろんの事として、免疫測定
試薬としての測定範囲の拡大、検出限界の感度上昇及び
再現性のより一層の向上を成しP4た免疫測定試薬を得
ることを目的とする。
The present invention has been made to solve these problems, and is an immunoassay reagent that has a large amount of antibody binding on the solid phase, strong antibody binding force on the solid phase, small variation in measured values, and low nonspecific adsorption. In addition to obtaining a P4 immunoassay reagent, the objective is to expand the measurement range, increase the sensitivity of the detection limit, and further improve reproducibility as an immunoassay reagent.

E問題点を解決するための手段 この発明に係わる免疫測定試薬では、ポリリジン層とグ
ルタルアルデヒド層と抗体または抗原層を順次形成した
、生体親和性の高いアルミナセラミックスを使い、その
アルミナセラミックスを固相としたものである。
E Means for Solving Problems The immunoassay reagent according to the present invention uses highly biocompatible alumina ceramics in which a polylysine layer, a glutaraldehyde layer, and an antibody or antigen layer are sequentially formed, and the alumina ceramics are used as a solid phase. That is.

F作用 生体親和性の高いアルミナセラミックスを固相に使うこ
とにより、固相とポリリジンの結合力と結合量が増加す
る。それにより、架橋するグルクルアルデヒド量が増加
し、抗体結合量及び抗体結合力が増加する。
F action By using alumina ceramics with high biocompatibility as the solid phase, the binding strength and amount of binding between the solid phase and polylysine are increased. As a result, the amount of cross-linked gluturaldehyde increases, and the amount of antibody binding and antibody binding strength increase.

G実施例 (11”’I−CE A (ガン胎児性抗原)を用いた
抗体結合量の評価 実施例1゜ 第1図は本発明の一実施例を示す免疫測定試薬の調整方
法図である。
G Example (11'''Evaluation of antibody binding amount using I-CE A (carcinoembryonic antigen) Example 1゜Figure 1 is a diagram of a method for preparing an immunoassay reagent showing an example of the present invention. .

調整方法は、アルミナセラミックスボール(AtzOs
) (以下、A1.Cボールと略す)をA液(0,II
ag/1111+ポリリジンを含む0.15@ol/ 
lホウ酸緩衝液(p[[8,5) )中に室温で、1晩
浸漬してポリリジン処理を行った。蒸留水で洗浄し、5
%グルタルアルデヒド水溶液に、30℃で2時間浸漬し
てグルタルアルデヒド処理を行った。蒸留水で洗浄し、
B液(0,1ng/mA’免疫グロブリンG(IgGと
略す)、0.11I+01/eリン酸緩衝液(p[(7
,5) ) 4℃で1晩浸漬した。さらにB液で洗浄し
た後、C液(0,01mol/jリン酸緩衝液(pt(
7,0)、0.1a+ol/j Mail、 0.1X
牛血清アルブミン(B S Aと略す)、0.1XHa
N39合液)で洗浄した後、C液に浸漬し、4℃で保存
した。
The adjustment method is to use an alumina ceramic ball (AtzOs).
) (hereinafter abbreviated as A1.C ball) to liquid A (0, II
ag/1111+0.15@ol/ containing polylysine
Polylysine treatment was performed by immersing the sample in a borate buffer (p[[8,5)] overnight at room temperature. Wash with distilled water,
% glutaraldehyde aqueous solution at 30° C. for 2 hours to perform glutaraldehyde treatment. Wash with distilled water,
Solution B (0.1 ng/mA' immunoglobulin G (abbreviated as IgG), 0.11 I+01/e phosphate buffer (p[(7
, 5)) Soaked overnight at 4°C. After further washing with solution B, solution C (0.01 mol/j phosphate buffer (pt)
7,0), 0.1a+ol/j Mail, 0.1X
Bovine serum albumin (abbreviated as BSA), 0.1XHa
After washing with N39 solution), it was immersed in solution C and stored at 4°C.

本実施例では、IgGを抗ガン胎児性抗原(抗CEAと
略す)−IgGとして被覆A1.Cボールを調整した。
In this example, IgG was coated as anti-carcinoembryonic antigen (abbreviated as anti-CEA)-IgG. Adjusted the C ball.

