JPH01122953A - Formed calcium silicate - Google Patents

Formed calcium silicate

Info

Publication number
JPH01122953A
JPH01122953A JP27929487A JP27929487A JPH01122953A JP H01122953 A JPH01122953 A JP H01122953A JP 27929487 A JP27929487 A JP 27929487A JP 27929487 A JP27929487 A JP 27929487A JP H01122953 A JPH01122953 A JP H01122953A
Authority
JP
Japan
Prior art keywords
calcium silicate
weight
monomer
parts
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27929487A
Other languages
Japanese (ja)
Inventor
Kazuhiro Murao
村尾 一宏
Takashi Komatsu
小松 哮
Akira Tomizawa
富沢 彬
Yoshinori Oi
大井 良典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Nippon Carbide Industries Co Inc filed Critical Asahi Glass Co Ltd
Priority to JP27929487A priority Critical patent/JPH01122953A/en
Publication of JPH01122953A publication Critical patent/JPH01122953A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain a formed article having excellent mechanical strength and heat-insulation property as well as hydrophobicity, by adding an acrylstyrene emulsion, starch and water to hydrated calcium silicate, forming the obtained aqueous slurry and drying the product. CONSTITUTION:The objective formed calcium silicate is produced by forming an aqueous slurry composed of 100pts.wt. of hydrated calcium silicate, 5-30pts. wt. (solid basis) of an acrylstyrene emulsion, 0.5-15pts.wt. of starch and a proper amount of water and drying the formed product. The acrylstyrene emulsion used in the above process is preferably the one obtained by copolymerizing a monomer mixture containing 1-30wt.% (solid basis) of a monomer having carboxyl group with a monomer forming a base of the acrylstyrene emulsion. A monomer having phosphoric acid group or sulfonic acid group may be used in place of the monomer having carboxyl group.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は珪酸カルシウム成形体、特に機械的強度や断熱
性に優れ、且つ疎水性を具備しつる珪酸カルシウム成形
体に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a calcium silicate molded article, particularly a vine calcium silicate molded article that has excellent mechanical strength and heat insulation properties and is hydrophobic.

[従来の技術] 珪酸カルシウム成形体は軽量1゛1つ断熱性を有するこ
とから各種の保温材や建築材料に用途が拓けつつある。
[Prior Art] Calcium silicate molded bodies are lightweight and have heat insulating properties, so they are finding use in various heat insulating materials and building materials.

しかし、このような材料にあっては、一般に機械的強度
が不充分である欠点があり、これを改善する手段として
ポリマー等を添加するド段が提案されている(特開昭5
4−160428号、同60−246251号各公報参
照)。又、ポリマーに疎水性を付与し、耐水性に優れた
珪酸カルシウム成形体も提案されている(特開昭61−
17462号公・服参照)。
However, such materials generally have the drawback of insufficient mechanical strength, and as a means to improve this, a method of adding polymers, etc. has been proposed (Japanese Patent Application Laid-Open No.
4-160428 and 60-246251). In addition, a calcium silicate molded body with excellent water resistance has been proposed by imparting hydrophobicity to the polymer (Japanese Patent Application Laid-Open No. 1983-1999).
(See No. 17462, Clothes).

[発明の解決しようとする問題点] しかしながら、前2者の発明にあっては建材としての用
途を考える場合、断熱性及び強度の点で未だ不充分であ
る欠点を有している。又、後者の発明にあっては、モノ
マーの疎水性に固執する余り、エマルジョンと珪酸カル
シウムとの言わば接若性が考慮されておらず、そのため
添加量の割には強度が小さく、又不燃性に対する考慮も
払われていない等の欠点を有している。
[Problems to be Solved by the Invention] However, the former two inventions have drawbacks in that they are still insufficient in terms of heat insulation and strength when considering their use as building materials. In addition, in the latter invention, the so-called attractive properties of the emulsion and calcium silicate are not considered because the monomer is too fixated on hydrophobicity, and therefore, the strength is low considering the amount added, and the nonflammability is low. However, there are drawbacks such as no consideration given to

他方、前記発明にあってはその何れもが嵩密度0.2〜
1.0 g/cm’と比較的大きく、低嵩密度(0,1
3g/cm’  以下)は意図されていない。
On the other hand, all of the above inventions have a bulk density of 0.2 to
It is relatively large at 1.0 g/cm' and has a low bulk density (0,1
3 g/cm') is not intended.

珪酸カルシウムを保温材として用いる場合には嵩密度が
0.13 g/cm3以下のものが用いられるが、この
用途に対しては前記何れの発明も対象外である。
When calcium silicate is used as a heat insulating material, one having a bulk density of 0.13 g/cm3 or less is used, but none of the above inventions is applicable to this use.

