JPH01121665A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH01121665A
JPH01121665A JP27765487A JP27765487A JPH01121665A JP H01121665 A JPH01121665 A JP H01121665A JP 27765487 A JP27765487 A JP 27765487A JP 27765487 A JP27765487 A JP 27765487A JP H01121665 A JPH01121665 A JP H01121665A
Authority
JP
Japan
Prior art keywords
refrigerant
electrodes
fluid pump
cooling device
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27765487A
Other languages
Japanese (ja)
Inventor
Toshio Kamitsuji
上辻 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP27765487A priority Critical patent/JPH01121665A/en
Publication of JPH01121665A publication Critical patent/JPH01121665A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To suppress mechanical vibration and noise by providing a condenser, an expansion valve, an evaporator and a fluid pump comprising a superconducting coil, a pair of electrodes and a DC power supply and adding an alkaline salt to a refrigerant. CONSTITUTION: A strong magnetic field is generated between superconducting coils 10, 11 by inducing a current between electrodes 12, 13 in refrigerant piping 8a thus producing a refrigerant flow by Lorentz force. Ionization of fluid in the piping 8a through the electrodes 12, 13 is accelerated by an alkaline salt added to refrigerant 15. Consequently, a current flows easily between the electrodes 12, 13 to enhance Lorentz force thus realizing an efficient fluid pump 9 free from mechanical vibration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫等に用いられる冷却装置に関する◎ 従来の技術 従来用いられている冷蔵庫等の冷却装置の構成図を第3
図に示す。第3図において1は冷却装置、2は凝縮器、
3は膨張弁(キャピラリーL’は蒸発器、5は電動圧縮
機で6はこれらの凝縮器2、膨張弁3、蒸発器4、圧縮
機6を連接する冷媒配管である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a cooling device used in a refrigerator or the like.
As shown in the figure. In Fig. 3, 1 is a cooling device, 2 is a condenser,
3 is an expansion valve (capillary L' is an evaporator, 5 is an electric compressor, and 6 is a refrigerant pipe connecting the condenser 2, expansion valve 3, evaporator 4, and compressor 6).

以上のように構成された冷却装置について以上その動作
を説明する〇 電動圧縮機6により圧縮された冷媒は冷媒配管6内を流
れ、凝縮器2で放熱し、膨張弁3で膨張し蒸発器4で吸
熱を行ない冷凍サイクルを形成するO 発明が解決しようとする問題点 しかしながら上記のような構成では、電動圧縮機6を用
いているため、主として負荷変動に起因される機械的振
動や騒音が発生するという問題点があった。
The operation of the cooling device configured as described above will be explained below. The refrigerant compressed by the electric compressor 6 flows through the refrigerant pipe 6, radiates heat in the condenser 2, expands in the expansion valve 3, and passes through the evaporator 4. Problems to be Solved by the Invention However, in the above configuration, since the electric compressor 6 is used, mechanical vibrations and noise mainly caused by load fluctuations are generated. There was a problem with that.

本発明はかかる点に鑑み、機械的振動や騒音の発生しな
い冷却装置を提供することを目的とする。
In view of this, an object of the present invention is to provide a cooling device that does not generate mechanical vibrations or noise.

問題点を解決子るための手段 上記問題点を解決するために本発明の冷却装置は、凝縮
器と、膨張弁と、蒸発器と、流体ポンプとを備え、流体
ポンプを冷媒配管に近接して配置した超電導コイルと、
前記冷媒配管内の、超電導コイルと対応して位置する1
対の電極と、この電極に接続された直流電源とによ多構
成し、冷媒中にアルカリ金属塩を添加したものである。
Means for Solving the Problems In order to solve the above problems, the cooling device of the present invention includes a condenser, an expansion valve, an evaporator, and a fluid pump, and the fluid pump is located close to the refrigerant pipe. superconducting coils arranged in
1 located in the refrigerant pipe corresponding to the superconducting coil;
It consists of a pair of electrodes and a DC power supply connected to the electrodes, and an alkali metal salt is added to the refrigerant.

