JPH01120788A - High frequency heating power control method - Google Patents

High frequency heating power control method

Info

Publication number
JPH01120788A
JPH01120788A JP27734287A JP27734287A JPH01120788A JP H01120788 A JPH01120788 A JP H01120788A JP 27734287 A JP27734287 A JP 27734287A JP 27734287 A JP27734287 A JP 27734287A JP H01120788 A JPH01120788 A JP H01120788A
Authority
JP
Japan
Prior art keywords
loss
voltage
current
circuit
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27734287A
Other languages
Japanese (ja)
Other versions
JPH0756831B2 (en
Inventor
Yuji Ishizaka
石坂 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP27734287A priority Critical patent/JPH0756831B2/en
Publication of JPH01120788A publication Critical patent/JPH01120788A/en
Publication of JPH0756831B2 publication Critical patent/JPH0756831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PURPOSE:To make it possible to close DC input in accordance with effective heat output equired for heating by measuring DC input, operation loss of an oscillation element, loss of an electric circuit, and heat loss of a substance to be heated. CONSTITUTION:DC input P1 to an oscillation circuit is sought by operation from DC voltage obtained from a potential divider 29 and DC current obtained from a shunt 30, and operation loss WOSC of an oscillation element is sought by operation from voltage between elements obtained from a potential divider 31 and current flowing to the element obtained from a current transformer 32. Electric circuit loss WE is sought by operation from a formula which multiplies about square by coefficient of proportion using condensor voltage obtained from the potential divider 33 and a tank circuit current obtained from the current transformer 34, and heat loss WH is sought by operation from a formula which multiplies about square of the condensor voltage or the tank circuit current by coefficient of proportion. And for the required effective heat output PN the DC input Pi is so controlled that it may Pn=Pi (WOSC+WE+WH). Hereby, each loss becomes clear and accurate DC input in accordance with the required effective output is made.

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は、局部加熱に用いる高周波加熱装置において、
直流入力、発振素子の動作損失、電気回路の損失、及び
、被加熱物の熱損失の計測により、加熱に必要な有効熱
出力に応じた直流入力を投入するようにした制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of Application The present invention relates to a high frequency heating device used for local heating.
The present invention relates to a control method in which DC input is applied in accordance with the effective thermal output necessary for heating by measuring the DC input, the operating loss of the oscillation element, the loss of the electric circuit, and the heat loss of the object to be heated.

B、 発明の概要 本発明による高周波加熱電力制御方法は、発振回路への
直流入力Piを、高圧線とコモン線間に接続した分圧器
から得た直流電圧と、コモン線に挿入したシャントから
得た直流電流とから演算により求め、 発振素子の動作損失W。Soを、分圧器から得た素子間
電圧と、発振素子とコモン線間に取付けた変流器から得
た素子に流れる電流とから演算により求め、 電気回路損失W6を、タンク回路のコンデンサの高圧側
端子とコモン線間に接続した分圧器から得たコンデンサ
電圧、あるいはタンク回路のコモン線部分に取付けた変
流器から得たタンク回gL4を流とを用り、コンデンサ
電圧あるいはタンク回路電流の略2乗に比例係数を掛け
る式から演算より求め、 熱損失WHを、前記分圧器から得たコンデンサ電圧ある
いは前記変流器から得たタンク回路電流を用り、コンデ
ンサ電圧あるいはタンク回路電流の略2乗に比例係数を
掛ける式から演算により求め、 所要の有効熱出力PNに対し、’N =Pl −(wo
sc”%”Jとなるように、直流入力P、を制御するこ
とにより、 有効熱出力九を精密に制御することができ、且つ、電圧
、電流の計測に際し、高電圧による検出回路の破壊、更
には不時の人身事故を防止することができろものである
B. Summary of the Invention The high-frequency heating power control method according to the present invention converts the DC input Pi to the oscillation circuit into a DC voltage obtained from a voltage divider connected between the high voltage line and the common line and a shunt inserted into the common line. The operating loss W of the oscillation element is determined by calculation from the DC current. Calculate So from the inter-element voltage obtained from the voltage divider and the current flowing through the element obtained from the current transformer installed between the oscillation element and the common line, and calculate the electric circuit loss W6 by calculating the high voltage of the tank circuit capacitor. Using the capacitor voltage obtained from the voltage divider connected between the side terminal and the common line, or the tank current gL4 obtained from the current transformer attached to the common line part of the tank circuit, calculate the capacitor voltage or tank circuit current. Calculate the heat loss WH from a formula that multiplies approximately the square of the proportional coefficient, and use the capacitor voltage obtained from the voltage divider or the tank circuit current obtained from the current transformer to calculate the abbreviation of the capacitor voltage or tank circuit current. It is calculated by multiplying the square by the proportional coefficient, and for the required effective heat output PN, 'N = Pl - (wo
By controlling the DC input P so that sc"%"J, it is possible to precisely control the effective heat output 9, and when measuring voltage and current, it is possible to prevent damage to the detection circuit due to high voltage, Furthermore, it is possible to prevent unexpected personal accidents.

C9従来の技術 高周波加熱においては、直流電源から発振回路に直流電
力を供給し、高周波電力を、ワークコイルまたは接触子
等の加熱子を介して被加熱物に加える。発振素子として
は、電子管や半導体素子が使用されている。
C9 Prior Art In high-frequency heating, DC power is supplied from a DC power supply to an oscillation circuit, and the high-frequency power is applied to an object to be heated via a heating element such as a work coil or a contactor. As the oscillation element, an electron tube or a semiconductor element is used.