更に、現在市販されている珪酸カルシウム保温材にあっ
ても、JIS規格によって嵩密度0.13 g/cm″
以下、熱伝導率0.042にcal/m−h−’IC以
下と規定されているにも拘らず、実際の嵩密度は 0.
13〜0.15 g/cm”、熱伝導率0.042〜0
、047にcat/m−h・℃と規格を外れているのが
実情である。
Furthermore, even with currently commercially available calcium silicate insulation materials, the bulk density is 0.13 g/cm'' according to the JIS standard.
Hereinafter, although the thermal conductivity is specified as 0.042 and cal/m-h-'IC or less, the actual bulk density is 0.042.
13-0.15 g/cm", thermal conductivity 0.042-0
, 047 cat/mh・℃, which is outside the standard.

又、耐熱温度が1000℃において熱伝導率が0、04
5にcal/m−h・”ciiFI後が要求される炉材
やボイラー用の断熱材でコスト的に安値な材料は皆51
1(であったといっても過言ではない。
In addition, the thermal conductivity is 0.04 at a heat resistance temperature of 1000°C.
All low-cost materials for furnace materials and boiler insulation materials that require 5 cal/m-h/cii after FI are 51
It is no exaggeration to say that it was 1.

[問題点を解決する為の手段] 本発明者は、本来軽量且つ耐熱性を潜在的に有する珪酸
カルシウムに十分な軽量性及び耐熱性を現実に付与し、
更に同時に疎水性をも具備し得る珪酸カルシウム成形体
を見出すことを[1的として種々研究、検討した結果、
珪酸カルシウム水和物に対し、特定なエマルジョン及び
澱粉を夫々特定量加えたスラリーを調製し、これを成形
乾燥せしめることにより前記目的を達成し得ることを見
出した。かくして本発明は、珪酸カルシウム水和物10
0重量部に対し、アクリルスチレン系エマルジョンを固
形分換算で5〜30重量部、澱粉 0.5〜15重量部
及び水から成る水性スラリーを成形、乾燥せしめたこと
を特徴とする珪酸カルシウム成形体を提供するにある。
[Means for Solving the Problems] The present inventor actually imparts sufficient lightness and heat resistance to calcium silicate, which inherently has lightness and heat resistance, and
Furthermore, the aim was to find a calcium silicate molded body that could also have hydrophobicity [as a result of various research and examinations,
It has been found that the above object can be achieved by preparing a slurry in which specific amounts of a specific emulsion and starch are added to calcium silicate hydrate, and molding and drying the slurry. Thus, the present invention provides calcium silicate hydrate 10
0 parts by weight, an aqueous slurry consisting of 5 to 30 parts by weight of an acrylic styrene emulsion in terms of solid content, 0.5 to 15 parts by weight of starch, and water is molded and dried. is to provide.

本発明において用いられる珪酸カルシウム水和物として
は、例えば生石灰や消石灰等の石灰質原料と珪砂、フラ
イアッシュ等の珪酸質原料とを水熱合成することにより
得ることが出来るが、その生成物は粒子の長さが0.3
〜3μ程度の珪酸カルシウムのt1i結晶から構成され
、直径10〜100μ程度の球状二次粒子が望ましく、
−般にゾノトライト、トバモライトと呼ばれる結晶体、
特にゾノトライトが好ましい。
Calcium silicate hydrate used in the present invention can be obtained, for example, by hydrothermally synthesizing calcareous raw materials such as quicklime and slaked lime and silicic raw materials such as silica sand and fly ash. The length of is 0.3
Preferably, spherical secondary particles are composed of t1i crystals of calcium silicate with a diameter of about 3μ and have a diameter of about 10 to 100μ,
-Crystals commonly called xonotrite and tobermorite,
Particularly preferred is xonotlite.

この様な珪酸カルシウム及びその製造方法の典型例は特
公昭45−25771号公報に詳細に記載されている。
Typical examples of such calcium silicate and its manufacturing method are described in detail in Japanese Patent Publication No. 45-25771.

本発明に用いられる珪酸カルシウム水和物は、水熱合成
後のスラリー状態でも或はスラリーを脱水乾燥し、その
接水を添加して用いることも出来る。
The calcium silicate hydrate used in the present invention can be used in the form of a slurry after hydrothermal synthesis, or by dehydrating and drying the slurry and adding the wetted water.

次に本発明に用いられるアクリルスチレン系エマルジョ
ンとしては、カルボキシル基を有する千ツマ−を固形分
で1〜30重量%含有する千ツマ−と、アクリルスチレ
ン系エマルジョンのベースとなる千ツマ−とを共重合し
て得たものが好ましい。
Next, the acrylic styrene emulsion used in the present invention contains 1 to 30% by weight of 1 to 30% by weight of 1 to 30% by weight of carboxyl group-containing 1 to 3. Those obtained by copolymerization are preferred.

