JPH01125914A - Instrument transformer - Google Patents

Instrument transformer

Info

Publication number
JPH01125914A
JPH01125914A JP62285822A JP28582287A JPH01125914A JP H01125914 A JPH01125914 A JP H01125914A JP 62285822 A JP62285822 A JP 62285822A JP 28582287 A JP28582287 A JP 28582287A JP H01125914 A JPH01125914 A JP H01125914A
Authority
JP
Japan
Prior art keywords
coil
voltage coil
ceramic fiber
synthetic resin
low voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62285822A
Other languages
Japanese (ja)
Inventor
Sadatoshi Murakami
村上 貞利
Kiyoshi Hani
羽仁 潔
Hideo Shigesato
重里 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62285822A priority Critical patent/JPH01125914A/en
Publication of JPH01125914A publication Critical patent/JPH01125914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)

Abstract

PURPOSE:To prevent curable coating synthetic resin from exfoliating from the surface of coils by interposing a ceramic fiber sheet, at least in one gaps between each layer of high voltage coil, between each layer of low voltage coil, and between the high voltage coil and the low voltage coil. CONSTITUTION:A low voltage coil 4 is wound in a manner that a ceramic fiber sheet 15 as an interlayer insulating material is sandwiched between layers of the coil 4. Outside the low voltage coil 4, a ceramic fiber sheet 13 for insulating the high and low voltage coils 4 and 1 is inserted. Between layers of the high voltage coil 1, ceramic fiber sheets 12 are inserted. A while coil constructed in this manner is molded with curable coating synthetic resin 6. For insulating material between the layers, ceramic fiber sheets manufactured by papering method are used. The sheet has a small thermal expansion coefficient, and is porous. The surface is uneven. As a result, when the coil is molded with the curable coating synthetic resin, the internal stress applied to the resin is small, so that generation of exfoliating and cracking of the curable coating synthetic resin can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野] この発明は計器用トランスの改良に関する。 [tl来の技術] 第3図に従来の技術による計器用トランスの部分断面図
を示す0図において、トランスの低圧コイル(4)は、
眉間絶縁材(5)により各層を絶縁しつつトランスの内
側部に巻かれている。低圧コイル(4)の外側にはコイ
ル間絶縁材(3)が所定の厚さで設けられており、さら
にその外側には高圧コイル<1)が各層間に層間絶縁材
(2)を挾んで巻かれている0以上のように構成された
低圧コイル(4)、コイル間絶縁材(3)、高圧コイル
(1)及びそれぞれのコイルの眉間に挿入された層間絶
縁材(2)及び(5)からなる自コイル(電線と層間絶
縁材及びコイル間絶縁材より成る半製品のコイル)は外
被用硬化性合成樹脂(6)によりモールドされている。 コイル間絶縁材(3>としては例えばクラフト紙、ポリ
エステルなどのプラスチックフィルム、またはその不織
布が用いられている。また前記材料と集成マイカシート
を張会わせた物、またはあらかじめエポキシ樹脂など電
気絶縁性に優れた合成樹脂を含浸した物が使用されてい
る。高圧コイル(1)には特にコロナ特性を向上させる
ため、比較的粘度の低い高絶縁硬化性合成樹脂例えばエ
ポキシ樹脂を減圧含浸させた後硬化させることが一般的
に行われている。一方外被用便化性舎成樹脂(6)は硬
化時の硬化反応熱を減衰させ硬化収縮率及び熱収縮率を
低下させると共に、熱的機械的性質を大幅に改善するた
めに一般に無機質の充填材、例えば石英粉末などを大量
に含ませることがあり、この充填材によって粘性が増大
するため小さな隙間への浸入は難しくなる。 第4図に眉間絶縁材(2)とコイル(1)との接触部の
拡大図を示す0図において、隙間(23)は外被用硬化
性合成11!(6)が浸入せず空間になっている部分を
示す。 [発明が解決しようとする問題点] 上記の計器用トランスにおいては、外被用硬化性金4成
樹脂ζ6)の硬化時に硬化収縮により応力が発生する。 また高圧コイル(1)及び低圧コイル(4)の各層間に
設けられた層間絶縁材(2)及び(5)と前記外被用硬
化性合成樹11(6)との熱膨張係数の違いにより熱応
力が発生して、各コイルと外被用硬化性合成樹脂との接
触面が剥離することがある。 その結果コイルの円周方向または半径方向に亀裂が生じ
コロナ放電または短絡の原因となる問題点があった。 高圧コイル(1)の層間絶縁材として使用される天然m
、m紙、例えばクラフト紙はuAMlの密度が高く、合
成樹脂フィルム、例えばポリエステルフィルムまたは層
間絶縁材料と集成マイカシートを張合わせた集成マイカ
複合シートなどでは気密性なのでフィルムの面に垂直な
方向には高絶縁性硬化性合成樹脂を含浸させることはで
きない、また集成マイカ複合シートでは鱗片状のマイカ
が重なりあっているため鱗片状に重なりあった部分には
