JPH01120866A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH01120866A JPH01120866A JP62278637A JP27863787A JPH01120866A JP H01120866 A JPH01120866 A JP H01120866A JP 62278637 A JP62278637 A JP 62278637A JP 27863787 A JP27863787 A JP 27863787A JP H01120866 A JPH01120866 A JP H01120866A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- insulating film
- superconducting material
- section
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims description 10
- 239000010410 layer Substances 0.000 abstract description 24
- 238000002955 isolation Methods 0.000 abstract description 12
- 239000011229 interlayer Substances 0.000 abstract description 8
- 238000009413 insulation Methods 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 description 18
- 238000000034 method Methods 0.000 description 15
- 238000005468 ion implantation Methods 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 230000005668 Josephson effect Effects 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002602 lanthanoids Chemical group 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は少なくともゲート絶縁膜およびゲート電極を超
伝導材料で形成した半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a semiconductor device in which at least a gate insulating film and a gate electrode are formed of a superconducting material.
半導体基板上に形成されるMOS型TFTは各種集積回
路等に多用されている。これらMO8型TFTは第2図
に示されるように、半導体基板1に形成されたトランジ
スタはSio2からなる素子間分離層2で互いに分離さ
れ、各トランジスタは基板1表面内に形成された拡散層
3゜ゲート絶縁膜4およびその上に形成されたゲート電
極5、Sio、からなる層間絶縁膜6およびソース・ド
レイン電極7で構成されている。このような従来のTF
Tにおいて、ゲート電極5は通常不純物拡散して低抵抗
化したpoly−5iで形成され、ソース・ドレイン電
極7は金属で形成されていたに
のような従来のTFTにより形成した集積回路における
駆動回路部もしくはメモリー回路部の高速追従性および
その集積度が現在問題となっている。特に、高速追従性
についてはその配線部に寄生容量および寄生抵抗が生ず
るため、その動作を妨げていた。MOS type TFTs formed on semiconductor substrates are widely used in various integrated circuits and the like. In these MO8 type TFTs, as shown in FIG. It is composed of a gate insulating film 4, a gate electrode 5 formed thereon, an interlayer insulating film 6 made of Sio, and source/drain electrodes 7. Conventional TF like this
In T, the gate electrode 5 is usually formed of poly-5i with low resistance by diffusion of impurities, and the source/drain electrode 7 is formed of metal. The high-speed followability of the memory circuit or memory circuit and its degree of integration are currently issues. In particular, with regard to high-speed followability, parasitic capacitance and parasitic resistance occur in the wiring portion, which hinders the operation.
一方、近時における超伝導材料の研究が著しく進歩し、
この応用として超伝導材料をTFTの電極配線部に適用
することが考えられているが、この場合には超伝導材料
を別途形成しなければならず、工程の煩雑さに加え1歩
留りが悪いという問題点があった。On the other hand, research on superconducting materials has made remarkable progress in recent years.
As an application of this, it has been considered to apply superconducting material to the electrode wiring part of TFT, but in this case, the superconducting material must be formed separately, which not only complicates the process but also reduces yield. There was a problem.
本発明は半導体基板上に形成されるMOS型TFTにお
ける少なくともゲート絶縁膜およびゲート電極部に超伝
導材料を使用し、しかもこれにより工程の短縮が図れ1
歩留りも向上した半導体装置を提供することを目的とす
るものである。The present invention uses a superconducting material for at least the gate insulating film and the gate electrode portion of a MOS TFT formed on a semiconductor substrate, and this can shorten the process.
It is an object of the present invention to provide a semiconductor device with improved yield.
本発明は半導体基板上に形成されるMO8型TFTにお
いて、少なくともゲート絶縁膜およびゲート電極を超伝
導材料で形成し、電極部および絶縁部に使用される超伝
導材料のそれぞれの臨界温度を電極部の方を絶縁部より
も高くし、これら両者の臨界温度の間で作動させること
を特徴とするものである。The present invention provides an MO8 type TFT formed on a semiconductor substrate, in which at least the gate insulating film and the gate electrode are formed of a superconducting material, and the critical temperature of each superconducting material used for the electrode part and the insulating part is set at the electrode part. The insulating part is made higher than the insulating part, and the insulating part is operated between the critical temperatures of the two parts.