又、カルボキシル基を有する千ツマ−に代えてリン酸基
やスルホン酸基を有する千ツマ−も同様に用い得る。
Furthermore, in place of the chemical compound having a carboxyl group, a chemical compound having a phosphoric acid group or a sulfonic acid group may be used in the same manner.

これら強酸基を有するモノマーを用いると、珪酸カルシ
ウム中の一部のカルシウムが強酸塩を形成し、これが珪
酸カルシウムとの結合を強固なものにしていると推測さ
れる。
It is presumed that when monomers having these strong acid groups are used, some of the calcium in the calcium silicate forms a strong acid salt, which strengthens the bond with the calcium silicate.

カルボキシル基を有するモノマーとしては例えばアクリ
ル酸、メタクリル酸等の不飽和モノカルボン酸、マレイ
ン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸が
挙げられる。又、リン酸基を有するモノマーとしては例
えば、2−メタクリル−エタンリン酸、2−アクリル−
エタンリン酸等が、スルホン酸基を有する千ツマ−とし
ては例えば、スチレンスルホン酸、2−アクリルアミド
−2メチルプロパンスルホン酸が挙げられる。
Examples of the monomer having a carboxyl group include unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid, and unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid. In addition, examples of monomers having a phosphoric acid group include 2-methacrylic-ethane phosphoric acid, 2-acrylic-ethane phosphoric acid, and 2-acrylic acid.
Examples of ethanephosphoric acid having a sulfonic acid group include styrenesulfonic acid and 2-acrylamido-2methylpropanesulfonic acid.

他方、アクリルスチレン系エマルジョンのベースとなる
千ツマ−としては例えば、アクリル酸メチル、アクリル
酸エチル、アクリル酸ブヂル、アクリル酸2−エチルヘ
キシル等のアクリル酸エステル類、メタクリル酸メチル
、メタクリル酸エチル、メタクリル酸ブチル、メタクリ
ル酸2−エチルヘキシル等のメタクリル酸ニスデル類、
スチレン、a−メチルスチレン、クロロスチレン等の芳
呑族ビニル類が挙げられる。
On the other hand, examples of base materials for acrylic styrene emulsions include acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, and methacrylate. butyl methacrylate, Nisder methacrylates such as 2-ethylhexyl methacrylate,
Examples include aromatic vinyls such as styrene, a-methylstyrene, and chlorostyrene.

前記カルボキシル基等の強酸基を有する千ツマ−と、ア
クリルスチレン系エマルジョンのベースとなるモノマー
とを共重合せしめる際の夫々の千ツマ−の使用割合は、
前者が1〜30重量%、後者が70〜99重量%程度を
採用するのが適当である。
When copolymerizing the above monomer having a strong acid group such as a carboxyl group with the monomer that becomes the base of the acrylic styrene emulsion, the proportion of each monomer used is as follows:
It is appropriate to use 1 to 30% by weight of the former and 70 to 99% by weight of the latter.

アクリルスチレン系エマルジョンのベースとなる千ツマ
−は、水性乳化重合体エマルジョン全体に対し、前記の
アクリル酸もしくはメタクリル酸のエステル単量体30
〜94重量%、スチレン系中量体5〜69 ’iM H
,t%の割合が好ましい。
The base of the acrylic styrene emulsion is 30% of the above acrylic acid or methacrylic acid ester monomer based on the entire aqueous emulsion polymer emulsion.
~94% by weight, styrenic intermediate 5-69'iM H
, t% is preferred.

共重合時の割合が+lii記範囲を逸脱する場合には、
前者が1%以下の場合には珪酸カルシウム中のカルシウ
ムとの結合濃度が低くなるため成形物の強度向上効果が
小さく、30%以上であると珪酸カルシウム水和物粒子
との混合時に不安定となり、ゲル化物が生成する虞れが
あるので好ましくない。
If the ratio during copolymerization deviates from the range described in +lii,
If the former is less than 1%, the binding concentration with calcium in calcium silicate will be low, so the strength improvement effect of the molded product will be small, and if it is more than 30%, it will become unstable when mixed with calcium silicate hydrate particles. This is not preferable since there is a possibility that a gelled product may be formed.

アクリルスチレン系エマルジョンを構成する共重合体の
ガラス転移温度は、−30℃から+30℃の間にあるこ
とが望ましい。ガラス転移温度が一30℃未満の場合に
は、共重合体と珪酸カルシウム中のCaとの反応が不十
分となり、成形体の強度向上効果が小さい。また、ガラ
ス転移温度が+30℃を越える場合には共重合体の°敵
前不良が発生し、成形物の強度向上は望めない。
The glass transition temperature of the copolymer constituting the acrylic styrene emulsion is preferably between -30°C and +30°C. If the glass transition temperature is less than 130°C, the reaction between the copolymer and Ca in the calcium silicate will be insufficient, and the effect of improving the strength of the molded article will be small. Furthermore, if the glass transition temperature exceeds +30° C., the copolymer will deteriorate in temperature, and no improvement in the strength of the molded product can be expected.