第2図は競合反応による抗体結合量の測定操作図であり
、第1図の方法で調整された抗CEA−IgG被覆A1
.Cボールを”’■−〇 E A溶液(約2X10’C
pm[カウント・パー 1:)”)I)100p  l
  S CE A溶液(0〜11000n/m1)10
0μl 、 C液100μlの混合溶液で1晩反応させ
、洗浄後、γ−ウェルカウンターで計測した。
Figure 2 is a diagram showing the procedure for measuring the amount of antibody binding by competitive reaction, and shows the anti-CEA-IgG coated A1 prepared by the method shown in Figure 1.
.. C ball "'■-〇 E A solution (approximately 2X10'C
pm [count par 1:)”) I) 100 p l
SCE A solution (0-11000n/m1) 10
The mixture was reacted overnight with a mixed solution of 0 μl and 100 μl of solution C, and after washing, measurement was performed using a γ-well counter.

第1図で調整した抗CEA−IgG被覆A1.Cボール
を第2図の通り、1”I−CE Aにより、抗体結合量
を測定した。結果は、第3図に示す。
Anti-CEA-IgG coated A1 prepared in FIG. The amount of antibody bound to the C ball was measured using 1"I-CE A as shown in FIG. 2. The results are shown in FIG. 3.

比較例1゜ 第1図と同様の方法で、抗CEA−IgG被覆ポリスチ
レンボールを調整し、第2図と同様の方法で、抗体結合
量を測定した。
Comparative Example 1 An anti-CEA-IgG coated polystyrene ball was prepared in the same manner as in FIG. 1, and the amount of antibody bound was measured in the same manner as in FIG.

結果は、第3図に示す。   ′ 第3図は、実施例1と比較例1の結果であり、A1.C
ボールとポリスチレンボールの抗体結合量変化図である
。図において(a)は実施例1、(b)は比較例1の結
果を示している。
The results are shown in Figure 3. ' Figure 3 shows the results of Example 1 and Comparative Example 1, and A1. C
It is a diagram showing changes in the amount of antibody binding between balls and polystyrene balls. In the figure, (a) shows the results of Example 1, and (b) shows the results of Comparative Example 1.

図より、抗体結合量はA1.Cボールの方がポリスチレ
ンボールより相対的に大であることが判明した。
From the figure, the amount of antibody bound is A1. It was found that the C ball was relatively larger than the polystyrene ball.

これは、A1.Cがポリスチレンに比べて生体親和性が
強いためである。
This is A1. This is because C has stronger biocompatibility than polystyrene.

(2)酵素標識抗体の固相への非特異的吸着の評価実施
例2゜ 第4図は酵素免疫測定(Enzyme I+mwaun
o 人5say :EIAと略す)を行う時のIKG−
GOD(グルコースオキシダーゼ)標識抗体調整方法図
であり、第5図は非特異的吸着の評価方法の操作図であ
る。
(2) Evaluation example 2 of non-specific adsorption of enzyme-labeled antibodies to solid phase Figure 4 shows enzyme immunoassay (Enzyme I+mwaun).
o IKG when performing 5say (abbreviated as EIA)
FIG. 5 is a diagram of a method for preparing a GOD (glucose oxidase)-labeled antibody, and FIG. 5 is an operational diagram of a method for evaluating nonspecific adsorption.

I gG −G OD [m抗体FI整方法1;!、:
!fG。
IgG -G OD [mAntibody FI preparation method 1;! , :
! fG.

