JPH01123954A - Cryogenic expansion machine - Google Patents

Cryogenic expansion machine

Info

Publication number
JPH01123954A
JPH01123954A JP28140887A JP28140887A JPH01123954A JP H01123954 A JPH01123954 A JP H01123954A JP 28140887 A JP28140887 A JP 28140887A JP 28140887 A JP28140887 A JP 28140887A JP H01123954 A JPH01123954 A JP H01123954A
Authority
JP
Japan
Prior art keywords
heat
space
expansion space
buffer space
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28140887A
Other languages
Japanese (ja)
Inventor
Kazuo Nomura
野村 和雄
Isao Shizawa
始澤 勇夫
Yuji Yamaguchi
勇治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28140887A priority Critical patent/JPH01123954A/en
Publication of JPH01123954A publication Critical patent/JPH01123954A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To make the passage resistance of a refrigerant flowing in a heat accumulator uniform and improve a heat exchanging efficiency by making the void ratio of the buffer space side of the heat accumulator higher than that of an expansion space and sequentially combining materials high in their specific heat and thermal conductivity in respective temperature zones. CONSTITUTION: A heat storage material 15 is formed with a nickel wire gauze 18 and a copper wire gauze 20 in its buffer space 11 side in the order of high specific heat. The expansion space 12 side thereof is formed with a tungsten wire gauze 19. The number of meshes of the wire gauze of the buffer space 11 side is smaller than that of the expansion space 12 side to enlarge clearances. The heat storage material 15 for precooling working refrigerant for cooling a load heat exchanger 17 to cryogenic temperature serves to make the passage resistance of the working refrigerant uniform even when the temperature of working refrigerant flowing in a displacer 10 becomes low from the buffer space 11 side to the expansion space 12 side and the specific volume thereof is reduced. Thus, uniform heat exchanging efficiency is obtained in respective passages.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はギフオードマクマホンサイクル、ソルベーサ
イクル等のガスサイクルを用いた極低温用膨張機の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an improvement in a cryogenic expander using a gas cycle such as a Gifford-McMahon cycle or a Solvay cycle.

(ロ)従来の技術 従来の極低温用膨張機は例えば特公昭45−4787号
公報に示されているように構成されている。ここで、こ
の公報を参考に従来例を説明する。第3図において、5
0は圧縮機、51.52はそれぞれ給入弁53又は排気
弁54を有し、かつ、圧縮機50と蓄熱器55を連通ず
る吸入パイプと排気パイプである。56はクランク機構
57により駆動されるディスプレーサ−58を有するシ
リンダで、このディスプレーサ−の移動によって膨張空
間59が形成され、この膨張空間はバイブロ0により蓄
熱器55と連通している。また、ディスプレーサ−58
を駆動するクランク機構57は給入弁53及び排気弁5
4と連動しており、給入弁53はディスプレーサ−58
が下死点に達したとき開き、上死点に達する直前に閉じ
る。排気弁54はディスプレーサ−58が上死点に達し
たとき開いて、下死点に達したとき閉じる。61は負荷
熱交換器で、この熱交換器はバイブロ0に取付けられて
被冷却物を冷却するようにしている。
(B) Prior Art A conventional cryogenic expander is constructed as shown in, for example, Japanese Patent Publication No. 45-4787. Here, a conventional example will be explained with reference to this publication. In Figure 3, 5
0 is a compressor, and 51 and 52 are an intake pipe and an exhaust pipe, each having an intake valve 53 or an exhaust valve 54, and communicating the compressor 50 and the heat storage device 55. Reference numeral 56 denotes a cylinder having a displacer 58 driven by a crank mechanism 57. Movement of this displacer forms an expansion space 59, and this expansion space communicates with the heat storage device 55 through a vibro 0. In addition, displacer 58
The crank mechanism 57 that drives the intake valve 53 and the exhaust valve 5
4, and the supply valve 53 is connected to the displacer 58.
It opens when it reaches bottom dead center and closes just before it reaches top dead center. The exhaust valve 54 opens when the displacer 58 reaches the top dead center and closes when the displacer 58 reaches the bottom dead center. 61 is a load heat exchanger, and this heat exchanger is attached to the vibro 0 to cool the object to be cooled.

この構造の極低温用膨張機では圧縮機50で圧縮された
冷媒を給入弁53から蓄熱器55に導き、この蓄熱器で
予冷却された冷媒を膨張空間59で断熱膨張させて自ら
冷却させ、排気弁54の開放で膨張空間59から蓄熱器
55へ流れる冷媒で負荷熱交換器61を冷却し、被冷却
物が極低温に冷却されるようにしている。
In the cryogenic expander with this structure, the refrigerant compressed by the compressor 50 is guided from the inlet valve 53 to the heat storage device 55, and the refrigerant pre-cooled in the heat storage device is adiabatically expanded in the expansion space 59 and cooled by itself. When the exhaust valve 54 is opened, the load heat exchanger 61 is cooled by the refrigerant flowing from the expansion space 59 to the heat storage device 55, so that the object to be cooled is cooled to an extremely low temperature.