なお、本発明において共重合体のガラス転移点(Tg 
)は下記に示す近似式により導き出すことが出来る。
In addition, in the present invention, the glass transition point (Tg
) can be derived using the approximate formula shown below.

I/Tg =Wl/TI +W2/Tl +Wl/T3
 ・−−Tg:共重合体のガラス転移温度 (絶対温度) W + 、 W 2.W 3;共重合体中における特定
の単量体の重量% T1.T2.T、;その単量体からなる単独重合体のガ
ラス転移温度(絶対温度) 重合例1 攪拌装置と還流コンデンサーを滴下漏斗と温度計とを備
えた反応容器に脱イオン水200部を仕込み窒素ガスで
置換した。次いで、反応容器内温度を60℃に調節して
攪拌しつつ、下記の組成になるiij 771体の乳化
溶液と1部の過硫酸カリウムを50部の脱イオン水に溶
解した溶液と、1部の次亜硫酸ナトリウムを50部の脱
イオン水に溶解させた溶液とを3時間で滴下して重合さ
せた。
I/Tg = Wl/TI +W2/Tl +Wl/T3
--Tg: Glass transition temperature (absolute temperature) of copolymer W + , W 2. W3; Weight % of specific monomer in copolymer T1. T2. T, ; Glass transition temperature (absolute temperature) of a homopolymer made of the monomer Polymerization example 1 200 parts of deionized water was charged into a reaction vessel equipped with a stirring device, a reflux condenser, a dropping funnel, and a thermometer, and nitrogen gas was added. Replaced with. Next, while adjusting the temperature inside the reaction vessel to 60°C and stirring, an emulsified solution of Iij 771 having the following composition, a solution of 1 part potassium persulfate dissolved in 50 parts of deionized water, and 1 part of sodium hyposulfite dissolved in 50 parts of deionized water was added dropwise over 3 hours to polymerize.

ネオゲンR(第−工業製薬製 陰イオン性乳化剤)  5部 エマルゲン950(花王アトラス社 製ノニオン性乳化剤)   5部 脱イオン水            200部2エヂル
ヘキシルアクリレート   220部スチレン    
        26部5部アクリル酸       
     15部この間容器内温度は60℃±2℃に保
ちさらに同温度に1時間保持させてから冷却し、30℃
以下になったところで28%アンモニア水でpl+を7
〜9に調節したのち濾過した。生成した共重合体はガラ
ス転移温度が一7℃であった。このエマルジョンをEx
、lとする。
Neogen R (Anionic emulsifier manufactured by Dai-Kogyo Seiyaku) 5 parts Emulgen 950 (Nonionic emulsifier manufactured by Kao Atlas Co., Ltd.) 5 parts Deionized water 200 parts 2 Edylhexyl acrylate 220 parts Styrene
26 parts 5 parts acrylic acid
15 parts During this time, the temperature inside the container was kept at 60℃±2℃, and the temperature was kept at the same temperature for 1 hour, then cooled to 30℃.
When the amount is below, add 28% ammonia water to 7 pl+.
After adjusting to ~9, it was filtered. The copolymer produced had a glass transition temperature of 17°C. Ex this emulsion
, l.

重合例2 重合例1で示した単量体の乳化溶液の組成を下記に示す
組成とした他は1重合例1で示した方法と全く同一の方
法で共重合体を得た。生成した共重合体のガラス転移温
度は一12℃であった。
Polymerization Example 2 A copolymer was obtained in exactly the same manner as in Polymerization Example 1, except that the composition of the monomer emulsion solution shown in Polymerization Example 1 was changed to the composition shown below. The glass transition temperature of the copolymer produced was -12°C.

ネオゲン1′?(第−工業製薬製 陰イオン性乳化剤)  5部 エマルゲン950(花王アトラス社 製ノニオン性乳化剤)  5部 脱イオン水             200部2エチ
ルへキシルアクリレート   235部スチレン   
         255部イタコン酸       
     10部このエマルジョンをEX、 2とする
Neogen 1′? (Anionic emulsifier manufactured by Dai-Kogyo Seiyaku) 5 parts Emulgen 950 (nonionic emulsifier manufactured by Kao Atlas Co., Ltd.) 5 parts Deionized water 200 parts 2-ethylhexyl acrylate 235 parts Styrene
255 parts itaconic acid
10 parts Let this emulsion be EX, 2.