D約3mg70.3−を4倍量の0.1mol//リン
酸a衝液(pH7,0> ニ溶カシ、GOD二 〇MB
S(ザクシンイミジル−4−マレイミドブチレイ7−)
=1:50の比で添加し、それを0.1mol/l’リ
ン酸緩衝液(p[(6,0)で平衡化したセファデック
スG 25 (1x30カラム)を用いて12m1’/
hrで脱塩し、1mlずつ分取し、マレイミドGODを
得た。次に、IgGに2mZの0.1mol/lリン酸
緩衝液(p[16,0) −51+++ol/ l E
DTAを加え、S−アセチルメルカプトこはく酸を(S
−アセチルメルカプトこはく酸:  IgG=300=
  1の比で)ジメチルフォルマイトに溶解し添加する
。室温で30分間攪拌後、0.1mol/j ト’) 
スー塩酸(pl(7,0) 0.1−10.1o+ol
/j EDTA(pH7,0)0.02m1l、 1m
ol/j′ヒ ドロキシジアミン水溶液(pH7,0)
 0.1−を各々加え、30℃4分同反応させた。D液
で平衡化したセファデックスG 25 (1x30カラ
ム)を用いて、12mj/hrの速度で脱塩し、1mj
ずつ分取し、水冷中コロジオンバッグで濃縮し、SH−
IgGを得た。得られたマレイミドCODとSH−Ig
Gを等モル混和し、30℃1時間静置後、4℃で1晩静
置した。0.1s+ol/eリン酸II衝液(p[(6
,51,5a+膓o1/j EDTAで平衡化したセフ
ァクリル300 (2x90カラ幻に、6mj/hrで
上記試料を溶出し、1mlずつ分取し、IgG−COD
標識抗体を得た。これを0.1%Nap、、0.1%B
SAとなるように添加し、4℃で保存する。
Approximately 3 mg of D70.3-4 times the amount of 0.1 mol//Phosphate a solution (pH 7,0> diluted oak, GOD 20 MB
S (succinimidyl-4-maleimidobutyrei 7-)
= 1:50 and was added to 12 ml/l' using Sephadex G 25 (1x30 column) equilibrated with 0.1 mol/l' phosphate buffer (p[(6,0)).
The mixture was desalted for 1 hr and separated into 1 ml portions to obtain maleimide GOD. Next, the IgG was treated with 2 mZ of 0.1 mol/l phosphate buffer (p[16,0) -51 +++ ol/l E
Add DTA and add S-acetylmercaptosuccinic acid (S
-Acetylmercaptosuccinic acid: IgG=300=
(in a ratio of 1:1) and added in dimethylformite. After stirring at room temperature for 30 minutes, 0.1 mol/jt')
Hydrochloric acid (pl(7,0) 0.1-10.1o+ol
/j EDTA (pH 7,0) 0.02ml, 1m
ol/j' Hydroxydiamine aqueous solution (pH 7.0)
0.1- was added to each and reacted at 30°C for 4 minutes. Desalting was carried out at a rate of 12 mj/hr using Sephadex G 25 (1x30 column) equilibrated with solution D, and 1 mj
Collect aliquots, concentrate in water-cooled collodion bags, and SH-
IgG was obtained. Obtained maleimide COD and SH-Ig
Equimolar amounts of G were mixed, left at 30°C for 1 hour, and then left at 4°C overnight. 0.1s+ol/e phosphate II buffer (p[(6
, 51,5a + 1/j Sephacryl 300 (2x90 Karagen) equilibrated with EDTA, elute the above sample at 6 mj/hr, collect 1 ml each, and collect IgG-COD.
A labeled antibody was obtained. This is 0.1% Nap, 0.1% B
Add to SA and store at 4°C.

非特異的吸着は、第5図に示すように、第1図で得られ
な抗CEA−IgG被覆AI、Cボールを、Cwlで希
$1fKcEA−IgG−GOD[li[体o、i−と
C液0.2艷に室温で1晩静置し、蒸留水で洗浄後、0
.5a+ol/ lグルコース、0.01mol/l酢
酸緩衝液(pH5,1) 0.3mjを加え、37℃2
時間静置した。
As shown in FIG. 5, non-specific adsorption was performed by diluting the anti-CEA-IgG-coated AI, C balls obtained in FIG. Leave to stand overnight at room temperature in 0.2 mm of C solution, wash with distilled water,
.. Add 5a+ol/l glucose, 0.3mj of 0.01mol/l acetate buffer (pH 5,1), and heat at 37°C.
Let it stand for a while.

0.1d”t:/プリングし、2X10−’mol/j
 ルi: / −ル、0.2mol/j炭酸緩衝液(p
[(9,8)0.5ml、 6X10−’mol/lフ
ェリシアン化カリ水溶液0.51BIを各添加し、15
秒待ち、16〜45秒間の発光量を算出することによっ
て求めた。
0.1d"t:/pull, 2X10-'mol/j
Le: / -le, 0.2 mol/j carbonate buffer (p
[(9,8) 0.5 ml, 6 x 10-' mol/l potassium ferricyanide aqueous solution 0.51 BI was added to each,
It was determined by waiting for seconds and calculating the amount of light emitted for 16 to 45 seconds.

