JPH01121666A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH01121666A
JPH01121666A JP27765687A JP27765687A JPH01121666A JP H01121666 A JPH01121666 A JP H01121666A JP 27765687 A JP27765687 A JP 27765687A JP 27765687 A JP27765687 A JP 27765687A JP H01121666 A JPH01121666 A JP H01121666A
Authority
JP
Japan
Prior art keywords
refrigerant
fluid pump
electrodes
superconducting coil
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27765687A
Other languages
Japanese (ja)
Inventor
Toshio Kamitsuji
上辻 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP27765687A priority Critical patent/JPH01121666A/en
Publication of JPH01121666A publication Critical patent/JPH01121666A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To suppress mechanical vibration and noise by providing a condenser, an expansion valve, an evaporator and a fluid pump comprising a superconducting coil, a pair of electrodes, a DC power supply and a heat filament. CONSTITUTION: A strong magnetic field is generated between superconducting coils 10, 11 by inducing a current between electrodes 12, 13 an refrigerant piping 8a thus producing a refrigerant flow by Lorentz force. Ionization of refrigerant is accelerated by emission of electrons from a heat filament 15 and the Lorentz force is enhanced thus realizing an efficient fluid pump 9 free from mechanical vibration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫等に用いられる冷却装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a cooling device used in a refrigerator or the like.

従来の技術 従来用いられている冷蔵庫等の冷却装置の構成図を第3
図に示す。第3図において1は冷却装置、2は凝縮器、
3は膨張弁(キャピラリー)、4は蒸発器、5は電動圧
縮機で6はこれらの凝縮器2、膨張弁3、蒸発器4、圧
縮機5を連接する冷媒配管である。
Conventional technology The configuration diagram of a conventional cooling device such as a refrigerator is shown in Figure 3.
As shown in the figure. In Fig. 3, 1 is a cooling device, 2 is a condenser,
3 is an expansion valve (capillary), 4 is an evaporator, 5 is an electric compressor, and 6 is a refrigerant pipe connecting these condenser 2, expansion valve 3, evaporator 4, and compressor 5.

以上のように構成された冷却装置について以下その動作
を説明する。
The operation of the cooling device configured as above will be explained below.

電動圧縮機5によシ圧縮された冷媒は冷媒配管6内を流
れ、凝縮器2で放熱し、膨張弁3で膨張し蒸発器4で吸
熱を行ない冷凍サイクルを形成する。
The refrigerant compressed by the electric compressor 5 flows through the refrigerant pipe 6, radiates heat in the condenser 2, expands in the expansion valve 3, and absorbs heat in the evaporator 4, thereby forming a refrigeration cycle.

発明が解決しようとする問題点 しかしながら上記のような構成では、電動圧縮機6を用
いているため、主として負荷変動に起因される機械的振
動や騒音が発生するという問題点があった。
Problems to be Solved by the Invention However, in the above configuration, since the electric compressor 6 is used, there is a problem in that mechanical vibrations and noise are generated mainly due to load fluctuations.

本発明はかかる点に鑑み、機械的振動や騒音の発生しな
い冷却装置を提供することを目的とする。
In view of this, an object of the present invention is to provide a cooling device that does not generate mechanical vibrations or noise.

問題点を解決するだめの手段 上記問題点を解決するために本発明の冷却装置は凝縮器
と、膨張弁と、蒸発器と、流体ポンプとを備え、流体ポ
ンプは冷媒配管に近接して配置した超電導コイルと、前
記冷媒配管内に超電導コイルと対応して位置する1対の
電極とこの電極に接続された直流電源と、前記冷媒配管
内の前記電極附近に位置する熱フィラメントとによシ構
成したものである。
Means for Solving the Problems In order to solve the above problems, the cooling device of the present invention includes a condenser, an expansion valve, an evaporator, and a fluid pump, and the fluid pump is arranged close to the refrigerant pipe. A superconducting coil, a pair of electrodes located in the refrigerant pipe corresponding to the superconducting coil, a DC power supply connected to this electrode, and a hot filament located near the electrode in the refrigerant pipe. It is composed of

作  用 本発明は上記した構成によって、冷媒配管内の電極間に
電流を生じさせ、さらに超電導コイルによシ強磁場を発
生させることによシ、ローレンツ力による冷媒の流れを
生じさせることができ、さらに熱フィラメントの電子放
出によシ冷媒のイオン化は促進され電極間に電流を流れ
易くし、ローレンツ力を高めることができるため機械的
振動のない効率の良い流体ポンプを形成することができ
る。
Function: With the above-described configuration, the present invention can generate a flow of refrigerant due to Lorentz force by generating a current between the electrodes in the refrigerant pipe and further generating a strong magnetic field in the superconducting coil. Furthermore, the ionization of the refrigerant is promoted by the electron emission of the hot filament, making it easier for current to flow between the electrodes and increasing the Lorentz force, making it possible to form an efficient fluid pump without mechanical vibration.

