JPH01121784A - Radiation detecting element consisting of multi-layered film superconductor - Google Patents

Radiation detecting element consisting of multi-layered film superconductor

Info

Publication number
JPH01121784A
JPH01121784A JP62279126A JP27912687A JPH01121784A JP H01121784 A JPH01121784 A JP H01121784A JP 62279126 A JP62279126 A JP 62279126A JP 27912687 A JP27912687 A JP 27912687A JP H01121784 A JPH01121784 A JP H01121784A
Authority
JP
Japan
Prior art keywords
superconductor
atomic number
radiation
average atomic
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62279126A
Other languages
Japanese (ja)
Inventor
Masahiko Kurakado
雅彦 倉門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62279126A priority Critical patent/JPH01121784A/en
Publication of JPH01121784A publication Critical patent/JPH01121784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a detecting element which is strong to heat cycles, etc., and has high stopping power to radiations by using multi-layered films formed by alternate laminations of the superconductor having an average atomic number Z1 and the superconductor or nonsuperconductor having an average atomic number Z2 as the superconductor of a superconductive tunnel bond. CONSTITUTION:The superconductor having the average atomic number Z1 and the superconductor or nonsuperconductor having the average atomic number Z2 are formed to the layer thicknesses at least either of which is smaller than the coherent length of at least one thereof. These superconductors or nonsuperconductors are then alternately laminated and the multi-layered films formed in such a manner are used as the superconductor of the superconductive tunnel bond in the superconductor radiation detector. The above-mentioned superconductors are used and are multi-layered with the material which is strong to the heat cycles or the superconductor or nonsuperconductor of the large effective atomic number which is weak to the heat cycles, etc., and has a high radiation heat effect. The detecting element which is strong to the heat cycles and has the large stopping function to radiations is thereby obtd.

Description

【発明の詳細な説明】 (産業上の利用分野)   ゛ 本発明は、多層膜超電導体放射線検出素子に関する。詳
しく述べると、超電導トンネル接合からなる多層膜超電
導体放射線検出素子に関ザる1(従来の技術)′ エネルギー分解能の高い放射線検出iは;蛍光X線分析
器等において重要な位置を占めている。゛しかして、従
来、放射線検出器としては、放射線によるガスの電離を
利用したガス力ろンター、放射線によるシンチレーショ
ン光を利用したレンチレーション放射′線検出器、半導
体中での放射線に′よる電皐−正孔前の生成を利角した
半導体放射線検出器等が使用されている。しかしながら
、これらの放射線検出器では、半導体中での電子−正孔
対の生成やガスの電離やシンチレーション光を一つ出す
のに必要な平均エネルギーが数eVから数百eVと大き
いため、放i線による信号の大きさの統計的ゆらぎが大
きかった。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a multilayer superconductor radiation detection element. To explain in detail, 1 (prior technology)' Radiation detection with high energy resolution; occupies an important position in fluorescent X-ray analyzers, etc. .゛However, conventional radiation detectors include a gas force detector that uses the ionization of gas by radiation, a lentil radiation detector that uses scintillation light caused by radiation, and an electrophotometer that uses radiation in semiconductors. - Semiconductor radiation detectors that take advantage of the generation of holes before are used. However, in these radiation detectors, the average energy required to generate electron-hole pairs in the semiconductor, ionize gas, and emit one scintillation light is large, ranging from several eV to several hundred eV. There was a large statistical fluctuation in the signal magnitude due to the line.