(ハ)発明が解決しようとする問題点 しかしながら、従来の蓄熱器55は同一材質でしかも同
一メツシュ数の金網を重ね合わせているため、空隙率を
圧縮機55偏に合わせると、膨張空間59側の圧力損失
がノJ\さくなるが熱交換効率が悪くなり、また、空隙
率を膨張空間59側に合わせると、圧縮機50側の圧力
損失が大きくなって膨張空間59での冷却温度を下げら
れなくなる等の問題があ′った。
(C) Problems to be Solved by the Invention However, since the conventional heat storage device 55 is made of wire mesh made of the same material and has the same number of meshes, when the porosity is adjusted to the compressor 55 side, the expansion space 59 side Although the pressure loss is reduced, the heat exchange efficiency deteriorates.Also, if the porosity is adjusted to the expansion space 59 side, the pressure loss on the compressor 50 side increases, reducing the cooling temperature in the expansion space 59. There were some problems, such as not being able to do anything.

この発明は上記の問題を解決するもので、蓄熱器での圧
力損失を41きくするとともに、蓄熱容量を大きくでき
るようにすることを目的としたものである。
This invention solves the above-mentioned problems, and aims to increase the pressure loss in the heat storage device by 41 degrees and increase the heat storage capacity.

(ニ)問題点を解決するための手段 この発明は蓄熱器のバッファー空間側を膨張空間側より
も空隙率を大きくするとともに、各温度帯で比熱・熱伝
導率が高くなる材料を順次組合わせたものである。
(d) Means for solving the problem This invention makes the buffer space side of the heat storage device have a larger porosity than the expansion space side, and sequentially combines materials that have higher specific heat and thermal conductivity in each temperature range. It is something that

(ホ)作用 この発明は上記のように構成したことにより、蓄熱器を
流れる冷媒の通路抵抗を均一にするとともに、熱交換に
よって蓄熱される熱容量を大きくし、膨張空間で断熱膨
張する冷媒の温度が低くなるようにしたものである。
(E) Effect By having the above structure, this invention makes the passage resistance of the refrigerant flowing through the heat storage unit uniform, increases the heat capacity stored by heat exchange, and increases the temperature of the refrigerant that expands adiabatically in the expansion space. is made so that it is low.

(へ)実施例 以下この発明を第1図及び第2図に示す実施例に基いて
説明する。
(f) Examples The present invention will be explained below based on the examples shown in FIGS. 1 and 2.

1は圧縮機で、この圧縮機には給入弁2を有する給入バ
イブ3と、排気弁4を有する排気バイブ5とが接続され
ている。この給入バイブと排気バイブとは集合されてシ
リンダ6の上壁7に設けられた給排気口8に接続されて
いる。シリンダ6内には駆動装置(図示せず)に連結さ
れたシャフト9によって上下に往復動するデイスプレー
?−10が収納されているとともに、このディスプレー
サ−によって可変容積のバッファー空間11及び膨張空
間12が区画形成されている。また、ディスプレーサ−
10の外周にはシールリング13.14が取付けられて
いる。バッファー空間工1と膨張空間12とはディスプ
レーサ−10内に充填きれた蓄熱材15を介して連通さ
れている。シリンダ6の底壁16には被冷却物を冷却す
る負荷熱交換器17が取付けられている。
Reference numeral 1 denotes a compressor, and an inlet vibrator 3 having an inlet valve 2 and an exhaust vibrator 5 having an exhaust valve 4 are connected to this compressor. The intake and exhaust vibes are assembled together and connected to an intake/exhaust port 8 provided on the upper wall 7 of the cylinder 6. Inside the cylinder 6 is a display that reciprocates up and down by a shaft 9 connected to a drive device (not shown). -10 is accommodated, and a buffer space 11 and an expansion space 12 of variable volume are defined by this displacer. Also, displacer
Seal rings 13, 14 are attached to the outer periphery of 10. The buffer space 1 and the expansion space 12 are communicated with each other via a heat storage material 15 filled in the displacer 10. A load heat exchanger 17 is attached to the bottom wall 16 of the cylinder 6 to cool the object to be cooled.

