JPH01120319A - Method for controlling temperature of heating body - Google Patents

Method for controlling temperature of heating body

Info

Publication number
JPH01120319A
JPH01120319A JP62278239A JP27823987A JPH01120319A JP H01120319 A JPH01120319 A JP H01120319A JP 62278239 A JP62278239 A JP 62278239A JP 27823987 A JP27823987 A JP 27823987A JP H01120319 A JPH01120319 A JP H01120319A
Authority
JP
Japan
Prior art keywords
heating
temperature
heating body
substance
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62278239A
Other languages
Japanese (ja)
Other versions
JPH0571027B2 (en
Inventor
Masao Sugiyama
杉山 征男
Kazuhisa Ishibashi
石橋 一久
Nobuyuki Takakusaki
高草木 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP62278239A priority Critical patent/JPH01120319A/en
Priority to KR1019890700214A priority patent/KR960001966B1/en
Priority to AU19374/88A priority patent/AU609157B2/en
Priority to CA000568979A priority patent/CA1291604C/en
Priority to PCT/JP1988/000553 priority patent/WO1988009717A1/en
Priority to US07/339,790 priority patent/US5032700A/en
Priority to DE3888929T priority patent/DE3888929T2/en
Priority to EP88905221A priority patent/EP0317644B1/en
Publication of JPH01120319A publication Critical patent/JPH01120319A/en
Priority to US07/608,420 priority patent/US5180893A/en
Publication of JPH0571027B2 publication Critical patent/JPH0571027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6418Heating of preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/68Ovens specially adapted for heating preforms or parisons

Abstract

PURPOSE:To strictly and stably control the temp. of a heating body, by sealing a substance having a predetermined m.p. in the cavity provided in the heating body and controlling heating on the basis of the temp. of the heating body. CONSTITUTION:A cavity 31 is provided in a heating body 21 and sealed with a substance having a m.p. within the control objective temp. range of the heating body 21 and desirably having large heat of fusion and the temp. of the heating body is measured and the heating thereof is controlled on the basis of the measured value. The heating body 21 becomes high temp. by induction heating or infrared heating and the sealed substance is melted to emit heat of radiation. Since the substance having a definite m.p. is sealed in the heating body, when the control objective temp. is set so that the sealed substance becomes such a state that a solid and a liquid coexist, the temp. of the heating body can be stably controlled to a narrow range even when the absorption and radiation quantities of heat are largely varied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は加熱体の温度の制御方法に関し、特に、成形用
プラスチック材料等の加熱の熱源となる加熱体の温度を
制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of controlling the temperature of a heating element, and particularly to a method of controlling the temperature of a heating element that serves as a heat source for heating a plastic material for molding or the like.

〔従来の技術〕[Conventional technology]

プラスチックびんの成形材料であるプリフォーム等を加
熱する場合、プリフォームの内外から加熱する方法は均
一加熱が達成されて好ましい。そしてその場合プリフォ
ームの内部にini g物で1が挿入され高温物iτの
輻射熱によりプリフォームを加熱する方法が提案されて
いる(本出願人による特許願昭和62年第142299
号)。
When heating a preform, etc., which is a molding material for a plastic bottle, a method of heating from the inside and outside of the preform is preferred because uniform heating can be achieved. In this case, a method has been proposed in which an iniG material 1 is inserted into the preform and the preform is heated by the radiant heat of the high temperature material iτ (Patent Application No. 142299 filed in 1988 by the present applicant).
issue).