作  用 本発明は上記した構成によって、冷媒配管内の電極間に
電流を生じさせ、超電導コイルによシ強磁場を発生させ
ることによシ、ローレンツ力による冷媒の流れを生じさ
せることができ、さらに冷媒中に添加したアルカリ金属
塩によシミ極による冷媒配管内流体のイオン化は促進さ
れ電極間に電流を流れ易くし、ローレンツ力を高めるこ
とができるため機械的振動のない効率の良い流体ポンプ
を形成することができる◎ 実施例 以下、本発明の冷却装置の一実施例について図面を参照
しながら説明する◎尚、説明の重複をさけるため、従来
例と同一部分については同一符号を付して説明を省略す
る。
Function The present invention can generate a flow of refrigerant due to the Lorentz force by generating a current between the electrodes in the refrigerant pipe and generating a strong magnetic field in the superconducting coil with the above-described configuration. Furthermore, the alkali metal salt added to the refrigerant promotes the ionization of the fluid in the refrigerant piping by the stain electrode, making it easier for current to flow between the electrodes and increasing the Lorentz force, resulting in an efficient fluid pump without mechanical vibration. ◎ Example: Hereinafter, an embodiment of the cooling device of the present invention will be explained with reference to the drawings. ◎ In order to avoid duplication of explanation, the same parts as in the conventional example are given the same reference numerals. The explanation will be omitted.

第1図、第2図は本発明の冷却装置の一実施例を示すも
のである。
FIGS. 1 and 2 show an embodiment of the cooling device of the present invention.

7は冷却装置であシ、8は冷媒配管、9は流体ポンプで
ある。流体ポンプ9は流体ポンプ9部の冷媒配管8aに
近接した1対の超電導コイ/I/10゜11及び、これ
らの超電導コイA/10,11の対とは垂直に対をなす
ように冷媒配管内に配置した1対の電極12.13よ多
構成されている。超電導コイ1v10.11は、磁束が
超電導コイ/L’10から超電導コイル11に向かって
流れるように形成されている0電極12.13は直流電
源14に接続されており、電極12が正であシミ極13
は負である。16は冷媒で、C8塩の微粒子が添加され
ている・ 常温付近で超電導を示す材料としては、5rBaYCu
30.’−δが知られている。製造に際しては、まず原
料粉末の粉砕・混合を行う。それを920Cの空気中で
6時間焼成した後粉砕し、それを3回縁シ返す0その粉
末を成型し、1ooo℃の空気中で6時間加熱して焼結
し、炉中で冷却する0このようにして作成された焼結体
は、338K(66℃)で超電導を示す〔イハラ他、ジ
ャパニーズ ジャーナル オプ アプライド フィジッ
クス(TAPANESE  l0URNAL OF A
PPLIEDPHY5IC8) 、Vol、 26 、
A8 、 August、1987゜PP、16717
1)。
7 is a cooling device, 8 is a refrigerant pipe, and 9 is a fluid pump. The fluid pump 9 includes a pair of superconducting coils /I/10° 11 adjacent to the refrigerant pipe 8a of the fluid pump 9 section, and refrigerant pipes that are perpendicularly paired with the pair of superconducting coils A/10 and 11. It is composed of a pair of electrodes 12 and 13 arranged inside. The superconducting coil 1v10.11 is formed so that the magnetic flux flows from the superconducting coil/L'10 toward the superconducting coil 11. The zero electrode 12.13 is connected to the DC power supply 14, and the electrode 12 is positive. stain pole 13
is negative. 16 is a refrigerant to which fine particles of C8 salt are added. Materials that exhibit superconductivity near room temperature include 5rBaYCu.
30. '−δ is known. During production, first the raw material powder is crushed and mixed. It is calcined in air at 920C for 6 hours, then crushed, turned around three times, and the powder is molded, heated in air at 100℃ for 6 hours to sinter, and cooled in a furnace. The sintered body thus prepared exhibits superconductivity at 338 K (66°C) [Ihara et al., Japanese Journal of Applied Physics (TAPANESE 10URNAL OF A
PPLIED PHY5IC8), Vol, 26,
A8, August, 1987°PP, 16717
1).