このような従泰の放射線検出器の欠点を改善するために
、超電導トンネ)す合を用いた放射線検出器が提案され
ている(特開昭59−95.484号公報)。しかして
、こめよらな検出器で゛は、超電導体が放tA線によっ
て電芋を励起するの止必要な平均エネルギーが1meV
程度と極めて小さく励起される電子の数が極めて大きい
ので、超電導鋳する信号の大磨ざの統計的ゆらぎの割合
が非常に小さく、このため、エネルギー分解能が極めて
高くなり得る。また、超電導体放射線検出器では、多結
晶の超電導体を用いることができるので、放射線による
結晶性の乱れは半導体放射線検出器の場合と比べてほと
んど問題とならないという利点もある。したがって、超
電導トンネル接合を用いた放射線検出器は、従来の半導
体を用いた放射線検出器と比較して数十倍優れたエネル
ギー分解能をもつ可能性がある(応用物理、第53巻第
6号第532〜537Jj、1984年)。実際、約5
.9keV。
In order to improve the drawbacks of conventional radiation detectors, a radiation detector using a superconducting tunnel has been proposed (Japanese Patent Laid-Open No. 59-95-484). Therefore, with a compact detector, the average energy required for the superconductor to excite the potato with radiation tA radiation is 1 meV.
Since the number of excited electrons is extremely small, the proportion of statistical fluctuations in the superconducting signal is very small, and therefore the energy resolution can be extremely high. Further, since a polycrystalline superconductor can be used in a superconducting radiation detector, there is also an advantage that disturbance of crystallinity due to radiation poses almost no problem compared to the case of a semiconductor radiation detector. Therefore, a radiation detector using a superconducting tunnel junction may have an energy resolution that is several tens of times better than a radiation detector using a conventional semiconductor (Applyed Physics, Vol. 53, No. 6). 532-537Jj, 1984). In fact, about 5
.. 9keV.

X線に対して、明らかに半導体より優れた分解能が得ら
れた実験結果もある[ユーロフィジックスレタ−(Eu
rophystcs t、etter)第1巻第5号第
209〜214頁(1986年)]。
There are also experimental results that clearly show better resolution than semiconductors for X-rays [Europhysics Letter (Eu
Volume 1, No. 5, pp. 209-214 (1986)].

(発明が解決しようとする問題点) 一般に放射線検出器では、放射線(例えば、X線)の検
出効率を高くするため、検出器自体を構成する物質は、
原子番号(Z)の大きな元素でできているほうがよい。
(Problems to be Solved by the Invention) In general, in a radiation detector, in order to increase the detection efficiency of radiation (for example, X-rays), the material constituting the detector itself is
It is better to be made of an element with a large atomic number (Z).

今のところ薄膜の検出器しか得られていない超電導体放
射線検出器においては、このことは特に重要である。す
なわち、Zが小さいと検出器を透過してしまう放射線の
割合が大きい。
This is particularly important for superconductor radiation detectors, for which only thin-film detectors are available so far. That is, when Z is small, a large proportion of radiation passes through the detector.

ところが、例えば原子番号2の大きな鉛<2=82)で
作製した超電導トンネル接合は、室温と低温間での熱サ
イクルに弱いという欠点があった。
However, superconducting tunnel junctions made of lead, for example, which has a large atomic number of 2 (<2=82), have a drawback of being susceptible to thermal cycles between room temperature and low temperature.

一方At)やNbで作製した超電導トンネル接合は、熱
サイクルに強いがその原子番号はそれぞれ13゜14で
あり放射線の検出効率が低いという問題点がある。
On the other hand, superconducting tunnel junctions made of At) or Nb are resistant to thermal cycles, but their atomic numbers are 13° and 14, respectively, and they have the problem of low radiation detection efficiency.

本発明の目的は、原子番号は大きいが、それ単独で構成
した超電導トンネル接合は熱サイクルに弱いとか漏れ電
流が大きいといった欠点を有する物質を含んで放射線の
検出効率が高く、かつ熱サイクルに強く漏れ電流も小さ
い超電導トンネル接合からなる放射線検出素子を提供す
ることにある。
The purpose of the present invention is to provide a superconducting tunnel junction that has a high atomic number, but is strong against thermal cycles, and has high radiation detection efficiency, even if it contains materials that have drawbacks such as being weak against thermal cycles and having large leakage currents. The object of the present invention is to provide a radiation detection element made of a superconducting tunnel junction with a small leakage current.

(問題点を解決するための手段) これらの開目的は、平均原子番号Z1を有する超電導体
と、zlと異なる平均原子番号Z2を有する超電導体ま
たは非超電導体とを、少なくとも一方の層厚を少なくと
も一方の超電導体のコヒーレンス長よりも薄くして、そ
れぞれ交互に積層してなる多層膜を超電導トンネル接合
の超電導体として用いたことを特徴とする超電導トンネ
ル接合を用いた多層膜超電導体放射線検出素子により達
成される。
(Means for Solving the Problems) The purpose of these developments is to combine a superconductor having an average atomic number Z1 and a superconductor or non-superconductor having an average atomic number Z2 different from zl by increasing the layer thickness of at least one of them. Multilayer film superconductor radiation detection using a superconducting tunnel junction, characterized in that a multilayer film made thinner than the coherence length of at least one of the superconductors and laminated alternately is used as the superconductor of the superconducting tunnel junction. This is achieved by the element.