第1図は本発明の一実施例を示すものでありこの実施例
ではゲート絶縁膜4、ゲート電極5および素子間分離層
2が超伝導材料で形成され、しかもこれらは−度に製膜
され、それからそれぞれゲート絶縁膜4.ゲート電極5
および素子間分離M2が形成される。そして、層間絶縁
膜6は従来通りSin、で形成され、ソース・ドレイン
電極7は超伝導材料で形成される。FIG. 1 shows an embodiment of the present invention. In this embodiment, a gate insulating film 4, a gate electrode 5, and an isolation layer 2 are formed of superconducting materials, and these are formed at the same time. , and then a gate insulating film 4. Gate electrode 5
And element isolation M2 is formed. The interlayer insulating film 6 is made of Sin as usual, and the source/drain electrodes 7 are made of a superconducting material.
これら超伝導材料で形成される部分のうち、電極部をな
すゲート電極5およびソース・ドレイン電極7と、絶縁
部をなすゲート絶縁膜4および素子間分離層2とはその
臨界温度が電極部の方が絶縁部よりも高くなるように組
成が変えられている。従って、これら電極部および絶縁
部の臨界温度の間の温度でTFTを作動した場合、電極
部は超伝導材料を示し、絶縁部は絶縁性を示すようにな
る。Among the parts formed of these superconducting materials, the gate electrode 5 and source/drain electrode 7 which form the electrode part, and the gate insulating film 4 and the element isolation layer 2 which form the insulating part have a critical temperature that is higher than that of the electrode part. The composition has been changed so that the insulation part is higher than the insulation part. Therefore, when the TFT is operated at a temperature between the critical temperatures of the electrode portion and the insulating portion, the electrode portion exhibits a superconducting material and the insulating portion exhibits insulating properties.
なお、第1図では素子間分離層2をも超伝導材料で形成
したが、これはより工程短縮を図るための構成を示し、
従来のような5in2からなるものであってもよい、こ
のように本発明では少なくともゲート絶縁膜4およびゲ
ート電極5が超伝導材料で形成されていれば足りる。In addition, in FIG. 1, the inter-element isolation layer 2 is also formed of a superconducting material, but this shows a configuration for further shortening the process.
It may be made of 5 in 2 like the conventional one, but in the present invention, it is sufficient that at least the gate insulating film 4 and the gate electrode 5 are made of a superconducting material.
ここで、本発明で使用する超伝導材料とは。Here, what is the superconducting material used in the present invention?
一般式 RrXxZzDδAa
(ただし、上記式中
RはSc、Y、Laおよびランタノイド族の少なくとも
一種の元素。General formula RrXxZzDδAa (However, in the above formula, R is Sc, Y, La, and at least one element from the lanthanide group.
Xは■a族のうちの少なくとも一種の元素。X is at least one element of group ■a.
Zは遷移金属元素の少なくとも一種。Z is at least one transition metal element.
DはVIa族の元素の少なくとも一種、AはB、C,N
、Fの元素のうちの少なくとも一種であって。D is at least one group VIa element, A is B, C, N
, at least one of the elements F.
rは約1.0
Xは164〜2.1
2は2.4〜3.2
δは5.9〜9.0
αはO−0,5
各成分元素は各群内の二つ以上の元素を同時に含む場合
がある。)
で示されるもの(以下、化合物Sという)が使用できる
。r is approximately 1.0 X is 164-2.1 2 is 2.4-3.2 δ is 5.9-9.0 α is O-0,5 May contain elements at the same time. ) (hereinafter referred to as compound S) can be used.
化合物Sは種々の方法で作製することが可能である。例
えば上述の各元素の酸化物、炭酸化物などから乾式法、
湿式法により混合微粉体とする。次に通常の大気雰囲気
または酸素分圧を調節した雰囲気を有する炉により、任
意の温度で任意の時間にわたり仮焼する。室温にまで冷
却した後、粉砕・混合を入念におこなった後、約30K
g相当の圧力で加圧成形し、上記と同じ雰囲気・温度・
時間でもって焼成する。これらの方法については概略が
以下の文献で述べられている。Compound S can be produced by various methods. For example, from the oxides and carbonates of the above-mentioned elements, dry method,
Mix fine powder by wet method. Next, it is calcined at a desired temperature and for a desired period of time in a furnace having a normal atmospheric atmosphere or an atmosphere with a controlled oxygen partial pressure. After cooling to room temperature and carefully grinding and mixing, approximately 30K
Pressure molded at a pressure equivalent to g, and in the same atmosphere and temperature as above.