比較例2゜ 第1図と同様に調整した抗CEA−IgG被覆ポリスチ
レンボールを用いて、第5図の様にポリスチレンボール
の非特異的吸着量を求めた。
Comparative Example 2 Using anti-CEA-IgG coated polystyrene balls prepared in the same manner as shown in Fig. 1, the amount of non-specific adsorption of the polystyrene balls was determined as shown in Fig. 5.

実施例2と比較例2で、酵素標識抗体の固相への非特異
的吸着を比較した。なお、評価法は、添加IgG−CO
D標識抗体に対するIgG−GOD標識抗体の固相への
吸着量の割合(%)とした。結果を表1に示す。
In Example 2 and Comparative Example 2, nonspecific adsorption of an enzyme-labeled antibody to a solid phase was compared. The evaluation method is based on added IgG-CO
It was expressed as the ratio (%) of the amount of IgG-GOD labeled antibody adsorbed on the solid phase to the D-labeled antibody. The results are shown in Table 1.

1IA1.cボールとポリスチレンボールにおける非特
異的吸着の比較 サンドイッチ測定法の感度を左右する主な要因の1つで
ある酵素標識抗体の固相への非特異的吸着は両者に差が
ないという結果を得た。これは抗体を固相へ吸着後、牛
血清アルブミンによるブロックがAI、Cの場合でも、
ポリスチレンと同程度に有効であるためである。
1IA1. Comparison of nonspecific adsorption between c-balls and polystyrene balls We found that there is no difference between the two in terms of nonspecific adsorption of enzyme-labeled antibodies to the solid phase, which is one of the main factors that determines the sensitivity of the sandwich assay method. Ta. This is true even when AI and C are blocked by bovine serum albumin after adsorbing the antibody to the solid phase.
This is because it is as effective as polystyrene.

(3)検出限界、測定範囲の評価 第6図は測定範囲および検出限界の比較操作図である。(3) Evaluation of detection limits and measurement range FIG. 6 is a comparison diagram of measurement range and detection limit.

以下にその操作を示す。第1図の操作で得られた抗CE
A−IgG被覆A l 、 cホールオJ:ヒ抗CEA
−IgG被覆ポリスチレンボールをCEAll準液(C
液で希釈)0.1rnlとC液0,2−に室温で6時間
静置し、蒸留水で洗浄後、C液で希釈した抗CEA−I
gG−GOD標識抗体0.1mlとC液0.2rnl+
ζ室温で1晩静置し、蒸留水で洗浄後、0.5mol/
lグルコース、0.01mol/j酢酸緩衝液(pH5
,1) 0.3−を加え、37℃2時間静置した。0.
1−サンプリングし、2×10−’mol/1 ルミノ
ール、0.2mol/j炭酸緩衝液(pH9,8) 0
.5−16X10−”mol/j 7 x !J ii
 7 ン化カリ水溶液0.5m#を各添加し、15秒待
ち、16〜45秒間の発光量を算出する。
The operation is shown below. Anti-CE obtained by the procedure shown in Figure 1
A-IgG coated A1, choleoJ: human anti-CEA
- IgG coated polystyrene balls with CEAll semi-solution (C
Anti-CEA-I diluted with 0.1rnl of solution) and Solution C 0.2-, left standing at room temperature for 6 hours, washed with distilled water, and diluted with Solution C.
gG-GOD labeled antibody 0.1ml and C solution 0.2rnl+
ζLet stand overnight at room temperature, wash with distilled water, and then add 0.5 mol/
l glucose, 0.01 mol/j acetate buffer (pH 5
, 1) 0.3- was added and left at 37°C for 2 hours. 0.
1-Sampling, 2 x 10-'mol/1 Luminol, 0.2mol/j carbonate buffer (pH 9,8) 0
.. 5-16X10-”mol/j7x!Jii
7 Add 0.5 m# of potassium chloride aqueous solution to each sample, wait 15 seconds, and calculate the amount of light emitted for 16 to 45 seconds.

実施例2と比較例2について検出限界および測定範囲を
比較した。第7図は、その結果であり、CEAilji
度−発光量変化図である。図において、(e)は実施例
2、(d)は比較例2の結果を示している。
The detection limits and measurement ranges of Example 2 and Comparative Example 2 were compared. Figure 7 shows the results.
FIG. In the figure, (e) shows the results of Example 2, and (d) shows the results of Comparative Example 2.