原子番号の大きい元素、例えば鉛(Pb) 、と他の元
素を均一に混合して作った物質(合金など)が良好な特
性をもつ超電導トンネル接合用の超電導体となれば、前
記の問題点はもちろん解決できる。しかしながら、今ま
でのところそのような物質は知られていない。例えば、
Pb1nを用いた超電導トンネル接合は、pbを用いた
それよりも熱サイクルに強いものの、NbやAflを用
いたそれよりもはるかに熱サイクルに弱い。
If a material (such as an alloy) made by homogeneously mixing an element with a large atomic number, such as lead (Pb), and other elements becomes a superconductor with good characteristics for a superconducting tunnel junction, the above problems will be solved. Of course it can be solved. However, so far no such substances are known. for example,
Although superconducting tunnel junctions using Pb1n are more resistant to thermal cycles than those using Pb, they are much more susceptible to thermal cycling than those using Nb or Afl.

前記の問題点を解決する他の方法は、超電導トンネル接
合用の超電導体層として、トンネル障壁に近い方に、エ
ネルギーギャップの小さい超電導体(例えばA9)、そ
の外側にそれよりエネルギーギャップの大きい超電導体
(例えばpb)を重ねたものを用いることが考えられる
。ところがその場合、トンネル障壁に近い超電導体はど
エネルギーギャップの小ざい超電導体を用いないと放射
線によって励起された電子が流れにくい。すなわち、例
えばトンネル障壁に近い方にNb、その外側にpbを用
いると、Nbの方がエネルギーギャップが大きいために
、pb中で励起された電子は貼に方に流れにくい。一方
、トンネル障壁に近い方にWbでなくpbよりエネルギ
ーギャップの小さい八9を用いれば電子が流れにくくな
るこ仁はない。しかしその場合は、エネルギーギャップ
の小さい、すなわち超電導転移温度丁cの低いAll 
(丁c = 1.3K)を用いるため、検出素子の作動
温度は低くなってしまい実用上好ましくない。このよう
に各層の組成には制限が多い。
Another method to solve the above problem is to use a superconductor layer for a superconducting tunnel junction, in which a superconductor with a small energy gap (for example, A9) is placed near the tunnel barrier, and a superconductor with a larger energy gap is placed outside of that layer. It is conceivable to use a stack of bodies (for example, pb). However, in this case, unless a superconductor with a small energy gap is used near the tunnel barrier, it will be difficult for electrons excited by radiation to flow. That is, for example, if Nb is used closer to the tunnel barrier and Pb is used outside of it, electrons excited in Pb will be less likely to flow toward the adhesive because Nb has a larger energy gap. On the other hand, if 89, which has a smaller energy gap than Pb, is used instead of Wb near the tunnel barrier, electrons will not flow more easily. However, in that case, All with a small energy gap, that is, a low superconducting transition temperature
(C = 1.3K), the operating temperature of the detection element becomes low, which is not preferred in practice. As described above, there are many restrictions on the composition of each layer.

本発明は、超電導体の近接効果を利用して前記の問題を
解決するものである。
The present invention solves the above problem by utilizing the proximity effect of superconductors.

すなわち、熱サイクルによる特性変化や漏れ電流に直接
関係するトンネル障壁に接する材おl(物質)としては
、例えばAΩやNbといった原子番号Zは小さいがトン
ネル接合用の物質として熱サイクルによる特性変化や漏
れ電流の小さい物質Aを用い、その外側には、Zは大き
いがそれ単独では良好な超電導トンネル接合を作りにく
い超電導体、例えばPb1あるいはそれ単独では超電導
にはならないようなウランUといったZの大きい物質B
との膜を重ねた多層膜超電導体を用いる。ここで、物質
Aと8のいずれか一方は、超電導体でなければならない
。もし一方が非超電導体であれば、その非超電導体層1
層当りの厚さは超電導体のコヒーレンスの長さよりも薄
くなければならず、もし両方が超電導体であれば少なく
とも一方の1層当りの厚さは他の一方の超電導体のコヒ
ーレンスの長さよりも薄くなければならない。
In other words, as a material (substance) in contact with the tunnel barrier that is directly related to changes in characteristics due to thermal cycles and leakage current, there are materials such as AΩ and Nb, which have a small atomic number Z, but are used as materials for tunnel junctions and are directly related to changes in characteristics due to thermal cycles and leakage current. A material A with a small leakage current is used, and on the outside, a superconductor with a large Z value but difficult to form a good superconducting tunnel junction by itself, such as Pb1 or uranium U, which does not become superconducting by itself, is used. Substance B
A multilayer superconductor with overlapping films is used. Here, either one of substances A and 8 must be a superconductor. If one is a non-superconductor, its non-superconductor layer 1
The thickness per layer must be less than the coherence length of the superconductor, and if both are superconductors, the thickness per layer of at least one must be less than the coherence length of the other superconductor. Must be thin.

