JPH01126139A - Superconductive energy storage apparatus - Google Patents

Superconductive energy storage apparatus

Info

Publication number
JPH01126139A
JPH01126139A JP62281005A JP28100587A JPH01126139A JP H01126139 A JPH01126139 A JP H01126139A JP 62281005 A JP62281005 A JP 62281005A JP 28100587 A JP28100587 A JP 28100587A JP H01126139 A JPH01126139 A JP H01126139A
Authority
JP
Japan
Prior art keywords
energy
superconducting coil
switch
superconducting
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62281005A
Other languages
Japanese (ja)
Inventor
Hidehiro Nagamura
英博 長村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62281005A priority Critical patent/JPH01126139A/en
Publication of JPH01126139A publication Critical patent/JPH01126139A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To obtain a small-scale superconductive energy storage apparatus dissipating no heat in the environment, by connecting a series connector of a switch and a device for converting electrical energy into electrochemical energy in parallel with a superconducting coil. CONSTITUTION:A switch 2 and a device 4 for converting electrical energy into electrochemical energy (for example, lithium electrolytic device) are connected in parallel with a superconducting coil 3 connected with a power supply 1. Normally, said switch 2 is opened and stores energy in said superconducting coil 3 or takes it out therefrom via said power supply 1. When the superconducting coil 3 is likely to be quenched, the power supply 1 is blocked, the switch 2 is closed, and an electromagnetic energy stored in the superconducting coil 3 is treated as electrochemical energy by the device 4.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、超電導コイルを利用して、エネルギーを貯蔵
し、かつ必要とする時期に、その貯蔵するエネルギーを
商用系統を介して供給する超電導エネルギー貯蔵装置に
関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention utilizes superconducting coils to store energy and transfer the stored energy to a commercial grid when needed. The present invention relates to a superconducting energy storage device that supplies energy through a superconducting energy storage device.

(従来の技術) 第3図に従来の超電導エネルギー貯蔵装置を示す。(Conventional technology) FIG. 3 shows a conventional superconducting energy storage device.

この図において、1は電源装置である。2はスイッチで
ある。3は超電導コイルで、5は超電導コイル3が超電
導状態から常電導状態に転移(以後クウェンチと略す、
)シようとする場合の保護用の抵抗である。
In this figure, 1 is a power supply device. 2 is a switch. 3 is a superconducting coil, and 5 is a superconducting coil 3 that transitions from a superconducting state to a normal conducting state (hereinafter abbreviated as quench).
) This is a protective resistor in case you try to remove it.

通常の場合には、スイッチ2は開いており、電源装置l
lを介して超電導コイル3にエネルギーを蓄積したり、
逆に超電導コイル3の電磁エネルギーとして蓄積された
このエネルギーを電源袋filを介して商用系統に逆送
する作用を行う。
In the normal case, switch 2 is open and the power supply l
Accumulating energy in the superconducting coil 3 via l,
Conversely, this energy accumulated as electromagnetic energy of the superconducting coil 3 is sent back to the commercial system via the power supply bag fil.

超電導コイル3が万一の事故(冷却系の故障等)により
クウェンチしようとする場合には、超電導コイル3に蓄
積されたエネルギーを急速に(数秒程度の間に)、外部
に放出する必要がある。従来技術においては、電源装置
1の容量を小さくする為上記クウェンチ時の対策として
、電源装置1をブロックし、スイッチ2を閉じ、第3図
に示す様な経路で電流工。を流し、超電導コイル3に蓄
積された電磁エネルギーを抵抗5によるジュール熱とし
て消費させる様にしていた。
If the superconducting coil 3 attempts to quench due to an accident (cooling system failure, etc.), the energy stored in the superconducting coil 3 must be rapidly (within a few seconds) released to the outside. . In the conventional technology, in order to reduce the capacity of the power supply device 1, as a countermeasure against the above-mentioned quench, the power supply device 1 is blocked, the switch 2 is closed, and the current is supplied through the path as shown in FIG. was applied so that the electromagnetic energy accumulated in the superconducting coil 3 was consumed as Joule heat by the resistor 5.