実施例 以下、本発明の冷却装置の一実施例について図面を参照
しながら説明する。尚、説明の重複をさけるため、従来
例と同一部分については同一符号を付して説明を省略す
る。
EXAMPLE Hereinafter, an example of the cooling device of the present invention will be described with reference to the drawings. Incidentally, in order to avoid duplication of explanation, the same parts as in the conventional example are given the same reference numerals and the explanation will be omitted.

第1図、第2図は本発明の冷却装置の一実施例を示すも
のである。
FIGS. 1 and 2 show an embodiment of the cooling device of the present invention.

7は冷却装置であシ、8は冷媒配管、9は流体ポンプで
ある。流体ポンプ9は流体ポンプ9部の冷媒配管8aに
近接した1対の超電導コイル10゜11及び、これらの
超電導コイル10.11の対とは垂直に対をなすように
冷媒配管内に配置した1対の電極12.13よシ構成さ
れている。超電導コイル10.11は、磁束が超電導コ
イル1゜から超電導コイル11に向かって流れるように
形成されている。電極12.13は直流電源14に接続
されており、電極12が正であり電極13は負である。
7 is a cooling device, 8 is a refrigerant pipe, and 9 is a fluid pump. The fluid pump 9 includes a pair of superconducting coils 10.11 adjacent to the refrigerant pipe 8a of the fluid pump 9 section, and a pair of superconducting coils 10. A pair of electrodes 12 and 13 are constructed. The superconducting coils 10.11 are formed such that magnetic flux flows from the superconducting coil 1° toward the superconducting coil 11. Electrodes 12,13 are connected to a DC power source 14, electrode 12 being positive and electrode 13 being negative.

16は冷媒配管8a内の電極12.13間に配置された
熱フィラメントである。
16 is a hot filament arranged between electrodes 12 and 13 in the refrigerant pipe 8a.

なお常温付近で超電導を示す材料としては、S r B
 a YCu 307−δが知られている。製造に際し
ては、まず原料粉末の粉砕・混合を行う。それを920
℃の空気中で5時間焼成した後粉砕し、それを3回縁シ
返す。その粉末を成型し、1000℃の空気中で5時間
加熱して焼結し、炉中で冷却する。このようにして作成
された焼結体は、338K(66℃)で超電導を示す。
Note that S r B is a material that exhibits superconductivity near room temperature.
a YCu 307-δ is known. During production, first the raw material powder is crushed and mixed. That's 920
After baking in air at ℃ for 5 hours, it is ground and turned over three times. The powder is shaped, sintered by heating in air at 1000° C. for 5 hours, and cooled in a furnace. The sintered body thus produced exhibits superconductivity at 338 K (66° C.).

〔イハラ他、ジャパニーズジャーナルオブアプライドフ
ィジックス(JAPANESE l0URNAL OF
 APPLIEDPHYSIC8) 、 Vol、26
.48 、August、 1987 。
[Ihara et al., Japanese Journal of Applied Physics
APPLIED PHYSIC8), Vol, 26
.. 48, August, 1987.

PP 、 167−171 ) 以上のように構成された冷却装置について以下、その動
作を説明する。
PP, 167-171) The operation of the cooling device configured as above will be described below.

流体ポンプ9部の冷媒配管8a内の冷媒は正負の電極1
2.13によシイオン化され電極12から電極13に向
かって電流が流れる。一方、超電導コイル10.11間
には超電導コイルによシ、強力な磁束が超電導コイル1
0から超電導コイル11に向かって発生する。そのため
、電極12゜13間を流れる電流と、超電導コイル10
.11間を流れる磁束によりローレンツ力が生じ、イオ
ン化された冷媒は凝縮器方向に動き、凝縮器方向に冷媒
の流れが生じ、冷却装置を循環する。凝縮器2と蒸発器
4間に膨張弁3を介するので、冷媒は凝縮器2側が高圧
となり蒸発器4側が低圧となるため、凝縮器2で放熱し
、蒸発器4で吸熱する冷却サイクルを形成することがで
きる。
The refrigerant in the refrigerant pipe 8a of the fluid pump 9 is connected to the positive and negative electrodes 1.
2.13, the current is ionized and current flows from the electrode 12 to the electrode 13. On the other hand, a strong magnetic flux is generated between superconducting coils 10 and 11 by superconducting coil 1.
0 toward the superconducting coil 11. Therefore, the current flowing between the electrodes 12 and 13 and the superconducting coil 10
.. The magnetic flux flowing between 11 generates a Lorentz force, and the ionized refrigerant moves toward the condenser, creating a flow of refrigerant toward the condenser and circulating through the cooling device. Since the expansion valve 3 is interposed between the condenser 2 and the evaporator 4, the refrigerant has a high pressure on the condenser 2 side and a low pressure on the evaporator 4 side, forming a cooling cycle in which heat is radiated in the condenser 2 and heat is absorbed in the evaporator 4. can do.