重合例3 重合例1で示した単量体の乳化溶液の組成を下記に示す
組成とした他は、重合例1で示した方法と全く同一の方
法で共重合体を得た。
Polymerization Example 3 A copolymer was obtained in exactly the same manner as in Polymerization Example 1, except that the composition of the monomer emulsion solution shown in Polymerization Example 1 was changed to the composition shown below.

生成した共重合体のガラス転移温度は一10℃であった
The glass transition temperature of the produced copolymer was -10°C.

ネオゲンR(第−工業製薬製 陰イオン性乳化剤)  5部 エマルゲン950(花王アトラス社 製ノニオン性乳化剤)  5部 脱イオン水             200部n−ブ
チルアクリレート      285部スチレン   
         190部メタクリル酸      
     25部このエマルジョンをEx、 3とする
Neogen R (anionic emulsifier manufactured by Dai-Kogyo Seiyaku) 5 parts Emulgen 950 (nonionic emulsifier manufactured by Kao Atlas Co., Ltd.) 5 parts deionized water 200 parts n-butyl acrylate 285 parts styrene
190 parts methacrylic acid
25 parts Let this emulsion be Ex, 3.

次に1本発明に用いる澱粉は珪酸カルシウム永和体粒子
とアクリルスチレン系エマルジョンとを相互に接若せし
める役割を持つものであり、又珪酸カルシウム水和物の
表面は一般に負に(jF電しているため、望ましくはカ
チオン性の澱粉が好適である。
Next, the starch used in the present invention has the role of adhering the calcium silicate permanent particles and the acrylic styrene emulsion to each other, and the surface of the calcium silicate hydrate generally has a negative (jF) charge. Therefore, cationic starch is preferable.

かかるカチオン性の澱粉としては例えば、カルボキシア
ルキル澱粉、ヒドロキシアルキル澱粉、シアノエチル澱
粉、アリル澱粉、ベンジル澱粉、ビニル澱粉、 カルバ
ミルエヂル澱粉、ジアルキルアミノアルキル澱粉答のエ
ーテル化澱粉、またはリン酸澱粉、脂°肋酸澱粉等のエ
ステル化澱粉が挙げられる。とりわけ、ジアルキルアミ
ノアルキル澱粉はカチオン性が比較的高いので好ましい
Such cationic starches include, for example, carboxyalkyl starch, hydroxyalkyl starch, cyanoethyl starch, allyl starch, benzyl starch, vinyl starch, carbamyl edyl starch, dialkylaminoalkyl starch, etherified starch, or phosphate starch, fatty starch. Examples include esterified starches such as acid starches. In particular, dialkylaminoalkyl starch is preferred because it has relatively high cationicity.

澱粉の使用量は厳密には用いるエマルジョンの種類によ
り決定されるが、一般に珪酸カルシウム水和物の固形分
100部に対し、0.5〜15中量部用いるのが適当で
ある。
Although the amount of starch to be used is strictly determined by the type of emulsion used, it is generally appropriate to use 0.5 to 15 parts by weight per 100 parts of the solid content of calcium silicate hydrate.

かくしてこれらを混合し、水性スラリーを形成せしめる
が、該スラリーの固形分濃度は通常20屯量%以下が適
当であるが、成形性等を考慮すると5〜10重量部程度
部側用するのが好ましい。
These are mixed to form an aqueous slurry, and the appropriate solid concentration of the slurry is usually 20% by weight or less, but considering moldability etc., it is recommended to use about 5 to 10 parts by weight. preferable.

更に本発明においては珪酸カルシウム成形体の湿乾収縮
を小ならしめる為、原料調合時に撥水剤を添加すると効
果的である。用いられる撥水剤としては、シリコーン系
、パラフィン系、ワックス系等の撥水剤が好ましい。撥
水剤使用量は多いはど撥水性は向上するが、不燃性が低
下したり塗装がしにくくなる等の不都合が生じる虞れが
ある為、一般に全固形分に対し0.1〜3重量%程度を
採用するのが適当である。
Furthermore, in the present invention, it is effective to add a water repellent at the time of preparing the raw materials in order to reduce the wet-dry shrinkage of the calcium silicate molded body. The water repellent used is preferably a silicone-based, paraffin-based, wax-based water repellent, or the like. If the amount of water repellent used is large, the water repellency will improve, but there is a risk of inconveniences such as a decrease in non-flammability and difficulty in painting, so generally it is 0.1 to 3 weight based on the total solid content. It is appropriate to adopt approximately %.