現在計画されている超電導エネルギーシステムは、 そ
のエネルギー規模として5GWh程度のものが考えられ
ている。  5GWhというエネルギーは。
The energy scale of the currently planned superconducting energy system is thought to be around 5GWh. The energy is 5GWh.

け 5GWh=5X10’X60X60=井嵜XIO”(J
)というエネルギー規模である。
ke5GWh=5X10'X60X60=Izaki XIO" (J
) is the energy scale.

(発明が解決しようとする問題点) 従来技術の方式では、以下の様な点で問題となっていた
(Problems to be Solved by the Invention) The conventional technology has the following problems.

(+)超電導コイル3に蓄積されるエネルギーが1大で
あり、これをすべて熱エネルギーとして消費するとまわ
りの環境に与える影響が大きい。
(+) The energy stored in the superconducting coil 3 is large, and if all this is consumed as thermal energy, it will have a large impact on the surrounding environment.

例えば、比熱(C)=1.0X10” J /rrr”
cノ直径(II)100m 、断面積(S)10rrr
の円環状の岩石(玄武岩)が加熱されるとすれば、その
温度上昇値(ΔT)は にも加熱されることになり、環境に与える影響が大きい
For example, specific heat (C) = 1.0X10"J/rrr"
c diameter (II) 100m, cross-sectional area (S) 10rrr
If a ring-shaped rock (basalt) is heated, its temperature increase value (ΔT) will be heated by , which has a large impact on the environment.

(i)抵抗5に消費されるジュール熱エネルギーの冷却
システムが1大となる。抵抗5に熱エネルギーとして消
費されるが、そのままというわけにはいかず何らかの冷
却方式(システム)を考える必要がある。
(i) The Joule thermal energy consumed by the resistor 5 becomes one large cooling system. Although it is consumed as heat energy by the resistor 5, it cannot be left as is and some kind of cooling method (system) must be considered.

例えば、水を使用しての蒸発冷却システムを想定すると
、その冷却の為に必要となる水量(Q)は概ね以下の式
により求めることができる。
For example, assuming an evaporative cooling system using water, the amount of water (Q) required for cooling can be approximately determined by the following equation.

、”−Q与7 X 10g(g ) −+ 7000 
tonという1大な量になる。また発生する蒸気量(Q
′)も理想気体と近似して 、”−Q’ =1.2X10”(Q) →1.2X10
”(m’)これだけの量の蒸気が数秒間で発生すること
になり、その処理方法が問題となっていた。
,”-Q given 7 x 10g (g) −+ 7000
It becomes a huge amount called ton. Also, the amount of steam generated (Q
') is also approximated to an ideal gas, "-Q' = 1.2X10" (Q) →1.2X10
``(m') This amount of steam was generated in a few seconds, and how to dispose of it became a problem.

一方、第3図以外にも以下に示す様な方式も考えられた
が、いろいろな面で、困難に直面していた。
On the other hand, in addition to the method shown in Figure 3, the following methods have been considered, but they faced difficulties in various aspects.

(イ)水の位置エネルギーとして処理する方式の数秒間
で処理する方法が難しい。
(b) It is difficult to process water as potential energy in a few seconds.

超電導コイル3には電磁エネルギーとして蓄えられてい
る為、それを機械的エネルギーに数秒間で変換する具体
的実現性のある方式が見あたらない ■所要水量(m)、水落差(h)が大きくなる。
Since the superconducting coil 3 stores electromagnetic energy, there is no practical method to convert it into mechanical energy in a few seconds. ■The required amount of water (m) and water head (h) will increase. .

水の位置エネルギーEは、 で表わせるから、 h =1000mとして所要水量(m)はm=18X1
0”/ (9,8X1000):1.8X10’(kg
)→1.8X10’(ton) という膨大な量となる。
Since the potential energy E of water can be expressed as, assuming h = 1000m, the required water volume (m) is m = 18X1
0"/ (9,8X1000): 1.8X10' (kg
)→1.8×10' (ton), which is a huge amount.

(α)静電エネルギーとして処理する場合の超電導エネ
ルギー貯蔵システムが発案された過程と矛盾する。
(α) This contradicts the process by which the superconducting energy storage system was invented when it is treated as electrostatic energy.