この種の発振回路では、従来、20KHz以上のものに
あっては、周波数が高く、電力が大きいため、加熱動作
時の高周波電力値を生産現場で簡単に計測できる手段が
ない。
Conventionally, in this type of oscillation circuit, if the frequency is 20 KHz or more, the frequency is high and the power is large, so there is no means to easily measure the high frequency power value during the heating operation at the production site.

従って、発振回路への直流入力値と、被加熱物に加わる
高周波電力値との関係を、高周波加熱の実績値から統計
的処理により求め、この関係に基づいて直流入力値を計
測し、制御していた。
Therefore, the relationship between the DC input value to the oscillation circuit and the high frequency power value applied to the heated object is determined by statistical processing from the actual high frequency heating values, and the DC input value is measured and controlled based on this relationship. was.

D 発明が解決しようとする問題点 しかし、従来は直流入力値と高周波電力値との関係を統
計的処理により得ていたため、溶接や熱処理等に必要な
有効熱出力を被加熱物に精度良く加えることができない
D Problems to be solved by the invention However, in the past, the relationship between the DC input value and the high-frequency power value was obtained through statistical processing, which made it difficult to accurately apply the effective thermal output necessary for welding, heat treatment, etc. to the heated object. I can't.

特に、自動化に際しては、 (イ)例えば同一の溶接ライン(装置)、同一の熱処理
ライン(装置)内では、発振素子の発振効率、電気回路
損失を固定して考えられるので、被加熱物が少々変って
も実績値の統計的処理によゆ何とか対応できるが、(ロ
) ラインや装置が異なる場合、あるいは被加熱物が大
幅に変った場合には、発振効率、電気回路損失更には被
加熱物の熱損失が異なるから、過去の直流入力値と高周
波電力値との関係は適用できず、改めて実績値を′ff
1重ねるという面倒な作業を要する。
In particular, when automating, (a) For example, within the same welding line (equipment) or the same heat treatment line (equipment), the oscillation efficiency of the oscillation element and the electric circuit loss are fixed, so the number of objects to be heated may be slightly smaller. Even if the actual values change, it can be dealt with by statistical processing of the actual values, but (b) If the line or equipment is different, or if the heated object changes significantly, the oscillation efficiency, electrical circuit loss, and even the heated Since the heat loss of objects is different, the relationship between the past DC input value and high frequency power value cannot be applied, and the actual value is
The troublesome work of layering one layer is required.

本発明は、上述した従来技術の欠点に鑑み、直流入力、
発振素子の動作損失、電気回路の損失、及び、被加熱物
の熱損失を計測することにより、必要な有効熱出力に応
じた直流入力を投入できる制御方法を提供することを目
的とし、更に、上記各項目の計測に際し、検出回路が高
電圧により破壊しないように、また、不時の人身事故が
起らないように計測できろことを目的とする。
In view of the drawbacks of the prior art described above, the present invention provides a direct current input,
The purpose of the present invention is to provide a control method that can input DC input according to the required effective heat output by measuring the operating loss of the oscillation element, the loss of the electric circuit, and the heat loss of the heated object, and further, The purpose of measuring each of the above items is to ensure that the detection circuit is not destroyed by high voltage and that unforeseen personal accidents occur.

E、  W2B点を解決するための手段本発明による高
周波加熱電力制御方法は、発振回路への直流入力Piを
、高圧線とコモン線間に接続した分圧器から得た直流電
圧と、コモン線に挿入したシャントから得た直流電流と
から演算により求め、 発振素子の動作損失W。soを、分圧器から得た素子間
電圧と、発振素子とコモン線間に取付けた変流器から得
た素子に流れる電流とから演算により求め、 電気回路損失靭を、タンク回路のコンデンサの高圧側端
子とコモン線間に接続した分圧器から得たコンデンサ電
圧、あるいはタンク回路のコモン線部分に取付けた変流
器から得たタンク回路電流とを用り、コンデンサ電圧あ
るいはタンク回路電流の略2乗に比例係数を掛ける式か
ら演算より求め、 熱損失へを、前記分圧器から得たコンデンサ電圧あるい
は前記変流器から得たタンク回路電流を用り、コンデン
サ電圧あるいはタンク回路電流の略2乗に比例係数を掛
ける式から演算により求め、 所要の有効熱出力PNに対し、号、−Pl−(!vOS
o+W、:+1となるように、直流入力島を制御するこ
とを特徴とする。
Means for Solving Points E and W2B The high frequency heating power control method according to the present invention connects the DC input Pi to the oscillation circuit to the DC voltage obtained from a voltage divider connected between the high voltage line and the common line and the common line. The operating loss W of the oscillation element is determined by calculation from the DC current obtained from the inserted shunt. So is calculated from the inter-element voltage obtained from the voltage divider and the current flowing through the element obtained from the current transformer installed between the oscillation element and the common wire, and the electric circuit loss toughness is determined by calculating the high voltage of the capacitor in the tank circuit. Using the capacitor voltage obtained from the voltage divider connected between the side terminal and the common line, or the tank circuit current obtained from the current transformer attached to the common line part of the tank circuit, approximately 2 of the capacitor voltage or tank circuit current is used. Calculate the heat loss by multiplying the power by the proportional coefficient, and use the capacitor voltage obtained from the voltage divider or the tank circuit current obtained from the current transformer to calculate the heat loss approximately to the square of the capacitor voltage or tank circuit current. Calculated from the equation that multiplies the proportional coefficient, and for the required effective heat output PN, -Pl-(!vOS
It is characterized by controlling the DC input island so that o+W: +1.

