JPH01122529A - Formation of vacuum breaker - Google Patents
Formation of vacuum breakerInfo
- Publication number
- JPH01122529A JPH01122529A JP28173287A JP28173287A JPH01122529A JP H01122529 A JPH01122529 A JP H01122529A JP 28173287 A JP28173287 A JP 28173287A JP 28173287 A JP28173287 A JP 28173287A JP H01122529 A JPH01122529 A JP H01122529A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- intermediate shield
- withstand voltage
- shield
- circuit breaker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000015572 biosynthetic process Effects 0.000 title 1
- 238000000034 method Methods 0.000 claims description 6
- 230000005684 electric field Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/662—Housings or protective screens
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/662—Housings or protective screens
- H01H33/66261—Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
- H01H2033/66284—Details relating to the electrical field properties of screens in vacuum switches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/662—Housings or protective screens
- H01H33/66261—Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
- H01H2033/66292—Details relating to the use of multiple screens in vacuum switches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/662—Housings or protective screens
- H01H33/66261—Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、交流回路において使用される真空遮断器の
形成方法に係わり、特に電極と中間シールドの間の耐電
圧性能を向上する電極と中間シールドの構造に関するも
のである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a vacuum circuit breaker used in an AC circuit, and particularly relates to a method for forming a vacuum circuit breaker used in an AC circuit, and in particular, a method for forming a vacuum circuit breaker used in an AC circuit. This concerns the structure of the shield.
第3図は例えば特公昭61−23616号公報に記載の
従来の真空遮断器の電流遮断部の構造を示す縦断面図で
ある。(1)は接点、(2)は電極である。(3)は固
定電極棒で固定側端板(5)を貫通して上記電極(2)
の一方に封着されている。(4)は可動電極棒でベロー
ズ(9)を介して可動側端板(6)と接続され、上記電
極(2)の他方が固着されている。(7)は中間シール
ドであり、電流の遮断時に接点(1)の間に発生したア
ークや、金属蒸気が絶縁容器(3)の内面に接触あるい
は蒸着するのを防止する。又この中間シールド(7)は
2個の絶縁容器(8)により上記一対の電極から電気的
に絶縁して保持されている。(10は固定シールドであ
り、それぞれ端板(5) 、 (6)に固着されて、絶
縁容器(8)の封着部の電界を緩和するためのものであ
る。FIG. 3 is a longitudinal cross-sectional view showing the structure of a current interrupting section of a conventional vacuum circuit breaker described in, for example, Japanese Patent Publication No. 61-23616. (1) is a contact, and (2) is an electrode. (3) is a fixed electrode rod that penetrates the fixed side end plate (5) and connects the above electrode (2).
is sealed on one side. A movable electrode rod (4) is connected to the movable end plate (6) via a bellows (9), and the other electrode (2) is fixed thereto. (7) is an intermediate shield, which prevents the arc generated between the contacts (1) and metal vapor from contacting or depositing on the inner surface of the insulating container (3) when the current is cut off. The intermediate shield (7) is held electrically insulated from the pair of electrodes by two insulating containers (8). (10 is a fixed shield, which is fixed to the end plates (5) and (6), respectively, and is used to relieve the electric field at the sealed portion of the insulating container (8).
一般に真空遮断器の電流遮断性能は電極径の12〜1.
4乗に比例して増加するので遮断容量の増大に伴なって
電極径も大きくなる。この場合、電極と中間シールドで
形成される同軸状ギャップg1の耐電圧はギャップの長
さが短かくなるために低下することになる。それ故、ギ
ャップg1の耐電圧性能を満足するためには中間シール
ドの内径を大きくしなくてはならず、ひいては絶縁容器
の外径が大きくなり、真空遮断器が大形でコストが高く
なるという問題点があった。Generally, the current interrupting performance of a vacuum circuit breaker is 12 to 1.
Since it increases in proportion to the fourth power, the electrode diameter also increases as the breaking capacity increases. In this case, the withstand voltage of the coaxial gap g1 formed by the electrode and the intermediate shield is reduced because the length of the gap is shortened. Therefore, in order to satisfy the withstand voltage performance of the gap g1, the inner diameter of the intermediate shield must be increased, which in turn increases the outer diameter of the insulating container, making the vacuum circuit breaker larger and more expensive. There was a problem.