そもそも、超電導エネルギー貯蔵システムが発案された
過程においては、エネルギー規模が増大するにつれ、静
電エネルギーとして蓄積するよりも、電磁エネルギーと
して蓄積する方がシステムスケール規模が小さくてすむ
という結論があった為である。
In the first place, during the process of devising the superconducting energy storage system, it was concluded that as the scale of energy increases, the system scale would be smaller if it was stored as electromagnetic energy rather than as electrostatic energy. It is.

今、わざわざ保護用に静電エネルギー蓄積システムを設
けることは、上記主旨に反するとともに、システムの冗
長化を増やすだけであり、超電導エネルギー貯蔵システ
ムは不要という結論となる。
Providing an electrostatic energy storage system for protection would go against the above-mentioned purpose and would only increase the redundancy of the system, leading to the conclusion that a superconducting energy storage system is unnecessary.

■システム規模が大きくなる。■The system scale becomes larger.

絶縁油を用いたコンデンサで静電エネルギーを蓄積する
方式と仮定すると絶縁油の単位体積当りの蓄積エネルギ
ー(Eo)は下式で示めされ として   E、 =885 (Joujl)したがっ
て 18 X 10” (Jou2)ものエネルギーを
蓄積する。のに必要となる油量は 2.03X10”(rn’)−)比重0.8として1.
6X101o(ton)と膨大な量となる。(高さlk
m、縦5km。
Assuming that the electrostatic energy is stored in a capacitor using insulating oil, the stored energy (Eo) per unit volume of insulating oil is shown by the following formula: E, = 885 (Joujl) Therefore, 18 x 10" ( The amount of oil required is 2.03X10''(rn')-) with a specific gravity of 0.8.
The amount is as huge as 6×101o (tons). (height lk
m, length 5km.

横4kmのスペースが必要) そこで、本発明は上記従来技術の問題点を鑑み、超電導
コイル3がクウェンチしそうな場合でも、環境に及ぼす
影響の少ない、かつシステム規模の小さい超電導エネル
ギー貯蔵装置を供することを目的する。
(requires a space of 4 km in width) Therefore, in view of the above-mentioned problems of the conventional technology, the present invention provides a superconducting energy storage device that has little impact on the environment and has a small system scale even when the superconducting coil 3 is likely to quench. The purpose is

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために本発明の超電導エネルギー貯
蔵装置においては、電気エネルギーを電気化学エネルギ
ーに変換する装置とスイッチを直列に接続した直列接続
体を超電導コイルに並列に接続した構成とする。
(Means for Solving the Problems) In order to achieve the above object, in the superconducting energy storage device of the present invention, a series connection body in which a device for converting electrical energy into electrochemical energy and a switch are connected in series is connected to a superconducting coil. The configuration is connected in parallel.

(作用) 電気エネルギーを電気化学エネルギーに変換する装置は
発熱することなく、少い物質量で超電導コイルの電気エ
ネルギーを吸収する。
(Function) A device that converts electrical energy into electrochemical energy absorbs the electrical energy of the superconducting coil with a small amount of material without generating heat.

(実施例) 第1図に本発明の一実施例の超電導エネルギー貯蔵装置
を示す。
(Example) FIG. 1 shows a superconducting energy storage device according to an example of the present invention.

第1図において、1は電源装置であり2はスイッチであ
る。3は超電導コイルでこの中に電磁エネルギーとして
エネルギーが蓄積される。4は電気エネルギーを電気化
学エネルギーに変換する装置、たとえばリチウム電解装
置である。
In FIG. 1, 1 is a power supply device and 2 is a switch. 3 is a superconducting coil in which energy is stored as electromagnetic energy. 4 is a device for converting electrical energy into electrochemical energy, such as a lithium electrolyzer.

通常の場合には、スイッチ2は開いており、電源装置1
を介してエネルギーを超電導コイル3に蓄積したり、逆
にとり出したりする作用を行う。
In the normal case, switch 2 is open and power supply 1
The superconducting coil 3 acts to store energy in the superconducting coil 3 and to take it out.