さらに、熱フィラメント15から放出された電子との衝
突によシ冷媒のイオン化は促進されるため、電極間に電
流を流れ易くするため、ローレンツ力を強めることがで
き、冷媒流量は増加し、能力の向上が図れる。
Furthermore, the ionization of the refrigerant is promoted by the collision with the electrons emitted from the hot filament 15, making it easier for current to flow between the electrodes, increasing the Lorentz force, increasing the refrigerant flow rate, and increasing the capacity. can be improved.

以上のように、ローレンツ力により電磁的に冷媒の流れ
を発生するため、機械的な振動騒音は発生せず、しかも
、流れは連続した一定の力で発生するため冷媒の圧力脈
動はなく、冷媒配管系での振動、騒音の発生も防止する
ことができるため、きわめて効果的な低騒音化が図れる
As mentioned above, since the refrigerant flow is electromagnetically generated by the Lorentz force, no mechanical vibration noise is generated.Furthermore, since the flow is generated with a continuous and constant force, there is no pressure pulsation of the refrigerant, and the refrigerant Since the generation of vibration and noise in the piping system can also be prevented, extremely effective noise reduction can be achieved.

しかも、熱フィラメントにより、電極間の電流を流れ易
くすることができるため、ローレンツ力の増大による冷
媒の流量増が図れ、能力が向上し、効率良い冷却システ
ムを形成することができる。
Moreover, since the hot filament can facilitate the flow of current between the electrodes, the flow rate of the refrigerant can be increased by increasing the Lorentz force, the capacity can be improved, and an efficient cooling system can be formed.

さらに、冷媒の流量は、ローレンツ力の変化、すなわち
磁束の変化によシ変化するので、超電導コイル10.1
1を流れる電流を制御することによシ冷媒の流量を制御
することができる他、電極12.13間の電圧制御でも
冷媒の流量を制御することができるため、能力制御がき
わめて容易である。
Furthermore, since the flow rate of the refrigerant changes due to changes in the Lorentz force, that is, changes in the magnetic flux, the superconducting coil 10.1
In addition to being able to control the flow rate of the refrigerant by controlling the current flowing through the electrodes 12 and 1, the flow rate of the refrigerant can also be controlled by controlling the voltage between the electrodes 12 and 13, making capacity control extremely easy.