Bake in time. These methods are outlined in the following documents.
■C,、Michel and B 、 Raeau、
Rev、 ChimicMinera12i、407
(1984)■J 、G、Berdnorz and
K、A、MUller、 Z。■C,, Michel and B, Raeau,
Rev, ChimicMinera12i, 407
(1984) ■ J., G., Berdnorz and
K., A., Müller, Z.
Phys、旦64,189(1986)0M、に、Wu
、 J 、R,Ashburn、C,J 、Torng
。Phys, Dan 64, 189 (1986) 0M, Wu
, J., R., Ashburn, C.J., Torng.
.
P、H,Hor、 R,L、Meng、L、Gao;
Z、J、Huang、Y+Q、Wang and C,
W、Chu、Phys、Rev。P, H, Hor, R, L, Meng, L, Gao;
Z, J, Huang, Y+Q, Wang and C,
W,Chu,Phys,Rev.
Lett、58,908(1987)
別の製法としては、該化合物Sを仮焼前あるいは仮焼後
の状態の粉体についてアルコールや水溶性ポリマーなど
のいわゆるバインダー中に分散させ、任意の形状に成形
後、前述のような条件で焼成することも出来る
またの方法としては、スクリーン印刷法、スパッタリン
グ法1分子線エピタキシャル法、プラズマ溶射法などに
よることも出来る。これらの方法においては基板の種類
、性状を選択することによってエピタキシーの効果によ
り、生成物の性能を高めることを可能になる。また生成
物は上述の焼成条件のもと、さらに熱処理をおこなうこ
とによって特性を改善出来る。Lett, 58, 908 (1987) Another manufacturing method involves dispersing the compound S in a so-called binder such as alcohol or a water-soluble polymer with respect to the powder before or after calcination, and molding it into an arbitrary shape. Thereafter, other methods that can be used for baking under the conditions described above include screen printing, sputtering, single molecular beam epitaxial method, and plasma spraying. In these methods, by selecting the type and properties of the substrate, it is possible to improve the performance of the product due to the effect of epitaxy. Further, the properties of the product can be improved by further heat treating it under the above-mentioned firing conditions.
このようにして得られる化合物Sは、さきの文献■、■
などで知られるように、良好な導電性を有するとともに
、任意の温度以下に冷却する時、超電導性を呈する。す
なわちこの時、超電導性に加えて完全反磁性、ジョセフ
ソン効果を示すことになる。Compound S obtained in this way is described in the previous literature ■, ■
As is known in the art, it has good electrical conductivity and exhibits superconductivity when cooled to a certain temperature or lower. That is, at this time, in addition to superconductivity, it exhibits perfect diamagnetism and the Josephson effect.
次に、第1図に示MO8型TFTの作製工程を第3図に
示すプロセスフローを参照して次に説明する。Next, the manufacturing process of the MO8 type TFT shown in FIG. 1 will be explained with reference to the process flow shown in FIG.
半導体基板lO上にY−Ba−Cu−0からなる化合物
5M11を腹膜圧力1 、0 T orrの条件でスパ
ッタ法により膜厚6000人製膜する(第3図(a))
。A compound 5M11 consisting of Y-Ba-Cu-0 was deposited on a semiconductor substrate 1O to a thickness of 6000 by sputtering under conditions of peritoneal pressure of 1 and 0 Torr (Fig. 3(a)).
.
この化合物S)Hのうち素子間分離層以外の部分にレジ
ストを形成し、o゛イオン注入エネルギー50KeV、
ドーズ量5X10”/aJおよび注入エネルギー120
KaV、ドーズ量5X101s/a#となるようにイオ
ン注入を行い、素子間分離層12を形成する(第3図(
b))、これにより、最初に形成した化合物S層11の
臨界温度がTだとすると、o0イオン注入により組成が
変わり、臨界温度がTより低温のT□となる。A resist was formed on the part of this compound S)H other than the element isolation layer, and o゛ ion implantation energy was 50 KeV.