又、本発明において珪酸カルシウム成形体はその乾燥時
に保形性を持せる為にセメントが用いられる。かかるセ
メントとしては、ポルドラ・ンドセメント、アルミナセ
メント、シリカセメント等が用いられるが、ポルトラン
ドセメントを用いるのが好ましい。セメントの使用量は
、珪酸カルシウムの固形分に対して1〜20重量%を採
用するのが適当である。使用:■が1重:1′L%に2
14だない場合には保形性が悪く、成形体に反りやうね
りが生ずる虞れがあり、逆に20 ’M g)%を越え
る場合には硬度が高くなり、脆性が生じ、強度低下が起
こる虞れがあるのでいずれも好ましくない。そしてこれ
らの範囲のうち珪酸カルシウムの固形分に対して4〜l
 Q l 、r、1%を採用する場合には実質的になん
らの不都合もなく保形性を保てるので特に好ましい。
Further, in the present invention, cement is used in the calcium silicate molded body so that it retains its shape when dried. As such cement, Portland cement, alumina cement, silica cement, etc. are used, but it is preferable to use Portland cement. The appropriate amount of cement to be used is 1 to 20% by weight based on the solid content of calcium silicate. Use: 1 layer of ■: 2 to 1'L%
If it is less than 14%, the shape retention is poor and there is a risk of warping or waviness in the molded product.On the other hand, if it exceeds 20'Mg)%, the hardness becomes high, brittleness occurs, and strength decreases. Both are undesirable as there is a possibility that this may occur. And within these ranges, 4 to 1 for the solid content of calcium silicate.
It is particularly preferable to use Q l and r of 1% because the shape retention property can be maintained without substantially any inconvenience.

成形体の成形時に圧力10〜200kg/cm2程度の
脱水プレスを行なう事により5、高強度で、−°44重
0.2〜1. Og/cm’の成形体を得ることが出来
、又圧力l0kg/cm”以下あるいはプレスなせずに
脱水成形する場合には、従来の珪酸カルシウム保温材よ
りも史に高強度で嵩密度0.06〜0.13g/cm’
程度の成形体を得ることが出来る。+iif Mの高密
度品は例えば人造木材として、又後者の低密度品は耐熱
保温材として夫々有用である。又、成形手段もI)11
記以外に抄造成形、押出成形等最終的な製品の形状、目
的、用途等に応じて任意に選択し得る。
By performing dehydration pressing at a pressure of about 10 to 200 kg/cm2 during molding of the molded product, it has a high strength of -°44 weight of 0.2 to 1. It is possible to obtain a molded product of 0.0 g/cm', and when the pressure is less than 10 kg/cm" or when dehydration molding is performed without pressing, it has higher strength and bulk density of 0.06 than conventional calcium silicate insulation materials. ~0.13g/cm'
It is possible to obtain a molded article of about 100%. The high-density product of +iif M is useful, for example, as artificial wood, and the latter low-density product is useful as a heat-resistant heat insulating material. Also, the molding means I)11
In addition to the above, any material such as paper forming, extrusion molding, etc. may be selected depending on the shape, purpose, use, etc. of the final product.

成形体の乾燥は 100〜150℃程度の温度を採用す
るのが適当である。乾燥温度が100℃より低いとエマ
ルジョン717.1間の接着が不充分になると共に乾燥
に長時間を要し、逆に 150℃を越える場合には珪酸
カルシウムが熱分解し、結晶系が変化して強度低下を来
す虞れがあるのでいずれも好ましくない。
It is appropriate to dry the molded body at a temperature of about 100 to 150°C. If the drying temperature is lower than 100°C, the adhesion between the emulsions 717.1 will be insufficient and it will take a long time to dry, while if it exceeds 150°C, the calcium silicate will thermally decompose and the crystal system will change. Both are unfavorable because they may cause a decrease in strength.

更に本発明においては、成形体を6r1子繊維等の繊維
補強材により補強したり、その他の添加剤等を本発明の
目的を阻害しない限り適宜用いることが出来る。
Furthermore, in the present invention, the molded article may be reinforced with a fiber reinforcing material such as 6r1 child fibers, and other additives may be used as appropriate as long as they do not impede the purpose of the present invention.

[実施例] 以下に示す実施例において用いる部及び%はいずれも重
量基へξであり、又各種物性は次の方法で測定した。
[Example] All parts and percentages used in the examples below are expressed as ξ by weight, and various physical properties were measured by the following methods.

嵩密度 :試験体を 150℃で24時間乾燥後、車量
及び寸法を測定して求めた。
Bulk density: Determined by drying the test specimen at 150° C. for 24 hours, and then measuring the weight and dimensions.

曲げ強度、 JIS A 1408に準じた。但し、試
験体寸法を60X 200mm、厚さ17〜25mmと
した。
Bending strength, according to JIS A 1408. However, the dimensions of the test specimen were 60 x 200 mm and the thickness was 17 to 25 mm.