図よりA1.Cの方が、ポリスチレンよりCEAの検出
限界、測定範囲いずれも優れていることが判明した。
From the figure A1. It was found that CEA was superior to polystyrene in both the detection limit and measurement range of CEA.

これは、A1.Cの抗体結合量が、大であることと、固
相への抗体結合の際、抗体の免疫活性が失われにくいこ
との2点が挙げられる。また、A1、Cとポリスチレン
の測定上限が同値なのは、添加した酵素標識抗体量が制
限因子になっているためと考える。
This is A1. Two points are mentioned: the amount of antibody bound by C is large, and the immunological activity of the antibody is not easily lost when the antibody is bound to the solid phase. Furthermore, the reason that the measurement upper limits of A1, C and polystyrene are the same is considered to be because the amount of enzyme-labeled antibody added is a limiting factor.

(4)検出限界における再現性の評価 実施例2と比較例2で検出限界における口内変動と日間
変動を比較した。結果を表2に示す。
(4) Evaluation of reproducibility in detection limit Example 2 and Comparative Example 2 were compared for intraoral variation and daily variation in detection limit. The results are shown in Table 2.

表2A1.cボールとポリスチレンボール日内変動 測
定回数n = 8 日間変vh  測定回数n = 6 表中()は、CEA濃度を示す。
Table 2A1. c Ball and polystyrene ball diurnal variation Number of measurements n = 8 Daily variation vh Number of measurements n = 6 In the table, () indicates the CEA concentration.

検出限界でのA1.Cボールの再現性が、ポリスチレン
ボールよりも優れている。これは、AI。
A1 at the detection limit. The reproducibility of C balls is better than that of polystyrene balls. This is AI.

C,ボールの抗体結合量が多く、比較する固相の個体差
が、ポリスチレンボールよりも小さいためである。
C. This is because the amount of antibody bound to the balls is large and the individual differences in the solid phase to be compared are smaller than that of polystyrene balls.

(5)固相の抗体結合調整法の評価 比較例3゜ 第8図は、比較例3を示す操作方法図である。(5) Evaluation of solid phase antibody binding adjustment method Comparative example 3゜ FIG. 8 is an operation method diagram showing Comparative Example 3.

調整方法は、B液に4℃で1晩浸漬し、さらにB液で洗
浄した後、C液で3回洗浄した後、C液に浸漬し、4℃
で保存する。
The adjustment method is to soak in liquid B overnight at 4°C, wash with liquid B, wash three times with liquid C, then soak in liquid C at 4°C.
Save with .

比較例4゜ 第9図(よ、比較例4を示す操作方法図である。Comparative example 4゜ FIG. 9 is an operation method diagram showing Comparative Example 4.

調整方法は、A1.CボールをA液中に室温で、1晩浸
漬してポリリジン処理を行った。蒸留水で洗浄し、B液
で4℃で1晩浸漬した。さらにB液で洗浄した後、C液
で3回洗浄した後、C液に浸漬し、4℃で保存する。
The adjustment method is A1. Ball C was immersed in Solution A at room temperature overnight to perform polylysine treatment. It was washed with distilled water and immersed in solution B at 4°C overnight. Further, after washing with B solution and three times with C solution, it is immersed in C solution and stored at 4°C.

比較例5゜ 第10図は、比較例5を示す操作方法図である。Comparative example 5゜ FIG. 10 is an operation method diagram showing Comparative Example 5.

調整方法は、A1.Cボールを5%グルタルアルデヒド
水溶液に、30℃で2時間浸漬してグルタルアルデヒド
処理を行った。蒸留水で洗浄し、B液4℃で1晩浸漬し
た。さらにB液で洗浄した後、C液で3回洗浄した後、
C液に浸漬し、4℃で保存する。
The adjustment method is A1. C-ball was immersed in a 5% aqueous glutaraldehyde solution at 30° C. for 2 hours to perform glutaraldehyde treatment. It was washed with distilled water and immersed in Solution B at 4°C overnight. After further washing with liquid B and three times with liquid C,
Immerse in Solution C and store at 4°C.