Dose 5X10”/aJ and implant energy 120
Ion implantation is performed at a dose of 5 x 101 s/a# to form an isolation layer 12 (see Fig. 3).
b)) As a result, if the critical temperature of the initially formed compound S layer 11 is T, the composition changes due to o0 ion implantation, and the critical temperature becomes T□, which is lower than T.
次いで、素子間分離層12の部分をレジストで覆い0゛
イオンを注入エネルギー12(lKeV、 ドーズ量5
X10”/cdとなるようにイオン注入を行う(第3図
(c))、このような高エネルギーでイオン注入を行う
ことにより、0°イオンは化合物S層11の深い部分、
換言すれば半導体基板10側の部分に達し、その部分の
化合物S層10の組成を変え、臨界温度をTより低温の
T2とするにれによりゲート絶縁膜13が形成される。Next, a portion of the inter-element isolation layer 12 is covered with a resist, and 0° ions are implanted at an energy of 12 (lKeV, a dose of 5).
By performing ion implantation with such high energy (FIG. 3(c)), the 0° ions are implanted into the deep part of the compound S layer 11,
In other words, the gate insulating film 13 is formed by reaching the part on the semiconductor substrate 10 side, changing the composition of the compound S layer 10 in that part, and setting the critical temperature to T2, which is lower than T.
このようにO゛イオン注入化合物5M11の比較的深い
部分に行われ、従って化合物S層11の゛比較的浅い部
分は○°イオンの注入は行われず。In this way, the O° ion implantation is carried out into a relatively deep part of the compound 5M11, and therefore the ○° ion implantation is not carried out into a relatively shallow part of the compound S layer 11.
化合物S層11のまま残存する。すなわち臨界温度Tか
らなるゲート電極14が形成されるのである(第3図(
d))。The compound S layer 11 remains. In other words, a gate electrode 14 having a critical temperature T is formed (see FIG. 3).
d)).
素子間分離層12およびゲート電極14となるべき表面
をレジストで覆い残余の化合物S層11をエツチング除
去する(第3図(e))。次いで1表面全体にP゛イオ
ン注入エネルギー50KeV。The surfaces that are to become the interelement isolation layer 12 and the gate electrode 14 are covered with resist, and the remaining compound S layer 11 is removed by etching (FIG. 3(e)). Next, P ion implantation energy of 50 KeV was applied to the entire surface.
ドーズ量5X101s/a#となるようにイオン注入し
、n゛拡散層15を形成する(第3図(f))。Ions are implanted at a dose of 5×10 1 s/a# to form an n diffusion layer 15 (FIG. 3(f)).
これらの表面に、減圧CVD法により、製膜圧力0.1
−10Torr、製膜温度350℃2反応カスSiH4
+02十N2の条件でSiO2からなる層間絶縁膜16
を形成しく第3図(g))、この層間絶縁膜16にコン
タクトホールを開け(第3図(h))、Y−Ba−Cu
−0からなる化合物Sをスパッタ法らより、ITorr
で膜厚6000人形成しソース・ドレイン電極17を形
成する(第3図(j))。次いで表面全体に1層間絶縁
膜16形成と同じ条件で5102からなる保護膜18を
1μm形成する(第3図(j))、ここに、第1図に示
される如きMOS型能動素子TFTが得られる。A film forming pressure of 0.1 was applied to these surfaces by low pressure CVD method.
-10 Torr, film forming temperature 350℃ 2 reaction residue SiH4
Interlayer insulating film 16 made of SiO2 under the condition of +020N2
3(g)), a contact hole is opened in this interlayer insulating film 16 (FIG. 3(h)), and Y-Ba-Cu
Compound S consisting of -0 was prepared by sputtering,
The source/drain electrodes 17 are formed by forming a film with a thickness of 6,000 yen (FIG. 3(j)). Next, a 1 μm thick protective film 18 made of 5102 is formed on the entire surface under the same conditions as for forming the first interlayer insulating film 16 (FIG. 3 (j)). Here, a MOS type active element TFT as shown in FIG. 1 is obtained. It will be done.