発明の効果 以上のように本発明は、冷蔵庫等に使用される冷却装置
において、凝縮器と、膨張弁と、蒸発器と、流体ポンプ
とを備え、流体ポンプを冷媒配管に近接して配置した超
電導コイルと、前記冷媒配管内に、超電導コイルと対応
して位置する1対の電極と、この電極に接続された直流
電源と、前記冷媒配管内の前記電極附近に位置する熱フ
ィラメントとにより構成することにより、冷媒配管内の
電極間の冷媒に電流を生じさせ、さらに超電導コイルに
よシ強磁場を発生することによりローレンツ力による冷
媒の流れを生じるため機械的振動のない流体ポンプを形
成することができ、さらに冷媒の流れは連続した一定の
力で発生するので、冷媒の圧力脈動はなく冷媒配管系で
の振動騒音の発生も防止することができるため、きわめ
て効果的な低騒音化が図れ、しかも熱フィラメン)Kよ
h電極間の電流を流れ易くすることができるため、ロー
レンツ力の増大による冷媒の流量増が図れ、能力が向上
し効率良い冷却システムを形成することができ、さらに
超電導コイルを流れる電流や、電極間の電圧の制御によ
り容易に能力制御が行なえる。
Effects of the Invention As described above, the present invention provides a cooling device for use in refrigerators, etc., which includes a condenser, an expansion valve, an evaporator, and a fluid pump, and the fluid pump is arranged close to a refrigerant pipe. Consisting of a superconducting coil, a pair of electrodes located in the refrigerant pipe corresponding to the superconducting coil, a DC power supply connected to this electrode, and a hot filament located near the electrode in the refrigerant pipe. By doing so, an electric current is generated in the refrigerant between the electrodes in the refrigerant pipe, and a strong magnetic field is generated by the superconducting coil to generate a flow of refrigerant due to the Lorentz force, creating a fluid pump without mechanical vibration. Furthermore, since the refrigerant flow is generated with a continuous and constant force, there is no pressure pulsation in the refrigerant and vibration noise in the refrigerant piping system can be prevented, resulting in extremely effective noise reduction. Since it is possible to make it easier for the current to flow between the electrodes (hot filament), it is possible to increase the flow rate of the refrigerant due to the increase in the Lorentz force, improve the capacity, and form an efficient cooling system. Capacity can be easily controlled by controlling the current flowing through the superconducting coil and the voltage between the electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷却装置の流体ポンプ
のA−A断面図、第2図は同冷却装置の構成図、第3図
は従来の冷却装置の構成図である。 8a・・・・・・冷媒配管、9・・・・・・流体ポンプ
、10゜11・・・・・・超電導コイル、12.13・
・・・・・電極、14・・・・・・直流電源、16・・
・・・・熱フィラメント。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名8a
−冷媒配管 9−流体ポンプ to、 t /−M ’e、埠コイル /2. /、3−−一電極 14−  直情、1滉 第 1  r3            ts−一一フ
ィラメント/ @211m
FIG. 1 is a sectional view taken along the line A-A of a fluid pump of a cooling device showing an embodiment of the present invention, FIG. 2 is a block diagram of the same cooling device, and FIG. 3 is a block diagram of a conventional cooling device. 8a...Refrigerant piping, 9...Fluid pump, 10°11...Superconducting coil, 12.13.
... Electrode, 14 ... DC power supply, 16 ...
...hot filament. Name of agent: Patent attorney Toshio Nakao and 1 other person 8a
- Refrigerant piping 9 - Fluid pump to, t/-M'e, bar coil/2. /, 3--one electrode 14- direct emotion, 1st 1st r3 ts-11 filament/@211m

Claims (1)

【特許請求の範囲】[Claims]  凝縮器と、膨張弁と、蒸発器と、流体ポンプとを備え
、流体ポンプは冷媒配管に近接して配置した超電導コイ
ルと前記冷媒配管内に前記超電導コイルと対応して位置
する1対の電極と、この電極に接続された直流電源と、
前記冷媒配管内の前記電極附近に位置する熱フィラメン
トとにより構成された冷却装置。
The fluid pump includes a condenser, an expansion valve, an evaporator, and a fluid pump, and the fluid pump includes a superconducting coil disposed close to a refrigerant pipe and a pair of electrodes located in the refrigerant pipe corresponding to the superconducting coil. and a DC power supply connected to this electrode,
and a hot filament located near the electrode in the refrigerant pipe.
JP27765687A 1987-11-02 1987-11-02 Cooling device Pending JPH01121666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27765687A JPH01121666A (en) 1987-11-02 1987-11-02 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27765687A JPH01121666A (en) 1987-11-02 1987-11-02 Cooling device

Publications (1)

Publication Number Publication Date
JPH01121666A true JPH01121666A (en) 1989-05-15

Family

ID=17586466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27765687A Pending JPH01121666A (en) 1987-11-02 1987-11-02 Cooling device

Country Status (1)

Country Link
JP (1) JPH01121666A (en)

Similar Documents

Publication Publication Date Title
JP4852757B2 (en) Thermoacoustic generator
JP3728833B2 (en) Pulse tube refrigerator
JP2004177110A (en) Multistage pulse tube refrigeration system for high-temperature superconductivity
JPH1096564A (en) Three passive state electromagnetic motor/damper for control of expander of stirling freezer
JPH01121666A (en) Cooling device
JPH02122164A (en) Gas compressor
JPH01137173A (en) Cooling device
JPH01121665A (en) Cooling device
JPH01107068A (en) Cooling device
JPH01139963A (en) Cooling device
JPH01155159A (en) Cooling device
JPH01139962A (en) Cooling device
SU1467339A1 (en) Magnetocalorific refrigerator
JP3648265B2 (en) Superconducting magnet device
JPH01189466A (en) Cooling device
JPH01155160A (en) Cooling device
JPH01139957A (en) Cooling device
JPH09102413A (en) Superconductive magnetic device
US6286318B1 (en) Pulse tube refrigerator and current lead
JPH01163580A (en) Blasting device of refrigerator
JP2626364B2 (en) Linear motor compressor
JPH01159492A (en) Compressor
JPH01219457A (en) Cooling device
JPH01200160A (en) Air conditioner
JPS6214633Y2 (en)