蓄熱材15はバッファー空間11側を300゜K〜22
0°にの範囲で比熱の大きいニッケル金網18で、膨張
空間12側を140”K〜70″にの範囲で比熱の大き
いタングステン金網19で、その中間を220°に〜1
40°にの範囲で比熱の大きい銅金網20で形成すると
ともに、バッファー空間11側を膨張空間12側よりも
金網のメツシュ数を少なくして隙間を大きくして形成し
ている。
The heat storage material 15 has a temperature of 300°K to 22°C on the buffer space 11 side.
A nickel wire mesh 18 with a high specific heat in the range of 0 degrees, a tungsten wire mesh 19 with a high specific heat in the range of 140"K to 70" on the expansion space 12 side, and a tungsten wire mesh 19 with a high specific heat in the range of 140"K to 70" in the middle,
It is formed with a copper wire mesh 20 having a large specific heat in the range of 40 degrees, and the number of meshes of the wire mesh is smaller on the buffer space 11 side than on the expansion space 12 side, so that the gap is larger.

このように構成された極低温用膨張機において、圧縮機
1で加圧された作動冷媒はディスブレーサー10がシリ
ンダ6内の膨張空間12側で最下位(上死点)にあると
き、給入弁2が開、排気弁4が閉となって、給入バイブ
3からバッファー空間11に流入する。そして、ディス
プレーサ−10を膨張空間12側からバッファー空間1
1側へ移動させる過程ではバッファー空間11の作動冷
媒がディスプレーサ−10内部の蓄熱材15で予冷却さ
れつつ膨張空間12に流入する。
In the cryogenic expander configured as described above, the working refrigerant pressurized by the compressor 1 is supplied when the displacer 10 is at the lowest position (top dead center) on the expansion space 12 side in the cylinder 6. The inlet valve 2 is opened, the exhaust valve 4 is closed, and the air flows from the inlet vibe 3 into the buffer space 11. Then, the displacer 10 is inserted into the buffer space 1 from the expansion space 12 side.
In the process of moving to the first side, the working refrigerant in the buffer space 11 flows into the expansion space 12 while being precooled by the heat storage material 15 inside the displacer 10.

その後、ディスプレーサ−10がシリンダ6内のバッフ
ァー空間11側で最上位(下死点)に到達すると、給入
弁2が閉、排気弁4が開となって、作動冷媒は膨張空間
12で膨張して自ら冷却される。再び、ディスプレーサ
−10がバッファー空間11側から膨張空間12側へ移
動する過程では膨張空間12の作動冷媒がディスプレー
サ−10内部の蓄熱材工5を更に冷却しつつバッファー
空間11を通り、排気バイブ4から圧縮機1へ戻る。以
後、同様に繰返してシリンダ6の底壁16の負荷熱交換
器17を極低温に冷却するようにしている。
After that, when the displacer 10 reaches the highest position (bottom dead center) on the side of the buffer space 11 in the cylinder 6, the supply valve 2 is closed, the exhaust valve 4 is opened, and the working refrigerant expands in the expansion space 12. and cools itself. Again, in the process of the displacer 10 moving from the buffer space 11 side to the expansion space 12 side, the working refrigerant in the expansion space 12 passes through the buffer space 11 while further cooling the heat storage material 5 inside the displacer 10, and the exhaust vibrator 4 Then return to compressor 1. Thereafter, the load heat exchanger 17 on the bottom wall 16 of the cylinder 6 is repeatedly cooled to a cryogenic temperature.

負荷熱交換器17を極低温に冷却する作動冷媒に予冷を
与える蓄熱材15はバッファー空間11側から膨張空間
12側に向って金網のメツシュ数を多くして隙間を狭く
することにより、ディスプレーサ−10の内部を流れる
作動冷媒がバッファー空間11側から膨張空間12側へ
向って低温になって、比容積が減少しても通路抵抗が均
一になるようにし、各通路部での熱交換効率が均一にな
るようにしている。
The heat storage material 15 that pre-cools the working refrigerant that cools the load heat exchanger 17 to an extremely low temperature can be displaced by increasing the number of meshes of the wire gauze and narrowing the gap from the buffer space 11 side to the expansion space 12 side. The working refrigerant flowing inside the chamber 10 becomes lower in temperature from the buffer space 11 side toward the expansion space 12 side, so that even if the specific volume decreases, the passage resistance becomes uniform, and the heat exchange efficiency in each passage part is improved. I try to make it even.

また、蓄熱材15は各温度帯ごとに熱容量の大きい材質
で金網を作ることにより、熱交換効率を向上させられる
ようにしている。
Further, the heat storage material 15 is made of a wire mesh made of a material having a large heat capacity for each temperature zone, so that the heat exchange efficiency can be improved.