以上のように構成された冷却装置について以下、その動
作を説明する・ 流体ポンプ9部の冷媒配管8a内の冷媒16は正負の電
極12.13によ)イオン化され電極12から電極13
に向かって電流が流れる。一方、超電導コイIv1o、
11間には超電導コイルにより、強力な磁束が超電導コ
イ/I/1oから超電導コイル11に向かって発生する
@そのため、電極12゜13間を流れる電流と、超電導
コイ/I/10.11間を流れる磁束によシロ−レンツ
力が生じ、イオン化された冷媒16は凝縮器方向に動き
、凝縮器方向に冷媒16の流れが生じ、冷却装置を循環
する0凝縮器2と蒸発器4間に膨張弁3を介するので、
冷媒16は凝縮器2側が高圧となり蒸発器4何が低圧と
なるため、凝縮器2で放熱し、蒸発器4で吸熱する冷却
サイクルを形成することができるO さらに、冷媒16にはC8塩の微粒子が添加されている
ので電極12.13によるイオン化は促進されるため電
極間に電流を流れ易くするため、ローレンツ力を強める
ことができ冷媒流量は増加し、能力の向上が図れる◎ 以上のように、ローレンツ力により電磁的に冷媒16の
流れを発生するため、機械的な振動騒音は発生せず、し
かも、流れは連続した一定の力で発生するため冷媒の圧
力脈動はなく、冷媒配管系での振動、騒音の発生も防止
することができるため、きわめて効果的な低騒音化が図
れる〇しかも、冷媒16にCs塩を添化することにより
、電極間の電流を流れ易くすることができるため、ロー
レンツ力の増大による冷媒の流量増が図れ、能力が向上
し、効率良い冷却システムを形成することができる@ さらに、冷媒16の流量は、ローレンツ力の変化、すな
わち磁束の変化によシ変化するので、超電導コイA/1
0,11を流れる電流を制御するととにより冷媒15の
流量を制御することができる他、電極12.13間の電
圧制御でも冷媒15の流量を制御することができるため
、能力制御がきわめて容易である。
The operation of the cooling device configured as described above will be explained below. The refrigerant 16 in the refrigerant pipe 8a of the fluid pump 9 section is ionized by the positive and negative electrodes 12 and 13, and is transferred from the electrode 12 to the electrode 13.
Current flows towards. On the other hand, superconducting carp Iv1o,
Between the electrodes 12 and 13, a strong magnetic flux is generated by the superconducting coil from the superconducting coil/I/1o toward the superconducting coil 11. Therefore, the current flowing between the electrodes 12 and 13 and the superconducting coil/I/10 The flowing magnetic flux creates a Shirolentz force, causing the ionized refrigerant 16 to move toward the condenser, creating a flow of refrigerant 16 toward the condenser and expanding between the condenser 2 and the evaporator 4, which circulate through the cooling system. Because it goes through valve 3,
The refrigerant 16 has a high pressure on the condenser 2 side and a low pressure on the evaporator 4 side, so a cooling cycle can be formed in which the condenser 2 radiates heat and the evaporator 4 absorbs heat. Furthermore, the refrigerant 16 contains C8 salt. Since fine particles are added, ionization by the electrodes 12 and 13 is promoted, making it easier for current to flow between the electrodes, thereby strengthening the Lorentz force, increasing the refrigerant flow rate, and improving performance. In addition, since the flow of the refrigerant 16 is generated electromagnetically by the Lorentz force, no mechanical vibration noise is generated.Furthermore, since the flow is generated with a continuous and constant force, there is no pressure pulsation of the refrigerant, and the refrigerant piping system Since it is possible to prevent the generation of vibration and noise at Therefore, the flow rate of the refrigerant can be increased due to the increase in the Lorentz force, the capacity is improved, and an efficient cooling system can be formed. Since it changes, superconducting carp A/1
In addition to being able to control the flow rate of the refrigerant 15 by controlling the current flowing through the electrodes 12 and 11, the flow rate of the refrigerant 15 can also be controlled by controlling the voltage between the electrodes 12 and 13, making capacity control extremely easy. be.