比強度 :曲げ強度/(嵩密度)2で求めた。Specific strength: Calculated as bending strength/(bulk density)2.

熱伝導度: JIS A 1412 (平板比較法)に
準じた。但し、試験体寸法を200× 200mm、厚さ17〜25mmとした。
Thermal conductivity: According to JIS A 1412 (flat plate comparison method). However, the test specimen dimensions were 200 x 200 mm and the thickness was 17 to 25 mm.

吸水率 : JIS^5418に準じた。但し、浸水時
間を2時間とした。
Water absorption rate: According to JIS^5418. However, the immersion time was 2 hours.

不燃試験: JIS A 1321にへζじた。但し、
表面試験での試験体寸法を200X ZOOmm、厚さ
17〜25mm、あるいは200X 220mm、厚さ
17X 25mmとした。
Nonflammability test: Conformed to JIS A 1321. however,
The dimensions of the test specimen in the surface test were 200 x ZOO mm and a thickness of 17 to 25 mm, or 200 x 220 mm and a thickness of 17 x 25 mm.

線収縮率: JIS A 9510に準じた。1000
℃で3時間加熱後の収縮率(%)。
Linear shrinkage rate: According to JIS A 9510. 1000
Shrinkage percentage (%) after heating for 3 hours at °C.

実施例1〜6 珪砂104部、生石灰100部、水4000部から成る
混合物を攪拌型オートクレーブ中に仕込み、攪拌しなが
ら210℃、18kg/am”で6時間反応せしめてゾ
ノトライトを主とする珪酸カルシウム水和物を得た。
Examples 1 to 6 A mixture consisting of 104 parts of silica sand, 100 parts of quicklime, and 4000 parts of water was charged into a stirring autoclave, and reacted with stirring at 210°C and 18 kg/am for 6 hours to produce calcium silicate mainly composed of xonotrite. A hydrate was obtained.

得られた珪酸カルシウムの5%水和物スラリー 100
部(固形分)に対し、それぞれ表に示した量のアクリル
スチレン系エマルジョン(日本カーバイト工業社製EX
、l、EX、2.EX、3 )  (固形分換算)、耐
アルカリガラス繊維(13mm長チョツプドストランド
、アルカ−社製)、ウオラストナイト短繊維(NYCO
社製NYΔD−G)、バルブ(バージンバルブ、大昭和
製紙社製)を混合し、十分攪拌後エーテル化澱粉゛(日
数化学社製Excell No、3)を添加し、更に攪
拌を続けた。次いでポルトランドセメント(日本セメン
ト社製ホワイトセメント)及び撥水剤(トーレシリコー
ン社製B Y +6)を加え、十分攪拌した。
Obtained 5% hydrate slurry of calcium silicate 100
(solid content) of acrylic styrene emulsion (EX manufactured by Nippon Carbide Industries Co., Ltd.) in the amounts shown in the table.
,l,EX,2. EX, 3) (solid content equivalent), alkali-resistant glass fiber (13 mm long chopped strand, manufactured by Alka), wollastonite staple fiber (NYCO
After thorough stirring, etherified starch (Excell No. 3, manufactured by Hikaku Kagaku Co., Ltd.) was added, and stirring was continued. Next, Portland cement (white cement manufactured by Nippon Cement Co., Ltd.) and a water repellent (B Y +6 manufactured by Toray Silicone Co., Ltd.) were added and thoroughly stirred.

次に混合スラリーを400X 450mmの型枠に注入
し、真空脱水しつつ40〜60kg/cm”の圧力で加
圧成形し、105℃で6時間乾燥して珪酸カルシウム成
形体を得た。成形体の各種試験結果は表の如くであった
Next, the mixed slurry was poured into a mold of 400 x 450 mm, and pressure molded at a pressure of 40 to 60 kg/cm'' while vacuum dehydrating, and dried at 105°C for 6 hours to obtain a calcium silicate molded body. The various test results are shown in the table.

実施例7〜9 実施例1で用いた珪酸カルシウム水和物スラリー100
部(固形分)に対し、実施例1で用いた添加物をそれぞ
れ表に示した如く加え(セメント、撥水剤は無添加)、
得られた混合スラリーを 300mmφの型枠中で真空
脱水して成形し、105℃で8時間乾燥して珪酸カルシ
ウム成形体を得た。成形体の各種試験結果は表の如くで
あった。
Examples 7-9 Calcium silicate hydrate slurry 100 used in Example 1
(solid content), add the additives used in Example 1 as shown in the table (no cement or water repellent added),
The obtained mixed slurry was vacuum dehydrated and molded in a 300 mmφ mold, and dried at 105° C. for 8 hours to obtain a calcium silicate molded body. The results of various tests on the molded product are as shown in the table.