(ト)発明の効果 この発明の極低温用膨張機は蓄熱材のバラプアー空間側
を膨張空間側よりも空隙率を大きくするとともに、各到
達温度で比熱・熱伝導率が高くなる材料を組合わせたの
であるから、温度で比容積が変化する作動冷媒の通路面
積を空隙率を変えることによって:各通路の抵抗を均一
にでき、蓄熱器での熱交換効率を向上できるようにしだ
ものである。
(g) Effects of the Invention The cryogenic expansion machine of this invention has a larger porosity on the bulge space side of the heat storage material than on the expansion space side, and also combines materials that have higher specific heat and thermal conductivity at each temperature reached. Therefore, by changing the passage area and porosity of the working refrigerant whose specific volume changes with temperature, the resistance of each passage can be made uniform and the heat exchange efficiency in the heat storage device can be improved. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はこの発明を示し、第1図は極低温用
膨張機の図解的断面図、第2図は蓄熱器の模式図、第3
図は従来例を示す極低温用膨張機の模式図である。 6・・・シリンダ、  10・・・ディスプレーサ−1
11・・・バッファー空間、 12・・・膨張空間、1
5・・・蓄熱材。
Figures 1 and 2 illustrate this invention, with Figure 1 being a schematic sectional view of a cryogenic expander, Figure 2 being a schematic diagram of a heat storage device, and Figure 3 being a schematic sectional view of a cryogenic expander.
The figure is a schematic diagram of a conventional cryogenic expander. 6...Cylinder, 10...Displacer-1
11... Buffer space, 12... Expansion space, 1
5... Heat storage material.

Claims (1)

【特許請求の範囲】[Claims] 1、シリンダと、このシリンダ内を往復摺動するディス
プレーサーと、このディスプレーサーによってシリンダ
内部に区画形成されるバッファー空間及び膨張空間と、
これらのバッファー空間と膨張空間とを連通するガス流
路に配置された蓄熱器とを備えた極低温用膨張機におい
て、前記蓄熱器はバッファー空間側を膨張空間側よりも
空隙率を大きくするとともに、各温度帯で比熱・熱伝導
率が高くなる材料を順次組合わせたことを特徴とする極
低温用膨張機。
1. A cylinder, a displacer that slides back and forth within the cylinder, and a buffer space and an expansion space defined inside the cylinder by the displacer;
In a cryogenic expander equipped with a heat storage device disposed in a gas flow path communicating between the buffer space and the expansion space, the heat storage device has a larger porosity on the buffer space side than on the expansion space side, and , a cryogenic expansion machine characterized by a sequential combination of materials that have high specific heat and thermal conductivity in each temperature range.
JP28140887A 1987-11-06 1987-11-06 Cryogenic expansion machine Pending JPH01123954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28140887A JPH01123954A (en) 1987-11-06 1987-11-06 Cryogenic expansion machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28140887A JPH01123954A (en) 1987-11-06 1987-11-06 Cryogenic expansion machine

Publications (1)

Publication Number Publication Date
JPH01123954A true JPH01123954A (en) 1989-05-16

Family

ID=17638734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28140887A Pending JPH01123954A (en) 1987-11-06 1987-11-06 Cryogenic expansion machine

Country Status (1)

Country Link
JP (1) JPH01123954A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223575A (en) * 1986-03-25 1987-10-01 株式会社東芝 Cold accumulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223575A (en) * 1986-03-25 1987-10-01 株式会社東芝 Cold accumulator

Similar Documents

Publication Publication Date Title
US8991196B2 (en) Regenerator, GM refrigerator, and pulse tube refrigerator
JP2511604B2 (en) Cryogen freezer
JPH01305271A (en) Manufacture of cold storage machine for cryogenic refrigerator and cold storage machine manufactured through said method
JPS629827B2 (en)
JP2650437B2 (en) Cold storage cryogenic refrigerator
JPH01123954A (en) Cryogenic expansion machine
JP2001272126A (en) Pulse tube refrigerating machine, and superconductive magnet device using pulse tube refrigerating machine
JP2001248927A (en) Low-temperature device using pulse tube refrigeration unit
JPH0452468A (en) Cryogenic refrigerator
JPH0544546Y2 (en)
JPH03286967A (en) Pulse pipe type freezer
JPH10132405A (en) Cold storage freezer and its operating method
JP2766341B2 (en) Cryogenic refrigerator
JP2723342B2 (en) Cryogenic refrigerator
JPH0399162A (en) Cryogenic refrigerator
JP2005283026A (en) Cold storage type refrigerating machine
JPH0674584A (en) Cryogenic refrigerator and operating method thereof
JPH11108479A (en) Cold heat storage type refrigerator and its operating method
JP3284484B2 (en) Refrigeration liquefaction method and apparatus by regenerative refrigerator
JPH0861798A (en) Cooler
JP2627307B2 (en) Cryogenic expander
JPH11257769A (en) Cold storage refrigerating machine
JP2880154B1 (en) Pulse tube refrigerator
JP2885529B2 (en) Cryogenic refrigerator
JPH0579358U (en) Cold generation mechanism of cryogenic refrigerator