発明の効果 以上のように本発明は、冷蔵庫等に使用される冷却装置
において、凝縮器と、膨張弁と、蒸発器と、流体ポンプ
とを備え、流体ポンプを冷媒配管に近接して配置した超
電導コイルと、前記冷媒配管内に、超電導コイルと対応
して位置する1対の電極と、この電極に接続された直流
電源により構成し、冷媒中にアルカリ金属塩を添加する
ことによシ、冷媒配管内の電極間の冷媒に電流を生じさ
せ、さらに超電導コイルによシ強磁場を発生することに
よシロ−レンツ力による冷媒の流れを生じるため機械的
振動のない流体ポンプを形成することができ、さらに冷
媒の流れは連続した一定の力で発生するので、冷媒の圧
力脈動はなく冷媒管系での振動騒音の発生も防止するこ
とができるため、きわめて効果的な低騒音化が図れ、し
かも冷媒にアルカリ金属塩を添加することにより電極間
の電流を流れ易くすることができるため、ローレンツ力
の増大による冷媒の流量増が図れ、能力が向上し、効率
良い冷却システムを形成することができ、さらに超電導
コイルを流れる電池や、電極間の電圧の制御によシ容易
に能力制御が行なえる。
Effects of the Invention As described above, the present invention provides a cooling device for use in refrigerators, etc., which includes a condenser, an expansion valve, an evaporator, and a fluid pump, and the fluid pump is arranged close to a refrigerant pipe. A superconducting coil, a pair of electrodes located in the refrigerant pipe corresponding to the superconducting coil, and a DC power supply connected to the electrodes, and by adding an alkali metal salt to the refrigerant, By generating an electric current in the refrigerant between the electrodes in the refrigerant pipe and further generating a strong magnetic field through the superconducting coil, a flow of the refrigerant is generated by the Schiller-Lenz force, thereby forming a fluid pump free of mechanical vibrations. Furthermore, since the refrigerant flow is generated with a continuous and constant force, there is no pressure pulsation in the refrigerant, and vibration noise in the refrigerant pipe system can be prevented, resulting in extremely effective noise reduction. Moreover, by adding an alkali metal salt to the refrigerant, it is possible to make the current flow between the electrodes easier, so the flow rate of the refrigerant can be increased by increasing the Lorentz force, improving the capacity and forming an efficient cooling system. Furthermore, the capacity can be easily controlled by controlling the voltage flowing through the superconducting coil and the voltage between the electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す冷却装置の流体ポン
プのA−A断面図、第2図は同冷却装置の構成図、第3
図は従来の冷却装置の構成図である0 8a・・・・・・冷媒配管、9・・・・・・流体ポンプ
、1o。 11・・・・・・超電導コイμ、12.13・・・・・
・電極、14・・・・・・直流電源、16・・・・・・
冷媒。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名8と
2−一一二+裸配置1ト 9−一一九4ネオぐンフ。 10−R電導コイノν tt−−−fl覧導コイル t2−−− %徊 13−−一電亀 \
FIG. 1 is a sectional view taken along line A-A of a fluid pump of a cooling device showing one embodiment of the present invention, FIG. 2 is a configuration diagram of the same cooling device, and FIG.
The figure is a configuration diagram of a conventional cooling device. 08a...Refrigerant piping, 9...Fluid pump, 1o. 11...Superconducting carp μ, 12.13...
・Electrode, 14...DC power supply, 16...
Refrigerant. Agent's name Patent attorney Toshio Nakao and 1 other person 8 and 2-112 + naked arrangement 1 to 9-1194 Neo Gunf. 10-R conductive coil ν tt---fl viewing conductive coil t2---% 13--Ichiden turtle\

Claims (1)

【特許請求の範囲】[Claims]  凝縮器と、膨張弁と、蒸発器と、流体ポンプとを備え
、流体ポンプを冷媒配管に近接して配置した超電導コイ
ルと、前記冷媒配管内に前記超電導コイルと対応して位
置する1対の電極と、この電極に接続された直流電源と
により構成し、冷媒中にアルカリ金属塩を添加したこと
を特徴とする冷却装置。
a superconducting coil including a condenser, an expansion valve, an evaporator, and a fluid pump, the fluid pump being disposed close to a refrigerant pipe; a pair of superconducting coils located in the refrigerant pipe in correspondence with the superconducting coil; A cooling device comprising an electrode and a DC power supply connected to the electrode, and characterized in that an alkali metal salt is added to a refrigerant.
JP27765487A 1987-11-02 1987-11-02 Cooling device Pending JPH01121665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27765487A JPH01121665A (en) 1987-11-02 1987-11-02 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27765487A JPH01121665A (en) 1987-11-02 1987-11-02 Cooling device

Publications (1)

Publication Number Publication Date
JPH01121665A true JPH01121665A (en) 1989-05-15

Family

ID=17586439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27765487A Pending JPH01121665A (en) 1987-11-02 1987-11-02 Cooling device

Country Status (1)

Country Link
JP (1) JPH01121665A (en)

Similar Documents

Publication Publication Date Title
GB1170507A (en) Improvements in or relating to Methods of Refrigeration and Apparatus therefor
US5357756A (en) Bipolar pulse field for magnetic refrigeration
JPS5852151B2 (en) hot gas reciprocating machine
US2016100A (en) Thermo-magnetically actuated source of power
CN103117144A (en) Cooling system for conducting cold superconducting magnet
US822323A (en) Thermostatic control.
JPH01121665A (en) Cooling device
US4970866A (en) Magneto caloric system
JPH02122164A (en) Gas compressor
US2394103A (en) Electromagnet
JPH01137173A (en) Cooling device
JPH01121666A (en) Cooling device
JPH01107068A (en) Cooling device
JPH01139962A (en) Cooling device
JPH01159492A (en) Compressor
JPH01139963A (en) Cooling device
JPH01155159A (en) Cooling device
JPH01139957A (en) Cooling device
JPH01189466A (en) Cooling device
SU1467339A1 (en) Magnetocalorific refrigerator
JPH01155160A (en) Cooling device
JPH01200160A (en) Air conditioner
JPH01219457A (en) Cooling device
JP2626364B2 (en) Linear motor compressor
JPH07294035A (en) Superconducting magnet apparatus