超電導コイル3がクウェンチしそうな場合には、電源装
置1をブロックし、スイッチ2を閉じ、図に示す経路で
電流工。を流し、超電導コイル3に蓄積された電磁エネ
ルギーと、装置4で電気エネルギーとして処理する。
If the superconducting coil 3 is likely to quench, block the power supply 1, close the switch 2, and turn on the current through the route shown in the figure. The electromagnetic energy accumulated in the superconducting coil 3 is processed as electrical energy by the device 4.

一般に、電気化学エネルギーは下式で表わされる。Generally, electrochemical energy is expressed by the following formula.

E=Er・(n−e””N)       Er:電気
化学反応に= E r−n X 96(KjouR1モ
ル−V)     必要な電圧(V)n :化学当量数
(モル) N :アボガドロ数 (=6.02X10”) e−:電子の電荷 (=1.6X10−”C) ここで、電気化学反応としてLLのLiイオンへの電気
分解を想定すると Li  −+  Li十 +  e−Eev3Vである
為必要な化学当量数(モル数)nは、E=18 X 1
0”として Liの1モルは、6.94(g)であることにより、所
要容量(W)は W(g)=6.94Xn=433.8X10@(g)→
444 (ton)以上より、本実施例により以下の効
果のあることが明らかである。
E=Er・(ne””N) Er: For electrochemical reaction = E r−n = 6.02X10'') e-: Electron charge (=1.6X10-''C) Here, assuming electrolysis of LL into Li ions as an electrochemical reaction, Li + Li + e-Eev3V The number of chemical equivalents (number of moles) n required for this is E=18 x 1
0", 1 mole of Li is 6.94 (g), so the required capacity (W) is W (g) = 6.94Xn = 433.8X10 @ (g) →
444 (ton) From the above, it is clear that this example has the following effects.

(i)環境に及ぼす影響が少ない。(i) It has little impact on the environment.

超電導コイル3に蓄積されていたエネルギーは、理論的
には電気エネルギーに変換される為、熱エネルギーとし
て環境に及ぼす影響が少ない。
Since the energy stored in the superconducting coil 3 is theoretically converted into electrical energy, it has little effect on the environment as thermal energy.

(i)システム規模が少ない。(i) The system scale is small.

単純に比較することはできないが 従来技術の冷却水量      7000  ton水
の位置エネルギー所要水量 t、axio’  ton
静電エネルギーの所要油f1.IIIXIO” ton
本発明によるLi重量      444  tonと
多少システム規模が少なくてすむことがわかる。
Although it is not possible to make a simple comparison, the amount of cooling water in the conventional technology is 7000 tons, and the amount of potential energy required for water is t, axio' ton.
Required oil for electrostatic energy f1. IIIXIO” ton
It can be seen that the Li weight according to the present invention is 444 tons, which means that the system scale can be somewhat reduced.

(変形例) 第2図に本発明の変形例を示す1図において符号の同じ
ものは第1図と同様である。第1図と第2図を比較して
異なる点はスイッチ2.装W4に電気的に直列に抵抗を
挿入しであるだけである。
(Modification) FIG. 2 shows a modification of the present invention. In FIG. 2, the same reference numerals are the same as in FIG. Comparing Figures 1 and 2, the difference is switch 2. Simply inserting a resistor electrically in series with the circuit W4.

したがって多少は熱エネルギーとして処理されることに
なるがその処理量が全体に比較して小さくなる様に抵抗
を設定すれば、本発明における基本的作用効果は同様で
ある。
Therefore, although some amount is processed as thermal energy, if the resistance is set so that the processing amount is small compared to the whole, the basic operation and effect of the present invention will be the same.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、環境に熱を放出せ
ず、規模の小さい超電導エネルギー貯蔵装置を提供する
ことができる。
As described above, according to the present invention, it is possible to provide a small-scale superconducting energy storage device that does not emit heat to the environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超電導エネルギー貯蔵装置の一実施例
を示す図、第2図は本発明の他の実施例を示す図、第3
図は従来の装置を示す図である。 1・・・電源装置    2・・・スイッチ3・・・超
電導コイル 4・・・電気エネルギーを電気化学エネルギーに変換す
る装置 5・・・抵抗  工。・・・超電導コイルを流れる電流
代理人 弁理士 則 近 憲 佑 同  第子丸 健
FIG. 1 is a diagram showing one embodiment of the superconducting energy storage device of the present invention, FIG. 2 is a diagram showing another embodiment of the present invention, and FIG.
The figure shows a conventional device. 1... Power supply device 2... Switch 3... Superconducting coil 4... Device for converting electrical energy into electrochemical energy 5... Resistance work. ...Current agent flowing through a superconducting coil Patent attorney Noriyuki Chika Yudo Ken Daishimaru