第4図は本発明の応用例を示すものであり、透明絶縁基
板上にTFTを形成したSOI型TFTにおいてゲート
絶縁膜、ゲート電極、ソース・ドレイン電極を化合物S
により形成し、ゲート電極およびソース・ドレイン電極
の臨界温度をゲート絶縁膜のそれよりも高くしたもので
ある。FIG. 4 shows an example of application of the present invention, in which the gate insulating film, gate electrode, and source/drain electrodes are made of compound S in an SOI TFT in which the TFT is formed on a transparent insulating substrate.
The critical temperature of the gate electrode and source/drain electrode is higher than that of the gate insulating film.
なお、第3図のプロセススローにおいて、素子間分離層
、ゲート絶縁膜の臨界温度低下をO゛イオンイオン注入
によって行ったが、O°イオンに限らず化合物Sの組成
を変え、その臨界温度を低下させるものであれば金属も
しくは非金属イオンのいずれのイオン注入によってもよ
い。In the process flow shown in Fig. 3, the critical temperature of the element isolation layer and gate insulating film was lowered by O゛ ion implantation, but the critical temperature could be lowered by changing the composition of the compound S, not just O゛ ions. Any ion implantation, metal or non-metal ions, may be used as long as it lowers the resistance.
このように本発明は化合物S層を一度に形成し、これか
ら後工程で電極部とを別途形成することをそのポイント
とするものである。As described above, the key point of the present invention is to form the compound S layer at one time, and then form the electrode portion separately in a subsequent step.
以上のような本発明によれば、MO3型TFTにおける
少なくともゲート絶縁膜およびゲート電極を一度に製膜
でき、工程の短縮が可能となり、歩留りが向上する。さ
らに、超伝導材料を使用することにより電極部に超伝導
特性を付与することができ、スイッチング素子部、周辺
配線部を一体的に形成でき、抵抗零の特性によってさら
に配線のひきまわしが可能で、立体配線やワンウェイコ
ンピューターへの道をひらくものといえる。さらに1素
子としては40μmあるいはそれ以下の大きさで製作で
きるので、各種LS1.COD、等倍センサー、あるい
は液晶デイスプレィ、液晶プリンター等へ応用した場合
、これらを小型化できるという効果を有する。According to the present invention as described above, at least the gate insulating film and the gate electrode of the MO3 type TFT can be formed at the same time, the process can be shortened, and the yield can be improved. Furthermore, by using a superconducting material, it is possible to impart superconducting characteristics to the electrode section, allowing the switching element section and peripheral wiring section to be integrally formed, and the zero resistance characteristic makes it possible to further route the wiring. This can be said to pave the way for three-dimensional wiring and one-way computers. Furthermore, since a single element can be manufactured with a size of 40 μm or less, various types of LS1. When applied to COD, 1x sensors, liquid crystal displays, liquid crystal printers, etc., it has the effect that these can be miniaturized.
第1図は本発明の一実施例を示す断面説明ζである。
第2図は従来例の断面説明図である。
第3図は第1図の実施例素子を作製する場合のプロセス
フローである。
第4図は本発明の応用例を示す断面説明図である。
1・・・半導体基板 2・・・素子間分離層3・・・拡
散層 4・・・ゲート絶縁膜5・・・ゲート電極
6・・・層間絶縁膜7・・・ソース・ドレイン電極
10・・・半導体基板 11・・・化合物S層12・・
・素子間分離層13・・・ゲート絶縁膜14・・・ゲー
ト電極 15・・・拡散層16・・・層間絶縁膜 17
・・・ソース・ドレイン電極18・・・保護膜FIG. 1 is a cross-sectional view ζ showing one embodiment of the present invention. FIG. 2 is a cross-sectional explanatory diagram of a conventional example. FIG. 3 is a process flow for manufacturing the example device shown in FIG. 1. FIG. 4 is an explanatory cross-sectional view showing an application example of the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate 2... Inter-element isolation layer 3... Diffusion layer 4... Gate insulating film 5... Gate electrode 6... Interlayer insulating film 7... Source/drain electrode 10. ...Semiconductor substrate 11...Compound S layer 12...