空隙が生じ易い。 前記のような高絶縁性硬化性合成樹脂が眉間絶縁材料に
十分含浸されない場合、含浸は一般に減圧含浸を行うた
め含浸されない部分は減圧された空間として残り、コロ
ナ電圧は低くなる0合成繊維不織布は比較的樹脂の含浸
が容易な材料ではあるが、それ自体の絶縁破壊電圧は低
いため含浸が完全に行われない場合にコロナ発生または
層間絶縁破壊などの恐れがある。また層間絶縁材料が有
機物の場合、その熱膨頭係数がコイルの熱膨張計数と大
幅に異なり、使用中の温度サイクルにょって両者の接触
部が剥離し、コロナ発生の原因となる場合がある。また
コロナが発生した場合合成繊維及び合成樹脂フィルムは
一般に熱可塑性であるため比較的短時間で高圧コイルと
低圧コイル間に短絡が生じる恐れがあった。 [問題点を解決するための手段] この発明の計器用トランスは磁気的に結会された高圧コ
イルと低圧コイルを有し、高圧コイルの各層間、低圧コ
イルの各層間及び高圧コイルと低圧コイルの間の少なく
とも1つにセラミックファイバーシートを介在させてい
る。 [作用] セラミックファイバーシートは多孔性かつ表面に凹凸を
有するので合成8!詣がコイル内に容易に含浸する。 [実施例] 第1図にこの発明の実施例の部分断面図を示す。 図において、低圧コイル(4)は各層間に層間絶縁材と
してセラミックファイバーシート(15)を挾みつつ巻
かれている。低圧コイル(4)の外側には低圧コイル(
4)と高圧コイル(1)を絶縁するためのセラミックフ
ァイバーシー) (13)が設けられている。 高圧コイル(1)はそのそれぞれの居間にセラミックフ
ァイバーシート(12)が設けられている。このように
構成された白コイルは外被用硬化性合成樹脂(6)によ
りモールドされる。低圧コイル(4)の層間絶縁材とし
てのセラミックファイバーシート(15)は、例えばア
ルミナファイバ、クォーツファイバなどを抄紙法によっ
てシート状に形成したもので、低圧コイル(4)に印加
される電圧に応じて複数枚重ねて所定の厚さにしている
。抄紙法については例えば特開昭60−81398及び
60−81399号公報に示されるものがある。また高
圧コイル(1)と低圧コイル(4)間のセラミックファ
イバーシート(13)は上記のセラミックファイバーシ
ートを両コイル間に印加される電圧に十分耐えるよう所
定の厚さに積層している。高圧コイル(1)の眉間に設
けられたセラミックファイバーシート(12)も前記の
ものと同様であり、重ねる枚数を多くして高圧コイル(
1)の電圧に耐えるようになされている。 このように
して形成された自コイルを無機質の充填材、例えば石英
粉などを含有する比較的低粘度の外被用硬化性合成樹j
I(6)を圧力を低下させた状態において含浸させ熱硬
化させる。前記のセラミックファイバーの熱膨張係数は
例えば20X10の一6am / ’C以下であるので
、高圧コイル(11)と低圧コイル(14)との間に発
生する熱応力は極めて低い。 抄紙法により作られたセラミックファイバーシートの表
面はなめらかではなく凹凸のある面を有しかつ多孔質で
ある。第2図にコイルとセラミックファイバーシー) 
(12)との接触部の拡大図を示す。 図に示すように、゛この凹凸によりセラミックファイバ
ーシート(12)とコイル(1)間にはは多数の隙間が
°生じ、外被用硬化性合成樹1s(a)を含浸する場合
コイル(1)とセラミックファイバーシー) (12)
間の隙間(18)に容易に浸透する。またセラミックフ
ァイバーシート(12)は多孔性なので表面に垂直な方
向に浸透することができ各層のコイル(1)とセラミッ
クファイバーシー) (12)の隙間に進入し充填され
る。その結果コロナ電圧は高くなりまた仮にコ豐すを生
じた場合においても劣化しない。 この発明による計器用トランスは乾式の変圧器また。は
変流器に適用できるが、変圧器または変流器あるいは油
入変圧器及び変流器のいずれにも適用することができる
[Industrial Application Field] This invention relates to improvements in instrument transformers. [Latest technology] In Figure 3, which shows a partial cross-sectional view of an instrument transformer according to the prior art, the low voltage coil (4) of the transformer is
Each layer is insulated by a glabella insulating material (5) and wound around the inside of the transformer. An inter-coil insulating material (3) is provided with a predetermined thickness on the outside of the low-voltage coil (4), and a high-voltage coil <1) is provided with an inter-coil insulating material (2) between each layer. A low-voltage coil (4), an inter-coil insulation material (3), a high-voltage coil (1), and an interlayer insulation material (2) and (5) inserted between the eyebrows of each coil, which are wound in a number of 0 or more. ) (a semi-finished coil consisting of electric wire, interlayer insulation material, and intercoil insulation material) is molded with a curable synthetic resin for outer covering (6). As the inter-coil insulating material (3), for example, kraft paper, a plastic film such as polyester, or a non-woven fabric thereof is used.Also, a material made by pasting the above material with a laminated mica sheet, or an electrically insulating material such as epoxy resin is used in advance. The high-voltage coil (1) is impregnated with a highly insulating hardening synthetic resin of relatively low viscosity, such as epoxy resin, in order to particularly improve the corona properties. Curing is generally carried out.On the other hand, the flexible resin (6) for outer covering attenuates the curing reaction heat during curing, lowers the curing shrinkage rate and thermal shrinkage rate, and also reduces thermal mechanical In order to significantly improve the mechanical properties, large amounts of inorganic fillers, such as quartz powder, are generally included, and this filler increases the viscosity, making it difficult to penetrate into small gaps. In Figure 0 showing an enlarged view of the contact area between the glabellar insulating material (2) and the coil (1), the gap (23) is a space where the curable synthetic 11! (6) for outer covering does not penetrate. [Problems to be Solved by the Invention] In the above-mentioned instrument transformer, stress is generated due to curing shrinkage during curing of the outer covering curable gold 4 resin ζ6). In addition, due to the difference in thermal expansion coefficient between the interlayer insulation materials (2) and (5) provided between the layers of the high voltage coil (1) and the low voltage coil (4) and the hardening synthetic wood 11 (6) for the outer covering, Thermal stress may occur and the contact surfaces between each coil and the curable synthetic resin for the outer covering may peel off. As a result, cracks occur in the circumferential or radial direction of the coil, causing corona discharge or short circuits. Natural m used as interlayer insulation material of high voltage coil (1)
, m-paper, such as kraft paper, has a high density of uAMl, and synthetic resin films, such as polyester films or laminated mica composite sheets made by laminating interlayer insulation material and laminated mica sheets, are airtight, so they cannot be used in the direction perpendicular to the plane of the film. cannot be impregnated with a highly insulating curable synthetic resin, and since mica flakes overlap each other in the mica composite sheet, voids are likely to form in the areas where the flakes overlap. If the above-mentioned highly insulating curable synthetic resin is not sufficiently impregnated into the glabellar insulating material, impregnation is generally carried out under reduced pressure, so the unimpregnated area remains as a reduced pressure space, resulting in a low corona voltage.0Synthetic fiber nonwoven fabrics Although it is a material that is relatively easy to impregnate with resin, its own dielectric breakdown voltage is low, so if impregnation is not completed completely, there is a risk of corona generation or interlayer dielectric breakdown. In addition, if the interlayer insulation material is organic, its thermal expansion coefficient is significantly different from that of the coil, and the contact area between the two may peel off due to temperature cycles during use, causing corona generation. . Furthermore, when corona occurs, synthetic fibers and synthetic resin films are generally thermoplastic, so there is a risk that a short circuit will occur between the high-voltage coil and the low-voltage coil in a relatively short period of time. [Means for Solving the Problems] The instrument transformer of the present invention has a high-voltage coil and a low-voltage coil that are magnetically connected. A ceramic fiber sheet is interposed between at least one of them. [Function] Ceramic fiber sheets are porous and have uneven surfaces, so synthetic 8! Pilgrimage is easily impregnated into the coil. [Embodiment] FIG. 1 shows a partial cross-sectional view of an embodiment of the present invention. In the figure, a low voltage coil (4) is wound with a ceramic fiber sheet (15) sandwiched between each layer as an interlayer insulating material. There is a low voltage coil (4) outside the low voltage coil (4).