F  作     用 上記構成において、各種損失が明確になり、所要の有効
熱出力に応じた精確な直流入力が投入される。また、電
圧・電流の検出回路が片側コモンの簡単な構成となり、
高電圧による検出回路の破壊及び不時の人身事故を防止
する。
F Effect In the above configuration, various losses are made clear, and accurate DC input is applied in accordance with the required effective heat output. In addition, the voltage/current detection circuit has a simple configuration with one side common,
Prevent damage to the detection circuit and accidental personal injury due to high voltage.

G、実施例 第1図〜第9図を参照して本発明の一実施例を説明する
G. Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 to 9.

第1図は高周波加熱装置の電力制御系を示し、直流電源
1を商用交流電源2とサイリスタ式コンバータ3とで構
成し、コンバータ3を自動電力調整器(APR)4で調
整して発振回路5に直流電力を入力するようにしである
。発振回路5には電子管6を発振素子として用いている
が、半導体素子を用いても良い。
FIG. 1 shows the power control system of a high-frequency heating device, in which a DC power supply 1 is composed of a commercial AC power supply 2 and a thyristor type converter 3, the converter 3 is adjusted by an automatic power regulator (APR) 4, and an oscillation circuit 5 This is to input DC power. Although the electron tube 6 is used as an oscillation element in the oscillation circuit 5, a semiconductor element may also be used.

7は自動設定器であり、所要熱出力計算器8から与えら
れる所要の有効熱出力値PNと、損失計算型9から与え
られる発振素子6の動作績%W。sc’電気回路損失惑
、及び、被加熱物10の熱損失WHとから、自動電力調
整器4に対する設定値PSl:Tを決定する。
7 is an automatic setting device, which calculates the required effective heat output value PN given from the required heat output calculator 8 and the operating performance %W of the oscillation element 6 given from the loss calculation type 9. A set value PSl:T for the automatic power regulator 4 is determined from the sc' electric circuit loss factor and the heat loss WH of the heated object 10.

自動電力調整器4は、減算器11から与えられる偏差値
PSET −Plがゼロとなるように、コンバータ3を
制御する。Plは発振回路5の直流入力であや、直流入
力計算器12が直流電圧4と直流電流■2とからPi=
4・■2として求める。
Automatic power regulator 4 controls converter 3 so that deviation value PSET -Pl given from subtractor 11 becomes zero. Pl is the DC input of the oscillation circuit 5, and the DC input calculator 12 calculates Pi= from the DC voltage 4 and the DC current ■2.
Find it as 4・■2.

以上の制御により、p、ET= pN+w。、、十w、
 +wHであるから、 P、 = p、 −(WoS0+W、+WH)となるよ
うに、所要の有効熱出力P8に応じた直流人力Piが投
入されろ。第2図にP、とP、4、Wo3oSW!:、
w、の関係を示す。   −なお、所要熱出力計算器8
は、被加熱物10、例えばパイプ(本例では電縫管)の
形状、寸法、材料等の条件13を設定することにより、
周知の如く、所要熱出力を自動的に計算する。
With the above control, p, ET=pN+w. ,,10w,
+wH, so DC human power Pi corresponding to the required effective heat output P8 should be input so that P, = p, -(WoS0+W, +WH). Figure 2 shows P, P, 4, Wo3oSW! :,
shows the relationship between w. -In addition, the required heat output calculator 8
By setting the conditions 13 such as the shape, dimensions, and material of the object to be heated 10, for example, a pipe (in this example, an electric resistance welded pipe),
As is known, the required heat output is automatically calculated.

14は手動設定語であり、スイッチ15により自動設定
器7の代りに設定値P9□、を減算器11に与える。
14 is a manual setting word, and a switch 15 applies a setting value P9□ to the subtracter 11 instead of the automatic setting device 7.

発振回g85は電子管6と、タンク回路16と、グリッ
ド正帰還用コンデンサ17,18と、直流カット用コン
デンサ19と、各々グリッドバイアス用のチン−クコイ
ル2oと、グリッド抵抗21と、バイパスコンデンサ2
2とからなる。チロ−クコイル23は直流電源1へ高周
波電流を流さないためのものである。
The oscillation circuit g85 includes an electron tube 6, a tank circuit 16, grid positive feedback capacitors 17 and 18, a DC cut capacitor 19, a tink coil 2o for grid bias, a grid resistor 21, and a bypass capacitor 2.
It consists of 2. The Chirok coil 23 is for preventing high frequency current from flowing into the DC power supply 1.

タンク回R116は2つのコンデンサcTl ” TQ
と、1つのコイルしTとをπ型に接続したものである。
Tank R116 has two capacitors cTl”TQ
and one coil T are connected in a π shape.

タンク回路16のコイルLTにコイル24を結合して、
整合用トランス25とし、このトランス25に加熱子2
6としてワークコイルを接続しである。
Coupling the coil 24 to the coil LT of the tank circuit 16,
A matching transformer 25 is used, and a heating element 2 is connected to this transformer 25.
The work coil is connected as 6.

第1図の発振回路5において、回路の共通接地線(コモ
ン線)27を使用して、各種電圧、電流を検出するよう
にしである。即ち、(1)発振回g85に印加された直
流電圧Epを検出するため、コモン線27と高圧綿28
との間に分圧器2゛9を接続しである。
In the oscillation circuit 5 of FIG. 1, a common ground line (common line) 27 of the circuit is used to detect various voltages and currents. That is, (1) In order to detect the DC voltage Ep applied to the oscillation circuit g85, the common wire 27 and the high voltage cotton 28
A voltage divider 2'9 is connected between the two.