実施例2と比較例3,4,5について測定範囲及び検出
限界を第6図の方法で比較した。第11図はその結果で
、処理条件の比較図である。
The measurement range and detection limit of Example 2 and Comparative Examples 3, 4, and 5 were compared using the method shown in FIG. FIG. 11 shows the results and is a comparison diagram of the processing conditions.

図において、(e)は比較例3、(f)は比較例4、(
g)は比較例5の結果を示している。
In the figure, (e) is Comparative Example 3, (f) is Comparative Example 4, (
g) shows the results of Comparative Example 5.

図より、第1図の方法で、H整したA1.Cの方がCE
Aの検出限界及び測定範囲のいずれにおいても侵れてい
ることが判明した。
From the figure, A1. C is CE
It was found that both the detection limit and measurement range of A were violated.

第1図の調整法はボールをポリリジンで被覆後、グルタ
ルアルデヒドで架橋されるため、固相が安定する。この
様な安定した固相に結合した抗体により、抗体結合量及
び抗体結合力が増加した。
In the preparation method shown in FIG. 1, the ball is coated with polylysine and then crosslinked with glutaraldehyde, so that the solid phase is stabilized. Antibody bound to such a stable solid phase increased the amount of antibody bound and the antibody binding strength.

今回は抗体量を検出するための標識物を酵素(GOD)
の場合のみ記したが、酵素のみならず蛍光発光物質、放
射性同位元素でも同様な結果を得ている。以下に標識物
の例を示す。酵素(グルコースオキシダーゼ、西洋ワサ
ビペルオキシダーゼ、β−D−ガラクトシダーゼ、グル
コース6リン酸、脱水素酵素、アルカリホスファターゼ
等)、発光[t (フルオレセインイ′〕千オシアネ−
1・、テトラメチルローグミンイソチオシアネ−1・等
)、化学発光物質(アミノエチルエチルイソルミノール
、アミノブチルエチルイソルミノール、アミノペンチル
エチルイソルミノール、アミノヘキシルエチルイソルミ
ノール等)、放射性同位元素(sH114C、2P 、
 125 ■、1311等)H発明の効果 ポリリジン層とグルタルアルデヒド層と抗体または抗原
層を順次形成した、生体親和性の高いアルミナセラミッ
クスを固相としたので、ポリリジンの被覆量が上昇し、
グルクルアルデヒド処理によって、ポリリジンの一部の
アミノ基が互いにグルタルアルデヒドで、架橋されろた
め固相が安定する。この様な安定した固相に結合した抗
体により、抗体結合量及び抗体結合力が増加する。
This time, we will use an enzyme (GOD) as a label to detect the amount of antibodies.
Although only the case is described, similar results have been obtained not only with enzymes but also with fluorescent substances and radioactive isotopes. Examples of labeled objects are shown below. Enzymes (glucose oxidase, horseradish peroxidase, β-D-galactosidase, glucose 6-phosphate, dehydrogenase, alkaline phosphatase, etc.), luminescence
1., tetramethyl rogamine isothiocyane-1., etc.), chemiluminescent substances (aminoethylethylisoluminol, aminobutylethylisoluminol, aminopentylethylisoluminol, aminohexylethylisoluminol, etc.), radioactive isotopes ( sH114C, 2P,
125 ■, 1311, etc.) Effects of the H invention Since the solid phase is alumina ceramics with high biocompatibility, in which a polylysine layer, a glutaraldehyde layer, and an antibody or antigen layer are sequentially formed, the amount of polylysine covered increases.
The glutaraldehyde treatment stabilizes the solid phase because some amino groups of polylysine are crosslinked with each other with glutaraldehyde. Antibody bound to such a stable solid phase increases the amount of antibody binding and the antibody binding strength.