4) and a ceramic fiber sheath (13) for insulating the high voltage coil (1). A high voltage coil (1) is provided with a ceramic fiber sheet (12) in its respective living room. The white coil constructed in this manner is molded with a curable synthetic resin for outer covering (6). The ceramic fiber sheet (15) as an interlayer insulating material of the low voltage coil (4) is made of, for example, alumina fiber, quartz fiber, etc., formed into a sheet shape by a papermaking method, and the ceramic fiber sheet (15) is made of alumina fiber, quartz fiber, etc., and is formed into a sheet shape by a papermaking method. Multiple sheets are stacked together to achieve a predetermined thickness. Paper-making methods are disclosed, for example, in Japanese Patent Application Laid-open Nos. 60-81398 and 60-81399. Further, the ceramic fiber sheet (13) between the high voltage coil (1) and the low voltage coil (4) is made by laminating the above ceramic fiber sheets to a predetermined thickness so as to sufficiently withstand the voltage applied between both coils. The ceramic fiber sheet (12) provided between the eyebrows of the high-voltage coil (1) is also the same as the one described above, and the number of stacked sheets is increased to form a high-voltage coil (
1) It is designed to withstand the voltage. The self-coil thus formed is then coated with a relatively low-viscosity curable synthetic resin for outer covering containing an inorganic filler such as quartz powder.
I(6) is impregnated under reduced pressure and cured by heat. Since the coefficient of thermal expansion of the ceramic fiber is, for example, 20×10 −6 am/′C or less, the thermal stress generated between the high voltage coil (11) and the low voltage coil (14) is extremely low. The surface of a ceramic fiber sheet made by a papermaking method is not smooth but has an uneven surface and is porous. Figure 2 shows the coil and ceramic fiber seam)
An enlarged view of the contact portion with (12) is shown. As shown in the figure, many gaps are created between the ceramic fiber sheet (12) and the coil (1) due to the unevenness, and when impregnating the outer covering with hardening synthetic resin 1s(a), the coil (1) ) and ceramic fiber sea) (12)
It easily penetrates into the gaps (18) between. Furthermore, since the ceramic fiber sheet (12) is porous, it can penetrate in a direction perpendicular to the surface, and enters and fills the gaps between the coil (1) and the ceramic fiber sheet (12) in each layer. As a result, the corona voltage becomes high, and even if a corona occurs, it will not deteriorate. The instrument transformer according to the present invention is also a dry type transformer. can be applied to current transformers, but can also be applied to transformers or current transformers, or oil-immersed transformers and current transformers.