(2)  また、′lei振回路5に流れる全直流電流
■2を検出するため、コモン!11127の電源寄り部
分にシャント30を挿入しである。
(2) In addition, in order to detect the total DC current ■2 flowing through the 'lei oscillating circuit 5, the common! A shunt 30 is inserted into the part of the 11127 near the power supply.

(3)更に、発振素子6の瞬時動作電圧epを検出する
ため、プレートとコモン線27との間に分圧器31を接
続しである。
(3) Furthermore, in order to detect the instantaneous operating voltage ep of the oscillation element 6, a voltage divider 31 is connected between the plate and the common line 27.

(4)更にまた、発振素子6に流れろ瞬時動作電流IP
を検出のため、カソードとコモン線27との間に高周波
変流器(RFCT)32を取付けである。
(4) Furthermore, the instantaneous operating current IP flowing through the oscillation element 6
In order to detect this, a high frequency current transformer (RFCT) 32 is installed between the cathode and the common line 27.

(5)更に、電気回路損失■を求めるため、タンク回路
16のコンデンサCTlの端子間(一方の端子はコモン
線27と同じ)に分圧器33を接続し、コンデンサ瞬時
電圧e。
(5) Furthermore, in order to determine the electric circuit loss (■), a voltage divider 33 is connected between the terminals of the capacitor CTl of the tank circuit 16 (one terminal is the same as the common line 27), and the instantaneous capacitor voltage e is calculated.

を検出するようにしである。なお、コモン線27のうち
、タンク回路16のコンデンサC工8.C1□間の部分
に、高周波変流器34を取付けてタンク回路瞬時電流i
□を検出するようにしても良い。
This is to detect it. In addition, among the common wires 27, the capacitor C of the tank circuit 16 is connected to the capacitor C 8. A high frequency current transformer 34 is installed between C1□ and the tank circuit instantaneous current i
□ may be detected.

以上の如く例えば抵抗器式分圧器29,31゜33、シ
ャント30及び高周波変流器32゜34を発振回路5に
設置することにより、各々を共通接地線27を持ったま
ま片側コモンで構成することができ、非接地系となるよ
うな絶縁が不要となり、構造が簡単になる。特に、高圧
回路の電流検出にあっては、異常時の絶縁破壊による検
出回路の破壊、更には不時の人身事故を防止できる。
As described above, for example, by installing the resistor type voltage divider 29, 31゜33, shunt 30, and high frequency current transformer 32゜34 in the oscillation circuit 5, each can be configured with one side common while having the common grounding wire 27. This eliminates the need for insulation that would result in an ungrounded system, simplifying the structure. In particular, when detecting current in a high-voltage circuit, it is possible to prevent damage to the detection circuit due to insulation breakdown in the event of an abnormality, as well as accidental personal injury.

次に、直流入力Pi1発振素子6の動作損失Wo9c1
電気回路損失W5、及び、熱損失WHの計測について説
明する。
Next, the operating loss Wo9c1 of the DC input Pi1 oscillation element 6
Measurement of electric circuit loss W5 and heat loss WH will be explained.

〔D 直流入力Pの計測: 分圧器29で検出した直流電圧4(ボルト)と、シャン
ト30で検出した直流電流IP(アンペア)より、 P、 = EP ・ IP  (ワット)・・・・・・
式(1)として求まる。これを直流入力計算器12が演
算する。
[D Measurement of DC input P: From the DC voltage 4 (volts) detected by the voltage divider 29 and the DC current IP (ampere) detected by the shunt 30, P, = EP ・ IP (watts)...
It can be found as equation (1). The DC input calculator 12 calculates this.

叩 発振素子6の動作損失W。scの計測:発振素子6
の瞬時動作電圧ep(本実施例ではプレート瞬時電圧)
と、瞬時動作電流ip(同じくプレート瞬時電流)とは
、それぞれ直流成分と高周波成分とを持つ。eP。
Operation loss W of the oscillation element 6. Measurement of sc: Oscillation element 6
The instantaneous operating voltage ep (instantaneous plate voltage in this example)
and the instantaneous operating current ip (also the instantaneous plate current) each have a DC component and a high frequency component. eP.

ipをそれぞれ分圧器31と高周波変流器32で検出す
ることにより、実効値ep(eff、) #1P(ef
f、)からW。、o= eP(eff、)  1P(e
ff、)となり、更には、 として求まる。これを損失計算器9が演算する。実効値
は、 として求まる。但し、Tは周期である。
By detecting ip with the voltage divider 31 and high frequency current transformer 32, the effective value ep(eff,) #1P(ef
f, ) to W. , o= eP(eff,) 1P(e
ff, ), and furthermore, it can be found as follows. The loss calculator 9 calculates this. The effective value is found as. However, T is a period.