Claims (3)

【特許請求の範囲】[Claims] (1)珪酸カルシウム水和物100重量部に対し、アク
リルスチレン系エマルジョンを固形分換算で5〜30重
量部、澱粉0.5〜15重量部及び水から成る水性スラ
リーを成形、乾燥せしめたことを特徴とする珪酸カルシ
ウム成形体。
(1) An aqueous slurry consisting of 100 parts by weight of calcium silicate hydrate, 5 to 30 parts by weight of acrylic styrene emulsion in terms of solid content, 0.5 to 15 parts by weight of starch, and water was formed and dried. A calcium silicate molded body characterized by:
(2)アクリルスチレン系エマルジョンは下記(a)〜
(c)の単量体の合計100重量%。 (a)一般式H_2C=CR^1COOR^2(但しR
^1はHもしくはCH_2を表わし、R^2はC_1〜
C_2_0の直鎖もしくは分岐アルキル基を表わす)で
示されるアクリル酸もしくはメタクリル酸のエステル単
量体30〜94重量% (b)スチレン系単量体5〜69重量% (c)C_3〜C_5のα、β不飽和のモノカルボン酸
もしくはジカルボン酸単量体を1〜30重量%からなる
水性エマルジョン。
(2) Acrylic styrene emulsion is as follows (a) ~
A total of 100% by weight of monomers (c). (a) General formula H_2C=CR^1COOR^2 (however, R
^1 represents H or CH_2, R^2 represents C_1~
(representing a straight chain or branched alkyl group of C_2_0) acrylic acid or methacrylic acid ester monomer 30 to 94% by weight (b) Styrenic monomer 5 to 69% by weight (c) α of C_3 to C_5 , an aqueous emulsion comprising 1 to 30% by weight of a β-unsaturated monocarboxylic acid or dicarboxylic acid monomer.
(3)スチレン系単量体がスチレンである第2項記載の
水性乳化重合体エマルジョン。
(3) The aqueous emulsion polymer emulsion according to item 2, wherein the styrenic monomer is styrene.
JP27929487A 1987-11-06 1987-11-06 Formed calcium silicate Pending JPH01122953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27929487A JPH01122953A (en) 1987-11-06 1987-11-06 Formed calcium silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27929487A JPH01122953A (en) 1987-11-06 1987-11-06 Formed calcium silicate

Publications (1)

Publication Number Publication Date
JPH01122953A true JPH01122953A (en) 1989-05-16

Family

ID=17609164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27929487A Pending JPH01122953A (en) 1987-11-06 1987-11-06 Formed calcium silicate

Country Status (1)

Country Link
JP (1) JPH01122953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213581A (en) * 2005-02-07 2006-08-17 Japan Insulation Co Ltd Calcium silicate-based formed body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213581A (en) * 2005-02-07 2006-08-17 Japan Insulation Co Ltd Calcium silicate-based formed body
JP4659475B2 (en) * 2005-02-07 2011-03-30 日本インシュレーション株式会社 Calcium silicate molded body

Similar Documents

Publication Publication Date Title
US6492450B1 (en) Use of polymers in gypsum wallboard
AU2017375621A1 (en) Self-desiccating, dimensionally-stable hydraulic cement compositions with enhanced workability
US4504318A (en) Process for producing plastic concrete
JPS5869762A (en) Polymer-reformed cement mortar and concrete and manufacture
JP2012515128A (en) Hydraulic cement assembly for heat insulation and heat reflection products
JP2009084092A (en) Mortar-based restoring material
JPH01122953A (en) Formed calcium silicate
JPS60171260A (en) Hydraulic inorganic composition
JP7258713B2 (en) Resin-mixed calcium silicate compact
JP4448044B2 (en) Method for producing inorganic molded body
JPS59466B2 (en) Water resistant high strength gypsum composition
JP3212573B2 (en) Sheet molding composition such as stone-like sheet, and method for producing sheet using the same
Hemra et al. Compressive strength and setting time modification of class C fly ash-based geopolymer partially replaced with kaolin and metakaolin
JPH0474745A (en) Cement admixture and cement composition
JPH01264948A (en) Calcium silicate molded form
JPH03177348A (en) Cement additive and polymer-cement composition
JP3212572B2 (en) Sheet molding composition such as stone-like sheet, and method for producing sheet using the same
JP2825905B2 (en) Calcium silicate compact
JP2001097784A (en) Light concrete compact
JPH0472788B2 (en)
JPH03177345A (en) Additive for cement and polymer-cement composition
JPH10338563A (en) Inorganic composition and production of inorganic molded body
JPH1036164A (en) Low-specific gravity and high-strength calcium silicate molding product having cracking and warpage resistances
JPH0832600B2 (en) Calcium silicate molding
KR0160343B1 (en) Cement moltar composition for water repelling and waterproofing properties