Claims (2)

【特許請求の範囲】[Claims] (1)電源装置に接続された超電導コイルと、電気エネ
ルギーを電気化学エネルギーに変換する装置とスイッチ
とを直列に接続し前記超電導コイルに並列に接続した直
列接続体とを備えたことを特徴とする超電導エネルギー
貯蔵装置。
(1) A superconducting coil connected to a power supply device, and a series connection body in which a device for converting electrical energy into electrochemical energy and a switch are connected in series and connected in parallel to the superconducting coil. superconducting energy storage device.
(2)スイッチに直列に抵抗を接続したことを特徴とす
る特許請求の範囲第(1)記載の超電導エネルギー貯蔵
装置。
(2) The superconducting energy storage device according to claim 1, characterized in that a resistor is connected in series to the switch.
JP62281005A 1987-11-09 1987-11-09 Superconductive energy storage apparatus Pending JPH01126139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281005A JPH01126139A (en) 1987-11-09 1987-11-09 Superconductive energy storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281005A JPH01126139A (en) 1987-11-09 1987-11-09 Superconductive energy storage apparatus

Publications (1)

Publication Number Publication Date
JPH01126139A true JPH01126139A (en) 1989-05-18

Family

ID=17632947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281005A Pending JPH01126139A (en) 1987-11-09 1987-11-09 Superconductive energy storage apparatus

Country Status (1)

Country Link
JP (1) JPH01126139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872164A (en) * 1994-02-25 1999-02-16 Toyo Ink Manufacturing Co., Ltd. Process for preparing resin composition for coloring and a resin composition for coloring
JP2006239128A (en) * 2005-03-03 2006-09-14 Naigai:Kk Shelf board system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872164A (en) * 1994-02-25 1999-02-16 Toyo Ink Manufacturing Co., Ltd. Process for preparing resin composition for coloring and a resin composition for coloring
JP2006239128A (en) * 2005-03-03 2006-09-14 Naigai:Kk Shelf board system

Similar Documents

Publication Publication Date Title
EP0209134B1 (en) Forced flow cooling-type superconducting coil apparatus
US4593529A (en) Method and apparatus for controlling the temperature and pressure of confined substances
JPH07272767A (en) Battery device for vehicle
CN107123504B (en) Field system and drop field method drop in magnetic resonance magnet
JPH01126139A (en) Superconductive energy storage apparatus
US4486800A (en) Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method
CN106960760A (en) A kind of distal end assisted heating device of SF6 breakers
CN109709690B (en) Multi-stage temperature control protection design device and protection method for glasses based on phase-change material
US2615933A (en) Battery heating system
CN213935808U (en) Non-heat conduction current lead excitation device and excitation circuit of superconducting magnet
US3458763A (en) Protective circuit for superconducting magnet
CN206610888U (en) A kind of attemperator
SU1726960A1 (en) Electrohydradynamic thermal tube
JPH11233136A (en) Sodium-sulfur battery module
Coppi et al. Plasma Model for Thermal X-Ray Sources
JPS5927583A (en) Current supply lead for cryogenic device
Urata et al. A 10 T cryo-cooled superconducting magnet with 100 mm room temperature bore
JPS61204293A (en) Heat-storing tank
JP4284253B2 (en) Cryogenic container
US3562685A (en) Foil wrapped superconducting magnet
JPH0634776A (en) Room temperature nuclear fusion heat generating device seam generating device and power plant
SU597024A1 (en) Short circuit current limiter
JP2637442B2 (en) Thermoelectric converter
JPS5812542Y2 (en) rectifier
JPH05191989A (en) Alkaline metal thermoelectric power generating system