ところで、上記同軸上ギャップg、の耐電圧性能と電界
分布の関係について本発明者等が研究した結果、従来極
性によらず電極の最大電界集中係数(αmax)が1に
近づくにつれ同軸上ギャップg1の耐電圧が最大になる
と考えられていたが、後述の第2図に示すように同軸上
ギャップg1の耐電圧特性は電極と中間シールド間に印
加される電圧の極性により異なることがわかった。By the way, as a result of research by the present inventors on the relationship between withstand voltage performance and electric field distribution of the coaxial gap g1, as the maximum electric field concentration coefficient (αmax) of the electrode approaches 1, regardless of the polarity, the coaxial gap g1 However, as shown in FIG. 2, which will be described later, it has been found that the withstand voltage characteristics of the coaxial gap g1 differ depending on the polarity of the voltage applied between the electrode and the intermediate shield.
この発明は、上記問題点を解消するためになされたもの
で、電極と中間シールドの間の耐電圧を向上できる真空
遮断器を形成する方法を提供することを目的とする。The present invention was made to solve the above problems, and an object of the present invention is to provide a method for forming a vacuum circuit breaker that can improve the withstand voltage between the electrode and the intermediate shield.
この発明の真空遮断器の形成方法は、真空遮断器の電極
と中間シールドの耐電圧強度が両方の極性において等し
くなるように上記電極と中間シールドの形状を設定する
ものである。The method for forming a vacuum circuit breaker of the present invention is to set the shapes of the electrodes and intermediate shield of the vacuum circuit breaker so that the withstand voltage strengths of the electrodes and intermediate shield are equal in both polarities.
この発明においては、電極と中間シールドの耐電圧強度
が両方の極性において等しくなるように設定しているの
で、後述の第2図に示すように一般に使用される交流回
路の場合、耐電圧強度が最大となる。In this invention, the withstand voltage strength of the electrode and the intermediate shield is set to be equal in both polarities, so in the case of a commonly used AC circuit, the withstand voltage strength is Maximum.
まず、この発明に係わる電極と中間シールドの間のギャ
ップの耐電圧と電極表面の電界集中の関係を第2図の特
性図に示す。図において、縦軸は上記ギャップの耐電圧
強度(kV)を表わし、横軸は電極表面の電界集中の程
度を表わす係数の最大値、即ち電極表面の最大電界集中
係数を表わしている。First, the relationship between the withstand voltage of the gap between the electrode and the intermediate shield and the electric field concentration on the electrode surface according to the present invention is shown in the characteristic diagram of FIG. In the figure, the vertical axis represents the withstand voltage strength (kV) of the gap, and the horizontal axis represents the maximum value of the coefficient representing the degree of electric field concentration on the electrode surface, that is, the maximum electric field concentration coefficient on the electrode surface.
また特性曲線(ハ)は電極の印加電圧の極性がシールド
に対して負の場合の耐電圧強度と最大電界集中係数との
関係を、特性曲線の)は電極の印加電圧の極性がシール
ドに対して正の場合の耐電圧強度塵と最大電界集中係数
との関係を示している。Characteristic curve (c) shows the relationship between withstand voltage strength and maximum electric field concentration coefficient when the polarity of the voltage applied to the electrode is negative with respect to the shield. It shows the relationship between the withstand voltage strength dust and the maximum electric field concentration coefficient when the value is positive.
ここで一対の電極間に印加される電圧をV、電極間のギ
ャップの長さをdとする時、電界表面の平均電解Eoは
Eo = V /d ■
であり、電極表面の最も強い電界E maxはEmax
= a max −Eo ■となる。この0式の
右辺のαmaxが上述した最大電界集中係数である。Here, when the voltage applied between a pair of electrodes is V and the length of the gap between the electrodes is d, the average electrolysis Eo on the surface of the electric field is Eo = V /d ■, and the strongest electric field E on the surface of the electrodes is max is Emax
= a max −Eo ■. αmax on the right side of this equation 0 is the maximum electric field concentration coefficient mentioned above.