- Inter-element isolation layer 13...gate insulating film 14...gate electrode 15...diffusion layer 16...interlayer insulating film 17
...Source/drain electrode 18...Protective film
Claims (1)
、少なくともゲート絶縁膜およびゲート電極を超伝導材
料で形成し、電極部および絶縁部に使用される超伝導材
料のそれぞれの臨界温度を電極部の方を絶縁部よりも高
くし、これら両者の臨界温度の間で作動させることを特
徴とする半導体装置。1. In a MOS TFT formed on a semiconductor substrate, at least the gate insulating film and the gate electrode are formed of a superconducting material, and the critical temperature of each superconducting material used for the electrode part and the insulating part is set to 1. A semiconductor device characterized in that the insulating part is higher than the insulating part, and the semiconductor device is operated between the critical temperatures of these two parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62278637A JPH01120866A (en) | 1987-11-04 | 1987-11-04 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62278637A JPH01120866A (en) | 1987-11-04 | 1987-11-04 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01120866A true JPH01120866A (en) | 1989-05-12 |
Family
ID=17600051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62278637A Pending JPH01120866A (en) | 1987-11-04 | 1987-11-04 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01120866A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04137681A (en) * | 1990-09-28 | 1992-05-12 | Sumitomo Electric Ind Ltd | Superconducting device and its manufacture |
JPH04166331A (en) * | 1990-10-30 | 1992-06-12 | Chisso Corp | Foamed sheet and its manufacture |
JPH04168782A (en) * | 1990-11-01 | 1992-06-16 | Sumitomo Electric Ind Ltd | Superconducting element and manufacture thereof |
-
1987
- 1987-11-04 JP JP62278637A patent/JPH01120866A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04137681A (en) * | 1990-09-28 | 1992-05-12 | Sumitomo Electric Ind Ltd | Superconducting device and its manufacture |
JPH04166331A (en) * | 1990-10-30 | 1992-06-12 | Chisso Corp | Foamed sheet and its manufacture |
JP2507168B2 (en) * | 1990-10-30 | 1996-06-12 | チッソ株式会社 | Foam sheet and method for producing the same |
JPH04168782A (en) * | 1990-11-01 | 1992-06-16 | Sumitomo Electric Ind Ltd | Superconducting element and manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3944367B2 (en) | Method for forming insulating film and method for manufacturing semiconductor device | |
JP3703373B2 (en) | MOSFET and gate dielectric manufacturing method | |
CN1173389C (en) | ULSI MOS with high dielectric constant insulator | |
US6448127B1 (en) | Process for formation of ultra-thin base oxide in high k/oxide stack gate dielectrics of mosfets | |
WO2003041124A3 (en) | Method of fabricating a gate stack at low temperature | |
US6734068B2 (en) | Method to form silicates as high dielectric constant materials | |
JPS61230362A (en) | Making of titanium silicide gate electrode and mutual connection thereof | |
CN101887916A (en) | Asymmetric semiconductor device and manufacture method thereof | |
CN100356581C (en) | Semiconductor device and method of manufacturing the same | |
EP0588487A2 (en) | Method of making thin film transistors | |
JPH01120866A (en) | Semiconductor device | |
JPH01120069A (en) | Semiconductor device | |
JP2002270828A (en) | Semiconductor device and method of manufacturing the same | |
JPS63273371A (en) | Manufacture of superconducting electric circuit | |
KR20000014361A (en) | FERROELECTRIC TRANSISTOR USING Ba-Sr-Nb-O AND METHOD THEREOF | |
JPS5933874A (en) | Manufacture of insulated gate type field effect transistor | |
KR20080029607A (en) | A method for nitridating a oxide and a method for forming a gate dielectric layer in semiconductor device using the saem | |
JPS63304646A (en) | Formation of superconductor thin film pattern | |
JP2002289844A (en) | Field effect transistor | |
US20040135218A1 (en) | MOS transistor with high k gate dielectric | |
JPH036022A (en) | Formation of multilayer insulating film | |
JPH01135014A (en) | Manufacture of semiconductor device | |
JP2641977B2 (en) | Superconducting element fabrication method | |
JPH01120079A (en) | Semiconductor device | |
KR930017214A (en) | Semiconductor device and manufacturing method |