OI  電気回路損失舊の計測: まず、電気回路損失舊はコイル損失と伝送損失からなり
、無負荷時(ワークコイル26に被加熱物10が結合し
ていない状態)における発振回路5の高周波出力P に
等しい。従って、無負荷時゛の直流入力をPll、無負
荷時の発振素子動作損失をW05o1とすれば、 w=p  =p  −w     ・・・式(3)%式
% 一方、電気回路損失W6は、タンク回路電流の実効値I
Tの1.8乗ないし2.2乗に比例する。従って、分圧
器33によってコンデンサ瞬時電圧ecを検出する場合
は、その実効値E。より、 罵=へ・(ω・C工、・Eo)   ・・・式(4)と
なる。但し、K5は比例係数、αは1.8〜2.2の間
の指数であり、これらは後述の如く定める。ωは角周波
数、C11はコンデンサ容量である。あるいは、高周波
変流器34によってタンク回路瞬時電流1アを検出する
場合は、その実効値I□より、 罵=町・■げ        ・・・式(5)となる。
OI Measurement of electric circuit loss: First, electric circuit loss consists of coil loss and transmission loss, and is the high frequency output P of the oscillation circuit 5 at no load (state where the heated object 10 is not coupled to the work coil 26). be equivalent to. Therefore, if the DC input at no-load time is Pll and the oscillation element operating loss at no-load time is W05o1, then w = p = p - w ...Formula (3)% Formula % On the other hand, electric circuit loss W6 is , effective value I of tank circuit current
It is proportional to T to the 1.8th power to the 2.2nd power. Therefore, when detecting the instantaneous capacitor voltage ec using the voltage divider 33, its effective value E. Therefore, the following formula (4) is obtained. However, K5 is a proportional coefficient and α is an index between 1.8 and 2.2, which are determined as described below. ω is the angular frequency, and C11 is the capacitance. Alternatively, when the instantaneous tank circuit current 1A is detected by the high-frequency current transformer 34, from its effective value I□, the equation (5) is obtained.

従って、式(3)によって無負荷高周波出力PHFIを
複数設定し、それぞれにおける実効コンデンサ電圧4、
あるいは実効タンク回路電流■工を計測する乙とにより
、へとαとが求まる。即ち、式(4)の両辺とも塊に採
れば、 鳩P8.1=ボーα・―(ωq1〜)  ・・・式6)
となり、楡PHF1とk(ω・ql・4)の直角座標に
計測値をプロットして直線近似することにより、直線の
傾きからαが得られ、直線と座標軸logPM、、の切
片からへが得られる。
Therefore, multiple no-load high-frequency outputs PHFI are set using equation (3), and the effective capacitor voltage 4,
Alternatively, α can be determined by measuring the effective tank circuit current. That is, if both sides of equation (4) are taken as a lump, then pigeon P8.1 = bow α・-(ωq1~) ...Equation 6)
Then, by plotting the measured values on the rectangular coordinates of PHF1 and k(ω・ql・4) and applying a straight line approximation, α can be obtained from the slope of the straight line, and from the intercept of the straight line and the coordinate axis logPM, , can be obtained. It will be done.

同様に、式(5)の両辺ともにlogに採れば、匈PH
Fl=IRt4+α鞠11       ・・・式7)
となるので、”HFIと7.II工の直角座標に計測値
をプロットして直線近似することにより、直線の傾きか
らαが得られ、座標軸−PHFIの切片からに5が得ら
れる。
Similarly, if both sides of equation (5) are taken as log, then PH
Fl=IRt4+αmari11...Equation 7)
Therefore, by plotting the measured values on the orthogonal coordinates of HFI and 7.II and performing a linear approximation, α can be obtained from the slope of the straight line, and 5 can be obtained from the intercept of the coordinate axis - PHFI.

このようにして定まったに5及びαを用いて、前出の式
(4)または式(5)を用いて、損失計算器9が実負荷
時の電気回路損失舊を演算する。
Using 5 and α determined in this way, the loss calculator 9 calculates the electric circuit loss y under actual load using the above-mentioned equation (4) or equation (5).

なお、αの値は主に、電流、電圧の波形、回路定数など
、装置の条件により変化する。
Note that the value of α changes mainly depending on the conditions of the device, such as current, voltage waveforms, and circuit constants.

■ 熱損失罵の計測: 熱損失蒐は、ダミー負荷、即ち被加熱部への通電回路を
形成しない負荷を用いることにより、計測する。
■ Measurement of heat loss: Heat loss is measured by using a dummy load, that is, a load that does not form a current-carrying circuit to the heated part.

即ち、第3図に示すようにワークコイル26を有する誘
導式の高周波加熱装置にあっては、第4図に示すように
ダミー負荷10Dとして、切れているパイプを用いる。
That is, in an induction type high frequency heating device having a work coil 26 as shown in FIG. 3, a cut pipe is used as a dummy load 10D as shown in FIG.

ワークコイル26にダミーのパイプIODを結合すると
、ダミーパイプIODに加わる電力が熱損失WHであり
、外周パイプ損失と内周パイプ損失の和である。
When a dummy pipe IOD is coupled to the work coil 26, the electric power applied to the dummy pipe IOD is a heat loss WH, which is the sum of the outer circumferential pipe loss and the inner circumferential pipe loss.

従って、熱損失W、は、ダミー負荷時の高周波出力P8
12からその時の電気回路損失罵2を引いた電力となる
Therefore, the heat loss W, is the high frequency output P8 at the time of dummy load.
The electric power is calculated by subtracting the electric circuit loss of 2 from 12.

凰−PHF2−罵2 また、PHF□は、ダミー負荷時の直流入力P、2とそ
の時の発振素子動作損失W。9C2の差である。
凰-PHF2-凰2 In addition, PHF□ is the DC input P,2 at the time of a dummy load and the oscillation element operating loss W at that time. The difference is 9C2.