このような構造にすれば超電導体の近接効果によって、
その多層膜は1つの超電導体とみなせるようになり、多
層膜中のエネルギーギャップは、場所によらないほぼ一
定の値となる。このためトンネル障壁に接する材料とし
て、超電導体、非超電導体にかかわらず経時変化が小さ
く熱サイクルによる特性変化や漏れ電流の小さいが原子
番号は小さい材料を用いることができ、かつ多層化によ
るエネルギーギャップの平均化によって放射線阻止能が
高く同時に温度が余り低くなくともぐ〉1.3K)作動
し得る超電導体検出器が実現される。
With this structure, due to the proximity effect of the superconductor,
The multilayer film can now be regarded as one superconductor, and the energy gap in the multilayer film has a nearly constant value regardless of its location. Therefore, as a material in contact with the tunnel barrier, it is possible to use a material with a small atomic number that changes little over time, has small characteristic changes due to thermal cycles, and has a small leakage current, regardless of whether it is a superconductor or a non-superconductor, and has a small atomic number due to the multilayer structure. A superconductor detector with high radiation-stopping power and at the same time operable at temperatures not too low (>1.3 K) is realized by averaging.

なお、本発明でいう原子番号とは、超電導体または非超
電導体層が単一の元素からなるものであればその元素の
原子番号であるが、゛複数の元素からなるもの、例えば
合金である場合には放射線に対する阻止能の有効原子番
号である。
Note that the atomic number in the present invention refers to the atomic number of a superconductor or a non-superconductor layer if it is made of a single element, but if it is made of multiple elements, such as an alloy In some cases, it is the effective atomic number of the stopping power against radiation.

(実施例) つぎに、図面を参照しながら本発明をざらに詳細に説明
する。
(Example) Next, the present invention will be roughly described in detail with reference to the drawings.

ケイ素、ニオブおよび鉛をそれぞれ蒸着するための電子
銃を備えた超高真空蒸着装置に第1図に示すように、厚
さ0.38#のケイ素基板2を導入した。この電子銃か
らの電子ビームによりまずケイ素基板上にケイ素を約1
0A(=1nm)の膜厚で蒸着したのち、約850℃に
加熱してケイ素基板表面のS!02を5iO(=SiO
2+約1〇への81)にして蒸発させた。ついで、ニオ
ブおよび鉛を電子ビーム加熱で蒸発させ、それぞれの蒸
発源とケイ素基板との間に設けたシャッターを交互に開
閉することによってニオブの薄wA3(膜厚100八)
と鉛の薄膜4(膜厚5〇人)を交互に形成させたニオブ
と鉛との第1の多層膜5(薄膜約500〇八)形成させ
た。ついで、このようにして形成された多層膜表面にニ
オブ薄膜3の表面の酸素を導入して酸化ニオブ薄膜9(
膜厚約30人)を形成させてトンネルバリヤ層とした。
As shown in FIG. 1, a silicon substrate 2 having a thickness of 0.38# was introduced into an ultra-high vacuum deposition apparatus equipped with an electron gun for depositing silicon, niobium, and lead, respectively. The electron beam from this electron gun first deposits about 1 silicon on the silicon substrate.
After depositing a film with a thickness of 0A (=1 nm), it is heated to about 850°C to reduce the S! 02 to 5iO (=SiO
2+81 to about 10) and evaporated. Next, niobium and lead are evaporated by electron beam heating, and a thin niobium film wA3 (film thickness 1008) is made by alternately opening and closing shutters provided between each evaporation source and the silicon substrate.
A first multilayer film 5 of niobium and lead (thin film thickness of approximately 50,008 mm) was formed by alternately forming thin films 4 of niobium and lead (film thickness of approximately 500 mm). Next, oxygen on the surface of the niobium thin film 3 is introduced into the surface of the multilayer film thus formed to form a niobium oxide thin film 9 (
A film thickness of approximately 30 mm) was formed to form a tunnel barrier layer.