第2図から、同軸上ギャップの耐電圧特性は電極と中間
シールド間に印加される電圧の極性により異なる、即ち
極性効果があることが判る。ところが真空遮断器は一般
に交流回路において使用されるので、電極と中間シール
ド間にも交流電圧が印加される。そこで、交流回路の場
合は両方の極性において耐電圧強度が等しくなる点、第
2図の特性曲線A、Bが交さする点の耐電圧強度が最大
となる。従って、両方の極性において耐電圧強度が等し
くなる様に、換言すると特性曲線A、Bが交さする点に
対応するαmaxの値が得られるように電極および中間
シールドの形状を設計すれば良いことがわかる。From FIG. 2, it can be seen that the withstand voltage characteristics of the coaxial gap differ depending on the polarity of the voltage applied between the electrode and the intermediate shield, that is, there is a polarity effect. However, since vacuum circuit breakers are generally used in AC circuits, an AC voltage is also applied between the electrodes and the intermediate shield. Therefore, in the case of an AC circuit, the withstand voltage strength is maximum at the point where the withstand voltage strength is equal in both polarities, and at the point where the characteristic curves A and B in FIG. 2 intersect. Therefore, the shape of the electrode and intermediate shield should be designed so that the withstand voltage strength is equal in both polarities, or in other words, the value of αmax corresponding to the point where characteristic curves A and B intersect can be obtained. I understand.
上述のような同軸ギャップの耐電圧性能に極性がある理
由については以下の様に考えられる。電極が負極性で中
間シールドが正極性の場合、電極から電界放出により発
生する電子電流により耐電圧が決定されるので、電極表
面の電界集中が大きい程耐電圧強度は低い。一方、中間
シールドが負極性で電極が正極性の場合は、中間シール
ドからの電界放出電子は耐電圧にあまり影響せず、むし
ろ電極表面の電界集中が発生する領域の面積が耐電圧に
関係しくいわゆる面積効果)、電界集中の程度が大きい
程この面積は小さいので耐電圧強度は高い。The reason why there is a polarity in the withstand voltage performance of the coaxial gap as described above is thought to be as follows. When the electrode has a negative polarity and the intermediate shield has a positive polarity, the withstand voltage is determined by the electron current generated by field emission from the electrode, so the greater the electric field concentration on the electrode surface, the lower the withstand voltage strength. On the other hand, when the intermediate shield has a negative polarity and the electrode has a positive polarity, the field emission electrons from the intermediate shield do not have much effect on the withstand voltage, but rather the area of the region where the electric field concentration occurs on the electrode surface has no relation to the withstand voltage. (so-called area effect), the greater the degree of electric field concentration, the smaller this area, so the withstand voltage strength is higher.
第1図はこの発明の一実施例に係わる両方の極性におい
て耐電圧が等しくなる場合の電極と中間シールドの形状
を示す部分断面図で、(2)は電極で、直径が100朋
、厚みDが5 mmで中間シールド(7)対向側の両端
部はrが’15ynmの半球状になっている。FIG. 1 is a partial sectional view showing the shapes of the electrode and the intermediate shield when the withstand voltage is equal in both polarities according to an embodiment of the present invention, and (2) is the electrode, which has a diameter of 100mm and a thickness of is 5 mm, and both ends of the intermediate shield (7) on the opposite side have a hemispherical shape with r of 15 ynm.
(3>、(4)は電極棒で、直径は30騎、(7)は中
間シールドで内径が110間である。なお、電極(2)
と中間シールド(7)の同軸上ギャップg、のギャップ
長Gは5朋である。このような形状の電極と中間シール
ドを有する真空遮断器は従来のものに比して電極と中間
シールド間の耐電圧性能が向上した。(3>, (4) are electrode rods with a diameter of 30 mm, and (7) is an intermediate shield with an inner diameter of 110 mm.
and the coaxial gap g of the intermediate shield (7), the gap length G is 5 mm. A vacuum circuit breaker having such a shaped electrode and intermediate shield has improved withstand voltage performance between the electrode and the intermediate shield compared to conventional vacuum circuit breakers.
なお、上記実施例では、中間シールドが1つのものに適
用した場合について説明したが、2つ以上の中間シール
ドを有する真空遮断器であっても良く、上記実施例と同
様の効果を奏する。In addition, although the said Example demonstrated the case where it applied to the thing with one intermediate shield, the vacuum circuit breaker which has two or more intermediate shields may produce the same effect as the said Example.
以上のように、この発明によれば、真空遮断器において
、電極と中間シールドの形状を上記電極と中間シールド
間の耐電圧強度が両方の極性において等しくなるように
設定することにより、耐電圧性能に優れた真空遮断器が
得られる効果がある。As described above, according to the present invention, in a vacuum circuit breaker, the shapes of the electrode and the intermediate shield are set so that the voltage strength between the electrode and the intermediate shield is equal in both polarities, thereby improving the voltage resistance. This has the effect of providing an excellent vacuum circuit breaker.