P=P−W HF2     12     09C2更に、電気回
路損失Wl:2は前出の式(4)または式(5)で求ま
る。従って、 v4 == p、−w。5o2− w、   ・・・式
(8)一方、熱損失靭も、電気回路損失と同様、タンク
回路電流の実効値ITの1.8乗ないし2.2乗に比例
する。
P=P-W HF2 12 09C2 Furthermore, the electric circuit loss Wl:2 is determined by the above equation (4) or equation (5). Therefore, v4 == p, -w. 5o2-w, ...Equation (8) On the other hand, the heat loss toughness is also proportional to the 1.8th power to the 2.2nd power of the effective value IT of the tank circuit current, similar to the electric circuit loss.

従って、分圧器33によってコンデンサ瞬時電圧ecを
検出する場合は、前出の式(4)W = K、・ (ω
・C7,・E。)β ・・・式(9)また、高周波変流
器34によってタンク回路瞬時電流11を検出する場合
は、前出の式(5)と同様1 、  wH=に、−1,β       ・・式ill
となる。但し、へは比例係数、βは1.8ないし2.2
の指数である。
Therefore, when detecting the instantaneous capacitor voltage ec using the voltage divider 33, the above equation (4) W = K, · (ω
・C7, ・E. )β...Equation (9) Also, when detecting the tank circuit instantaneous current 11 by the high-frequency current transformer 34, 1, wH=, -1, β...Equation ill
becomes. However, to is a proportional coefficient, β is 1.8 to 2.2
is the index of

へとβの選定は、電気回路損失の計測におけるへとαの
選定と同様、式(8)によってダミー負荷時の熱損失鳳
を複数設定し、それぞれにおける実効コンデンサ電圧4
、あるいは実効タンク回路電流ITを計測することによ
りlogを採って求める。
To select β, similarly to the selection of α in measuring electric circuit loss, multiple heat losses during dummy loads are set using equation (8), and the effective capacitor voltage 4 is set for each.
, or by measuring the effective tank circuit current IT and calculating the log value.

このようにして定まった塊、βを用いて、前出の式(9
)または式(圃により、損失計算器9が実負荷時の熱損
失へを演算する。
Using the mass β determined in this way, the equation (9
) or formula (depending on the field, the loss calculator 9 calculates the heat loss during actual load.

なお、比例定数−は、コイルの諸元、被加工物10の材
質、成形寸法、肉厚等に依存する。
Note that the proportionality constant - depends on the specifications of the coil, the material of the workpiece 10, the molding dimensions, the wall thickness, and the like.

以上、CI〕、 OD、 II、 Nで説明した計測方
法に基づき、第3図に示す如く被加熱物としてのパイプ
10をワークコイル26に押入した状態で、直流人力p
H発振素子6の動作損失W0.。、電気回路損失罵、及
び、熱損失風を計測して、有効熱出力PNが PN = P:  (W、:十Wosc” ”H)とな
るように直流入力上の投入を制御し、パイプ10のV字
状エツジ部を加熱し溶融接合する。
Based on the measurement method explained above in CI], OD, II, and N, with the pipe 10 as an object to be heated being pushed into the work coil 26 as shown in FIG.
Operating loss W0 of H oscillation element 6. . , electric circuit loss, and heat loss wind, and control the input on the DC input so that the effective heat output PN becomes PN = P: (W,: 10W), and the pipe 10 The V-shaped edge portions of the two are heated and melted and bonded.

以上の実施例では発振素子6として電子管を用いたが、
半導体素子を用いる場合も同様である。
In the above embodiment, an electron tube was used as the oscillation element 6, but
The same applies when using semiconductor elements.

また、ダミー負荷による損失計測に通電部を形成しない
第4図に示す切れたパイプlODを用いたが、被加熱物
10が第5図(alのような通電回路を形成させたり、
第6図(alに示す板状のものにおける通電回路を形成
する場合には、熱の発生を極力少なくして加熱電力を少
なくするように、第5図の例では銅管Cuをはさみ込ん
で水を通したり (第5図(b))、第6図の例では板
の両側に銅管Cuを密着させて水を通すことにより (
第6図(bll、有効加熱電力を抑制して負荷損失分を
得るようにしている。
In addition, although the cut pipe lOD shown in FIG. 4 without forming a current-carrying part was used to measure the loss using a dummy load, if the heated object 10 forms a current-carrying circuit as shown in FIG.
When forming the current-carrying circuit in the plate-shaped thing shown in Fig. 6 (al), in order to minimize the generation of heat and reduce the heating power, in the example shown in Fig. 5, a copper tube Cu is sandwiched between the plates. (Fig. 5 (b)), or in the example shown in Fig. 6, by placing copper pipes Cu in close contact with both sides of the plate and allowing water to pass through (Fig. 5 (b)).
Fig. 6 (bll) The effective heating power is suppressed to compensate for the load loss.

更に、上記実施例では、ワークコイル26を加熱子に用
いる誘導式の装置について説明したが、第7図〜第9図
に示す接触子35を有する接触式装置の場合も、誘導式
と同様に各種電力、損失を求めることができる。但し、
接触式の場合はパイプ1o1グミ−パイプIODいずれ
でもパイプ外周には電流が流れないので、熱損失風は内
周パイプ損失のみとなる。
Further, in the above embodiment, an induction type device using the work coil 26 as a heating element has been described, but a contact type device having a contactor 35 shown in FIGS. 7 to 9 can also be used in the same manner as the induction type. Various power and losses can be determined. however,
In the case of the contact type, no current flows in the outer periphery of the pipe in either the pipe 1 or 1 gummy pipe IOD, so the heat loss wind is only the inner pipe loss.