そのため、従来よりも測定範囲が拡大し、検出限界が上
昇し、再現性が向上するという効果がある。
Therefore, the measurement range is expanded, the detection limit is increased, and the reproducibility is improved compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す免疫測定試薬の調整方
法図、第2図は競合反応による抗体結合量の測定操作図
、第3図はA1.Cボールとポリスチレンボールの抗体
結合量変化図、第4図はIgG−COD標識抗体m整方
法図、第5図は非特異的吸着の評価方法の操作図、第6
図は測定範囲および検出限界の比較操作図、第7図はC
EA濃度−発光量変化図、第8図は比較例3を示す操作
方法図、第9図は比較例4を示す操作方法図、第10図
は比較例5を示す操作方法図、第11図はその結果で、
処理条件の比較図である。
FIG. 1 is a diagram of a method for preparing an immunoassay reagent showing an embodiment of the present invention, FIG. 2 is a diagram of a procedure for measuring the amount of antibody bound by competitive reaction, and FIG. 3 is a diagram of A1. Figure 4 shows the change in antibody binding amount between C ball and polystyrene ball, Figure 4 shows how to prepare IgG-COD labeled antibody, Figure 5 shows how to evaluate non-specific adsorption, and Figure 6 shows how to evaluate non-specific adsorption.
The figure is a comparison operation diagram of the measurement range and detection limit, and Figure 7 is C.
EA concentration-emission amount change diagram, FIG. 8 is an operating method diagram showing Comparative Example 3, FIG. 9 is an operating method diagram showing Comparative Example 4, FIG. 10 is an operating method diagram showing Comparative Example 5, and FIG. 11 is the result,
It is a comparison diagram of processing conditions.

Claims (2)

【特許請求の範囲】[Claims] (1)ポリリジン層とグルタルアルデヒド層と抗体また
は抗原層を順次形成したアルミナセラミックスを固相と
したことを特徴とする免疫測定用試薬。
(1) An immunoassay reagent characterized in that the solid phase is alumina ceramics in which a polylysine layer, a glutaraldehyde layer, and an antibody or antigen layer are sequentially formed.
(2)前記抗体は、抗ガン胎児性抗原−免疫グロブリン
Gとしたことを特徴とする特許請求の範囲第1項記載の
免疫測定用試薬。
(2) The immunoassay reagent according to claim 1, wherein the antibody is anti-carcinoembryonic antigen-immunoglobulin G.
JP62283104A 1987-11-11 1987-11-11 Reagent for immunological measurement Pending JPH01126552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283104A JPH01126552A (en) 1987-11-11 1987-11-11 Reagent for immunological measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283104A JPH01126552A (en) 1987-11-11 1987-11-11 Reagent for immunological measurement

Publications (1)

Publication Number Publication Date
JPH01126552A true JPH01126552A (en) 1989-05-18

Family

ID=17661269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283104A Pending JPH01126552A (en) 1987-11-11 1987-11-11 Reagent for immunological measurement

Country Status (1)

Country Link
JP (1) JPH01126552A (en)

Similar Documents

Publication Publication Date Title
AU2018374469B2 (en) Target interference suppressed anti-drug antibody assay
WO1996004558A1 (en) Measurement system using whole blood
EP0124366B1 (en) Method of measuring biological ligands
WO1999060401A1 (en) Immunoassay reagents and immunoassay method
JPH01209370A (en) Method and apparatus for measuring immunologically active substance
EP1247096B1 (en) Method for immobilisation of (an) affinity reagent(s) on a hydrophobic solid phase
JPH01126552A (en) Reagent for immunological measurement
JPH01126557A (en) Reagent for immunological measurement
JPH01126554A (en) Reagent for immunological measurement
JP2672151B2 (en) Enzyme immunoassay using magnetic substance
JPS58149700A (en) Composite containing peroxidase, its preparation and reagent
JPH01126553A (en) Reagent for immunological measurement
JPH01126556A (en) Reagent for immunological measurement
JPH01126551A (en) Reagent for immunological measurement
JP2001013145A (en) Labeled complex and its manufacture
JPH01126550A (en) Reagent for immunological measurement
JPH01126555A (en) Reagent for immunological measurement
JPH01126549A (en) Reagent for immunological measurement
JP4491572B2 (en) Reagents and methods for measuring substances to be measured in samples by enzyme immunoassay
JP2003083976A (en) HBs ANTIGEN MEASURING REAGENT
JP3871806B2 (en) Circulating thin-layer liquid phase measurement method
JPH08509064A (en) Immobilization of chemically crosslinked proteins on a solid support
JPS6298260A (en) Kit for measuring immune active material
JPH07113805A (en) Producing method of reference standard for immunoreaction measurement and immunologic measuring method using the same
JPH06313766A (en) Carrier with immobilized antibody, manufacture thereof and immunologically measuring method by the same carrier

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Effective date: 20040915

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040927

A521 Written amendment

Effective date: 20041007

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Effective date: 20050613

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060104

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060125

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120203

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250