ざらに、第1の多層膜5の場合と同様の方法によりニオ
ブの薄膜6(膜厚500人)と鉛の薄膜7(薄膜50八
)とをそれぞれ交互に形成させて第2の多層膜8(膜厚
的3,0OOA>を前記トンネルバリヤ層9の表面に形
成させて多層膜超電導体放射線検出素子1を得た。
Roughly, a second multilayer film 8 is formed by alternately forming a niobium thin film 6 (thickness: 500) and a lead thin film 7 (thin film: 508) using the same method as in the case of the first multilayer film 5. (Thickness: 3,000 OOA) was formed on the surface of the tunnel barrier layer 9 to obtain a multilayer superconductor radiation detection element 1.

このようにして得られた放射線検出素子1の超電導トン
ネル接合に約100ガウスの磁場をかけてDCジョセフ
ソン電流が流れないようにして超電導トンネル接合上に
設置されているコリメーターを通して超電導トンネル接
合の中心部のみ約5MeVのα線を照射して、接合両端
の電圧変化を電極10a、10bにより信号として取出
した。
A magnetic field of about 100 Gauss is applied to the superconducting tunnel junction of the radiation detection element 1 obtained in this way to prevent the DC Josephson current from flowing, and the superconducting tunnel junction is passed through the collimator installed on the superconducting tunnel junction. Only the center portion was irradiated with α-rays of about 5 MeV, and voltage changes across the junction were taken out as signals by electrodes 10a and 10b.

得られたエネルギー分解能は6%であった。The energy resolution obtained was 6%.

(発明の効果) 以上述べたように、本発明は、平均原子番@Z1を有す
る超電導体と、平均原子番@Z2を有する超電導体また
は非超電導体とをそれぞれ交互に積層してなる多層膜を
超電導トンネル接合の超電導トンネル接合を用いたこと
を特徴とする超電導トンネル接合を用いた多層膜超電導
体放射線の検出素子であるから、熱サイクルなどに強い
材料と、熱サイクルなどには弱いが放射線検出効果の大
きい有効原子番号の大きい超電導体または非超電導体と
の多層化により熱サイクルなどに強く、かつ放射線に対
する阻止能の大きな超電導体放射線検出器を実現させる
ものである。
(Effects of the Invention) As described above, the present invention provides a multilayer film formed by alternately laminating a superconductor having an average atomic number @Z1 and a superconductor or non-superconductor having an average atomic number @Z2. This is a multilayer film superconductor radiation detection element using a superconducting tunnel junction, which is characterized by using a superconducting tunnel junction, so it uses a material that is resistant to thermal cycles, and a material that is resistant to thermal cycles but is sensitive to radiation. By multilayering with a superconductor or non-superconductor having a large effective atomic number and a large detection effect, a superconductor radiation detector that is resistant to thermal cycles and has a high stopping power against radiation can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による多層膜超電導体放射線検出素子
の実施例を説明するための断面図である。 1・・・多層膜放射線検出素子、 2・・・基板、 3・・・平均原子番号の小さい超電導体簿膜、4・・・
平均原子番号の大きい超電導体または非超電導体薄膜、 5・・・第1の多層膜、 8・・・第2の多層膜、 9・・・トンネルバリヤ層。
FIG. 1 is a sectional view for explaining an embodiment of a multilayer film superconductor radiation detection element according to the present invention. DESCRIPTION OF SYMBOLS 1...Multilayer film radiation detection element, 2...Substrate, 3...Superconductor film having a small average atomic number, 4...
Superconductor or non-superconductor thin film with a large average atomic number, 5... First multilayer film, 8... Second multilayer film, 9... Tunnel barrier layer.