【発明の効果】【Effect of the invention】

この発明によれば、高圧コイル及び低圧コイルのそれぞ
れの層間の絶縁材として抄紙法により製造された熱膨張
係数が小さくかつ多孔性で表面に凹凸を有するセラミッ
クファイバーシートが用いられているので、このコイル
を外被用硬化性合成樹脂によりモールドした場合にそれ
に与える内部応力は少なく外被用硬化性合成樹脂を剥離
させたり亀裂を生じさせるとζがない、また表面の多数
の凹凸及び多孔性によりコイルに曖絶縁性会成樹脂を含
浸させる場合、コイルとセラミックファイバーシート−
の凹凸による隙間を通って容易に含浸するとともに、セ
ラミックファイバーシートの表面に垂直な方向にも浸透
してコイルとセラミックファイバーシート間の隙間を完
全になくすことができる。その結果コロナ開始電圧は高
くなり、またコロナが生じてもセラミックファイバーシ
ートが劣化することはない。
According to this invention, a ceramic fiber sheet manufactured by a paper-making method with a small coefficient of thermal expansion, porous, and having an uneven surface is used as the insulating material between the layers of the high-voltage coil and the low-voltage coil. When the coil is molded with a hardening synthetic resin for the outer covering, there is little internal stress applied to it, and if the hardening synthetic resin for the outer covering peels off or cracks, there is no ζ. When the coil is impregnated with a vaguely insulating composite resin, the coil and ceramic fiber sheet -
It can be easily impregnated through the gaps caused by the unevenness of the coil, and can also penetrate in the direction perpendicular to the surface of the ceramic fiber sheet, completely eliminating the gap between the coil and the ceramic fiber sheet. As a result, the corona starting voltage becomes high, and even if corona occurs, the ceramic fiber sheet will not deteriorate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の計器用トランスの部分断面図、第2
図はこの発明のコイルとセラミックファイバーシートの
接触部を示す拡大図、第3図は従来の技術による計器用
トランスの部分断面図、第4図は従来の技術による計器
用トランスのコイルと眉間絶縁材との接触部の拡大図で
ある。 1:高圧コイル 4:低圧コイル 12:層間絶縁材 13:コイル間絶縁材 15:層間絶縁材
FIG. 1 is a partial sectional view of the instrument transformer of the present invention, and FIG.
The figure is an enlarged view showing the contact area between the coil of the present invention and the ceramic fiber sheet, Figure 3 is a partial sectional view of a conventional instrument transformer, and Figure 4 is a conventional instrument transformer coil and insulation between the eyebrows. FIG. 3 is an enlarged view of the contact portion with the material. 1: High voltage coil 4: Low voltage coil 12: Interlayer insulation material 13: Interlayer insulation material 15: Interlayer insulation material

Claims (1)

【特許請求の範囲】[Claims] (1)高圧コイル、 高圧コイルと磁気的に結会された低圧コイル、及び 高圧コイルの各層間、低圧コイルの各層間、高圧コイル
と低圧コイルの間の少なくともいずれか1つに介在させ
られたセラミックファイバーシート、 を備えたことを特徴とする計器用トランス。
(1) A high-voltage coil, a low-voltage coil magnetically connected to the high-voltage coil, and interposed between each layer of the high-voltage coil, between each layer of the low-voltage coil, or between the high-voltage coil and the low-voltage coil. An instrument transformer characterized by comprising a ceramic fiber sheet.
JP62285822A 1987-11-11 1987-11-11 Instrument transformer Pending JPH01125914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285822A JPH01125914A (en) 1987-11-11 1987-11-11 Instrument transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285822A JPH01125914A (en) 1987-11-11 1987-11-11 Instrument transformer

Publications (1)

Publication Number Publication Date
JPH01125914A true JPH01125914A (en) 1989-05-18

Family

ID=17696532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285822A Pending JPH01125914A (en) 1987-11-11 1987-11-11 Instrument transformer

Country Status (1)

Country Link
JP (1) JPH01125914A (en)

Similar Documents

Publication Publication Date Title
US6750400B2 (en) Graded electric field insulation system for dynamoelectric machine
US4038741A (en) Method of making electrical coils for dynamo-electric machines having band-formed insulation material
US2246159A (en) Electrical coil
JP2007282410A (en) Rotating electric machine, stator coil thereof, its manufacturing method, and semiconductive sheet, semiconductive tape
US2917570A (en) Composite mica paper, mica flake electrical insulating material
KR900000433B1 (en) Water-cooled winding for electromagnetic strirrer
JPH01125914A (en) Instrument transformer
US2454218A (en) Composite asbestos member
JP3651629B2 (en) High voltage rotating machine stator insulation coil
JPH01125913A (en) Transformator
JP2001357733A (en) High voltage insulation system
JPH01149410A (en) Voltage current transformer
JPS58144563A (en) Manufacture of coil conductor
JPH0342687B2 (en)
GB1004493A (en) Method of manufacturing insulated electrical conductors and conductors manufactured according to the method
JPH0638424A (en) Stator coil of high-tension rotating electric machine
JPS6223057Y2 (en)
JPS6372106A (en) Resin molded coil
JPS63105412A (en) Hybrid mica prepreg tape for coil insulation
JPS61156707A (en) Insulating coil of rotary electric machine
JPS60128843A (en) Impregnated insulated coil for electric apparatus
JPH05199690A (en) Insulating system for rotor core
JPH0217839A (en) Insulation resin impregnated coil for high voltage rotary electric machine
JPS60213237A (en) Coil of rotary electric machine
JPS6419707A (en) Manufacture of resin-molded coil