ここで、電力、損失計測の演算について説明すると、ア
ナログ式演算、デジタル式演算いずれも良い。アナログ
式演算の場合は演算回路をIC化でき、安価になる。デ
ジタル式演算の場合は、各種検出器(29〜34)の出
力波形を高速デジタル・ストレージ計器で数七分ストレ
ージし、マルチプレクサを介してデジタルメモリに記憶
し、その後、波形データの転送、演算をデジタル演算器
で行う。
Here, when explaining the calculations for power and loss measurement, both analog calculations and digital calculations are suitable. In the case of analog calculation, the calculation circuit can be integrated into an IC, resulting in lower cost. In the case of digital calculation, the output waveforms of various detectors (29 to 34) are stored for several minutes using a high-speed digital storage instrument, stored in digital memory via a multiplexer, and then the waveform data is transferred and calculated. Performed using a digital calculator.

このようなデジタル演算方式は、一般に、発振回路の電
圧や電流の計測は、周波数が高い程困難であるために、
適用される発振回路は10KHz以上500 KHz 
k[h程度の範囲のものと想定できる。このため、デジ
タルメモリに記憶される波形のデータとしては、500
klhの半波長がV2x 5001&−= 10−’5
ec= 1000nsecとなるので、例えば100 
n5ee好ましくは5゜n5ee程の分解能のデジタル
メモリを使用すれば、測定誤差もなく充分となる。
Generally speaking, this type of digital calculation method is difficult to measure the voltage and current of an oscillation circuit because the higher the frequency, the more difficult it is to measure it.
The applicable oscillation circuit is 10KHz or more and 500KHz.
It can be assumed that the range is about k[h. Therefore, the number of waveform data stored in the digital memory is 500.
The half wavelength of klh is V2x 5001 &-= 10-'5
Since ec = 1000nsec, for example, 100
If a digital memory with a resolution of n5ee, preferably about 5°n5ee, is used, it will be sufficient to eliminate measurement errors.

■ 発明の詳細 な説明したように、本発明によれば所要の有効熱出力を
精密に制御することができ、外乱による変化に対応でき
非定常使用条件下での制御が可能となり、無駄のない最
適で正確な加熱ができて製品の品質を維持できるなどの
効果がある。また、検出回路が片側コモンであるため簡
単な構成となり、更に高電圧による電圧、電流の検出@
路の破壊及び不時の人身事故−を防止できる。
■ As described in detail, according to the present invention, the required effective heat output can be precisely controlled, it can respond to changes caused by external disturbances, it can be controlled under unsteady operating conditions, and it is possible to eliminate waste. It has the advantage of being able to perform optimal and accurate heating and maintain product quality. In addition, since the detection circuit is common on one side, it has a simple configuration, and also detects voltage and current due to high voltage.
Road destruction and unforeseen personal accidents can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第9図は本発明の実施例で、第1図は制御
のための全体の制御回路図、第2図は直流入力と、損失
及び有効熱出力の関係を示す図、第3図は実負荷状態説
明図、第4図はダミー負荷状態説明図、第5図(al、
(bl、第6図(a)。 (blはそれぞれ他の例の実負荷とダミー負荷との加熱
状態説明図、第7図は接触式の場合のダミー負荷の加熱
を示す斜視図、第8図は第7図の説明図、第9図は接触
式によるエツジ部の加熱状態説明図である。 図面中、 1ば直流lt源、 4は自動電力11整器(APR)、 5は発振回路、 6は発振素子(電子管)、 7は自動設定器、 8は所要熱出力計算器、 9は損失計算器、 10は被加熱物、 10Dはダミー負荷、 12は直流入力計算器、 16はタンク回路、 q、はそのコンデンサ、 26はワークコイル、 27はコモン線 28は高圧線、 29.31,33は分圧器、 30はシャント、 32.34は高周波変流器、 35は接触子である。
1 to 9 show embodiments of the present invention; FIG. 1 is an overall control circuit diagram for control; FIG. 2 is a diagram showing the relationship between DC input, loss and effective heat output; and FIG. The figure is an explanatory diagram of the actual load state, Fig. 4 is an explanatory diagram of the dummy load state, and Fig. 5 (al,
(bl, Fig. 6(a). (bl is an explanatory diagram of the heating state of the actual load and dummy load in other examples, respectively, Fig. 7 is a perspective view showing heating of the dummy load in the case of contact type, Fig. 8 is The figure is an explanatory drawing of Fig. 7, and Fig. 9 is an explanatory drawing of the heating state of the edge part by the contact type.In the drawing, 1 is a DC LT source, 4 is an automatic power regulator (APR), and 5 is an oscillation circuit. , 6 is an oscillation element (electron tube), 7 is an automatic setting device, 8 is a required heat output calculator, 9 is a loss calculator, 10 is an object to be heated, 10D is a dummy load, 12 is a DC input calculator, 16 is a tank The circuit, q is its capacitor, 26 is a work coil, 27 is a common line 28 is a high voltage line, 29, 31, 33 are voltage dividers, 30 is a shunt, 32, 34 is a high frequency current transformer, 35 is a contactor .