第1図はこの発明の一実施例に係わる真空遮断器の電極
と中間シールドの形状を示す部分断面図、第2図はこの
発明に係わる電極と中間シールドの間のギャップの耐電
圧と電極表面の電界集中の関係を示す特性図、第3図は
従来の真空遮断器を示す縦断面図である。
図において、(2)は電極、(3)は固定電極棒、(4
)は固定電極棒、(7)は中間シールドである。
なお、図中、同一符号は同−又は相当部分を示す。FIG. 1 is a partial sectional view showing the shape of the electrode and intermediate shield of a vacuum circuit breaker according to an embodiment of the present invention, and FIG. 2 is a diagram showing the withstand voltage of the gap between the electrode and intermediate shield and the electrode surface according to the present invention. FIG. 3 is a longitudinal sectional view showing a conventional vacuum circuit breaker. In the figure, (2) is an electrode, (3) is a fixed electrode rod, and (4) is an electrode.
) is a fixed electrode rod, and (7) is an intermediate shield. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.
Claims (1)
容器、この真空容器内に少なくとも一方がベローズを介
して上記端板に可動に封着して設けられる一対の接離自
在な電極、及び上記真空容器内に設けられ、上記一対の
電極を包囲する中間シールドを備え、交流回路において
使用される真空遮断器において、上記電極と中間シール
ド間の耐電圧強度が両方の極性において等しくなるよう
に上記電極と中間シールドの形状を設定することを特徴
とする真空遮断器の形成方法。a vacuum container consisting of an insulating container and an end plate that closes the insulating container; a pair of electrodes that are movably sealed to the end plate, at least one of which is provided in the vacuum container, and that are movably sealed to the end plate via a bellows; In a vacuum circuit breaker used in an AC circuit, which is provided in the vacuum container and includes an intermediate shield surrounding the pair of electrodes, the withstand voltage strength between the electrode and the intermediate shield is equal in both polarities. A method for forming a vacuum circuit breaker, comprising setting the shapes of the electrode and intermediate shield.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28173287A JPH01122529A (en) | 1987-11-07 | 1987-11-07 | Formation of vacuum breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28173287A JPH01122529A (en) | 1987-11-07 | 1987-11-07 | Formation of vacuum breaker |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01122529A true JPH01122529A (en) | 1989-05-15 |
Family
ID=17643211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28173287A Pending JPH01122529A (en) | 1987-11-07 | 1987-11-07 | Formation of vacuum breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01122529A (en) |
-
1987
- 1987-11-07 JP JP28173287A patent/JPH01122529A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3683138A (en) | Vacuum switch contact | |
US4806714A (en) | Electrode structure for vacuum circuit breaker | |
US4695689A (en) | Vacuum circuit breaker | |
US4424427A (en) | Vacuum switch | |
JPH01122529A (en) | Formation of vacuum breaker | |
US12046432B2 (en) | Vacuum interrupter | |
JPH0719505B2 (en) | Disconnector | |
US4797522A (en) | Vacuum-type circuit interrupter | |
JPS58106745A (en) | High voltage insulating vacuum enclosure | |
JP3130722B2 (en) | Vacuum valve | |
EP0155584B1 (en) | Method for processing vacuum switch | |
JPH0887931A (en) | Gas circuit breaker | |
JPS596587Y2 (en) | vacuum valve | |
JPH0652645B2 (en) | Vacuum valve | |
JP3592530B2 (en) | Power switch | |
US3190992A (en) | Vacuum switch having channel in contacts to prevent migration of roots of an arc | |
JP2004235120A (en) | Insulated tube type vacuum circuit breaker | |
SU736203A1 (en) | High-voltage vacuum switch | |
JPH1021802A (en) | Vacuum valve | |
JPH0610591Y2 (en) | Switch for high voltage | |
JPS6247337B2 (en) | ||
JPH02216723A (en) | Vacuum switch tube | |
CA1096428A (en) | Rod array vacuum switch for high voltage operation | |
JPS598853Y2 (en) | Insulator for plasma torch | |
JPH01107429A (en) | High voltage vacuum discharge device |