Claims (1)

【特許請求の範囲】[Claims]  平均原子番号Z_1を有する超電導体と、Z_1と異
なる平均原子番号Z_2を有する超電導体または非超電
導体とを、少なくとも一方の層厚を少なくとも一方の超
電導体のコヒーレンス長よりも薄くして、それぞれ交互
に積層してなる多層膜を超電導トンネル接合の超電導体
として用いたことを特徴とする超電導トンネル接合を用
いた多層膜超電導体放射線検出素子。
A superconductor having an average atomic number Z_1 and a superconductor or non-superconductor having an average atomic number Z_2 different from Z_1 are alternately formed with at least one layer thickness being thinner than the coherence length of at least one of the superconductors. A multilayer film superconductor radiation detection element using a superconducting tunnel junction, characterized in that a multilayer film formed by laminating the above is used as a superconductor of the superconducting tunnel junction.
JP62279126A 1987-11-06 1987-11-06 Radiation detecting element consisting of multi-layered film superconductor Pending JPH01121784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62279126A JPH01121784A (en) 1987-11-06 1987-11-06 Radiation detecting element consisting of multi-layered film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62279126A JPH01121784A (en) 1987-11-06 1987-11-06 Radiation detecting element consisting of multi-layered film superconductor

Publications (1)

Publication Number Publication Date
JPH01121784A true JPH01121784A (en) 1989-05-15

Family

ID=17606792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279126A Pending JPH01121784A (en) 1987-11-06 1987-11-06 Radiation detecting element consisting of multi-layered film superconductor

Country Status (1)

Country Link
JP (1) JPH01121784A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121173A (en) * 1989-07-10 1992-06-09 Santa Barbara Research Center Proximity effect very long wavlength infrared (VLWIR) radiation detector
US5241191A (en) * 1990-06-04 1993-08-31 Eastman Kodak Company Cubic perovskite crystal structure, a process of preparing the crystal structure, and articles constructed from the crystal structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121173A (en) * 1989-07-10 1992-06-09 Santa Barbara Research Center Proximity effect very long wavlength infrared (VLWIR) radiation detector
US5241191A (en) * 1990-06-04 1993-08-31 Eastman Kodak Company Cubic perovskite crystal structure, a process of preparing the crystal structure, and articles constructed from the crystal structure

Similar Documents

Publication Publication Date Title
Mears et al. Energy‐resolving superconducting x‐ray detectors with charge amplification due to multiple quasiparticle tunneling
EP0301962B1 (en) A superconducting thin film and a method for preparing the same
Nahum et al. Hot‐electron microcalorimeters as high‐resolution x‐ray detectors
US6528814B1 (en) Cryogenic, high-resolution x-ray detector with high count rate capability
Ali et al. Fabrication of Mo/Cu multilayer and bilayer transition edge sensors
JPH01121784A (en) Radiation detecting element consisting of multi-layered film superconductor
Parlato et al. The characteristic electron–phonon coupling time of unconventional superconductors and implications for optical detectors
Angloher et al. Development of superconducting tunnel junction detectors for high-resolution X-ray spectroscopy
US5338934A (en) Radiation detecting device and method for fabricating the same
Kupperman et al. Electrical resistivity of carbon films
Gotoh et al. Application of compact microwave ion source to low temperature growth of transition metal nitride thin films for vacuum microelectronics devices
Bouchier et al. Investigation of ion‐beam‐sputtered Nb‐Ti thin films by complementary use of backscattering and nuclear‐reaction microanalysis
JP2612282B2 (en) Light sensor
Lisitskiy et al. X-ray energy spectrum measurements by an annular superconducting tunnel junction with trapped magnetic flux quanta
Tkaczyk et al. Spin-Polarized Tunneling Study of s− f Exchange in Superconductors
Kuzmin et al. Bloch oscillations in a double Josephson junction biased via high-ohmic resistors
JPH01116480A (en) Radiation detector
Takizawa et al. Development of superconducting tunnel junctions for ultra soft X-ray detectors
JPS6232667A (en) Optical detector for superconductive tunnel junction
Lisitskii et al. Aluminum Superconducting Tunnel Junction as X-ray detector: Technological aspects and phonon decoupling from the substrate
Matsumura et al. Effect of Al overlayer thickness on the leakage current of radiation detectors using Nb/Al‐AlO x/Nb superconducting tunnel junctions
den Hartog et al. Development of a superconducting-tunnel-junction array for x-ray astronomy
Yoshida et al. X-ray detection using superconducting tunnel junctions with polyimide insulation Layer
Hennings-Yeomans et al. Controlling $ T_c $ of Iridium films using interfacial proximity effects
Zacher et al. Nb/Al/AlOx/Nb superconducting tunnel junctions as x-ray detectors