Claims (1)

【特許請求の範囲】 発振回路への直流入力P_iを、高圧線とコモン線間に
接続した分圧器から得た直流電圧と、コモン線に挿入し
たシャントから得た直流電流とから演算により求め、 発振素子の動作損失W_O_S_Cを、分圧器から得た
素子間電圧と、発振素子とコモン線間に取付けた変流器
から得た素子に流れる電流とから演算により求め、 電気回路損失W_Eを、タンク回路のコンデンサの高圧
側端子とコモン線間に接続した分圧器から得たコンデン
サ電圧、あるいはタンク回路のコモン線部分に取付けた
変流器から得たタンク回路電流とを用い、コンデンサ電
圧あるいはタンク回路電流の略2乗に比例係数を掛ける
式から演算より求め、 熱損失W_Hを、前記分圧器から得たコンデンサ電圧あ
るいは前記変流器から得たタンク回路電流を用り、コン
デンサ電圧あるいはタンク回路電流の略2乗に比例係数
を掛ける式から演算により求め、 所要の有効熱出力P_Nに対し、P_N=P_i−(W
_O_S_C+W_E+W_H)となるように、直流入
力P_iを制御することを特徴とする高周波加熱電力制
御方法。
[Claims] The DC input P_i to the oscillation circuit is calculated by calculating the DC voltage obtained from a voltage divider connected between the high voltage line and the common line and the DC current obtained from a shunt inserted in the common line, The operating loss W_O_S_C of the oscillation element is calculated from the inter-element voltage obtained from the voltage divider and the current flowing through the element obtained from the current transformer installed between the oscillation element and the common line, and the electric circuit loss W_E is calculated from the tank. Using the capacitor voltage obtained from a voltage divider connected between the high voltage side terminal of the circuit capacitor and the common line, or the tank circuit current obtained from the current transformer attached to the common line part of the tank circuit, the capacitor voltage or tank circuit can be calculated. Calculate the heat loss W_H by multiplying the approximate square of the current by a proportional coefficient, and calculate the heat loss W_H by using the capacitor voltage obtained from the voltage divider or the tank circuit current obtained from the current transformer. Calculated from a formula that multiplies approximately the square of the proportional coefficient, and for the required effective heat output P_N,
_O_S_C+W_E+W_H) A high-frequency heating power control method characterized by controlling a DC input P_i so that
JP27734287A 1987-11-04 1987-11-04 High frequency heating power control method Expired - Lifetime JPH0756831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27734287A JPH0756831B2 (en) 1987-11-04 1987-11-04 High frequency heating power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27734287A JPH0756831B2 (en) 1987-11-04 1987-11-04 High frequency heating power control method

Publications (2)

Publication Number Publication Date
JPH01120788A true JPH01120788A (en) 1989-05-12
JPH0756831B2 JPH0756831B2 (en) 1995-06-14

Family

ID=17582189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27734287A Expired - Lifetime JPH0756831B2 (en) 1987-11-04 1987-11-04 High frequency heating power control method

Country Status (1)

Country Link
JP (1) JPH0756831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201460A (en) * 1993-12-08 1995-08-04 Tocco Inc Coil monitoring equipment
JP2021037520A (en) * 2019-09-02 2021-03-11 日本製鉄株式会社 Electric-resistance welded pipe welding device and electric-resistance welded pipe welding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201460A (en) * 1993-12-08 1995-08-04 Tocco Inc Coil monitoring equipment
JP2021037520A (en) * 2019-09-02 2021-03-11 日本製鉄株式会社 Electric-resistance welded pipe welding device and electric-resistance welded pipe welding method

Also Published As

Publication number Publication date
JPH0756831B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
Kissin et al. Detection of the tuned point of a fixed-frequency LCL resonant power supply
Fuchs et al. Measurement of eddy-current loss coefficient P/sub EC-R/, derating of single-phase transformers, and comparison with K-factor approach
Moran et al. A series active power filter which compensates current harmonics and voltage unbalance simultaneously
Kamath et al. Hardware implementation of a novel, reduced rating active filter for 3-phase, 4-wire loads
US4114010A (en) Test circuit and method for matching an induction load to a solid state power supply
KR970004828B1 (en) Heating power measuring method
Fuchs et al. Measurement of three-phase transformer derating and reactive power demand under nonlinear loading conditions
Aleem et al. Optimal passive filter design for effective utilization of cables and transformers under non-sinusoidal conditions
Forrest Harmonic load losses in HVDC converter transformers
CN104198798A (en) Method for measuring resonance of fault capacitive current of petersen coil device
Thenathayalan et al. Wide-air-gap transformer model for the design-oriented analysis of contactless power converters
JPH01120788A (en) High frequency heating power control method
RU2593277C1 (en) Method of compensating for induced of voltage on site on disconnected overhead transmission line
Rogalla et al. „Measured Impedance Characteristics of Solar Inverters up to 1 MW,“
CN107561380A (en) A kind of experimental provision and experimental method for probing into distribution transformer winding AC resistance and overtone order relation
JPH0769380B2 (en) Fault location method
Warner et al. An investigation of zero order harmonics in power transformers
Godoy et al. Identifying and reducing harmonic distortion in an industrial uninterruptible power supply system
US7023675B2 (en) Power supply for measuring the line impedance of underground cable
Rath et al. Vector control of VSC HVDC system under single line to ground fault condition
Pretorius et al. Evaluation of the effectiveness of passive and dynamic filters for nonactive power in a large industrial plant
Nicolae et al. The impact of currents harmonics over the voltage transformers from a power group
US2585001A (en) Apparatus for the measurement of high-frequency power
TC Transformers and inductors for use in electronic and telecommunication equipment-Measuring methods and test procedures
RU2018146C1 (en) Method of checking operating state of smoothing filter