前記方法において加熱体となる高温物質として固体金属
が用いられ、固体金属の温度が測定され、その測定値に
詰ずき固体金属の加熱が制御Iされている。
In the method described above, a solid metal is used as a high-temperature substance serving as a heating body, the temperature of the solid metal is measured, and the heating of the solid metal is controlled based on the measured value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来技術において、多数個の固体金属が加熱ゾーン
と放熱ゾーン(固体金属がプリフォームの中に挿入され
、固体金属が放熱しプリフォームが加熱されるゾーン)
とを巡回し加熱と放熱が繰返される。そしてプリフォー
ムの加熱温度を正確に制wJするためには熱源となる多
数個の固体金属の温度を厳密に同−温度にしなければな
らないが、前記方法ではこれを達成することが困難であ
った。
In the prior art, a large number of solid metals are used in a heating zone and a heat radiation zone (a zone in which solid metal is inserted into a preform, the solid metal radiates heat, and the preform is heated).
heating and heat dissipation are repeated. In order to accurately control the heating temperature of the preform, the temperatures of multiple solid metals that serve as heat sources must be kept at exactly the same temperature, but this is difficult to achieve with the methods described above. .

すなわち、固体金属は加熱時に温度が上昇し、放熱時に
温度が下るが、上胃渇度および下降温度は放熱おにび加
熱の1ネルキ゛−呈に比例し加熱量や放熱量が多(プれ
ば温度変動中は大きくならざるを得ない。また、プリフ
ォームが抜けた場合には、1′Jl熱体は放熱ゾーンで
外部からの熱エネルギーを受けるので、放熱のエネルギ
ー量も常に一定であるとは限らず温度変動中を狭い範囲
どすることは極めて困難であった。さらに加熱体の全体
を均一温度に加熱することも、又、極めて困難であった
In other words, the temperature of a solid metal increases when it is heated, and its temperature decreases when it releases heat, but the degree of thirst in the upper stomach and the temperature drop are proportional to the 1 channel of heat release and heating, and the amount of heating and heat release is large (pre-heating). In addition, when the preform comes out, the 1'Jl heating element receives heat energy from the outside in the heat radiation zone, so the amount of heat radiation is always constant. However, it was extremely difficult to keep the temperature fluctuating within a narrow range.Furthermore, it was also extremely difficult to heat the entire heating element to a uniform temperature.

本発明は上記問題点を解決するためになされたものでプ
リフォーム等の内部に挿入されてこれを加熱するための
熱源となるような加熱体の温度を厳密にしかも安定して
制御することを可能とする加熱体の温度制御方法を提供
することを目的とする。
The present invention was made to solve the above-mentioned problems, and aims to strictly and stably control the temperature of a heating element that is inserted into a preform and serves as a heat source for heating it. The object of the present invention is to provide a method for controlling the temperature of a heating element.

〔問題点を解決するための手段〕[Means for solving problems]

加熱体の内部に空洞を設け、該空洞に前記加熱体の制御
目標温度の範囲内に融点を有し望ましくは融解熱の大き
な物質を封入し、前記加熱体の温度を測定し、その測定
値に基づき、前記加熱体の加熱を制御する。
A cavity is provided inside the heating body, a substance having a melting point within the control target temperature range of the heating body and preferably having a large heat of fusion is sealed in the cavity, the temperature of the heating body is measured, and the measured value is The heating of the heating body is controlled based on the following.

〔作 用〕[For production]

一定の融点を有する物質は固体と液体が共存する状態で
は加熱や放熱が行われてし固体や液体の量が変化するの
みで温度は変化しない。従ってこのような物質を加熱体
の空洞内に充分の吊を1・1人すれば加熱体の温度は封
入物質の温度と笠しくなり、封入物質が固体液体共存状
態では一定の温度となり、その物質の融解熱が大きい程
、一定の温度を保持している時間が長いことになる。封
入物質を含む加熱体よりの放fi吊が一定囲を越えて封
入物質がすべて固化し、てしまうと加熱体の温度は低下
し、これを検出することによって加熱体は加熱されるが
そのとき与えられるエネルギーは封入物質をすべて液化
するmであっても加熱体の温度変化は微かであり安定し
た制御が可能となる。微かに融点の異なる2種類あるい
は3種類の物質を封入する場合は、低融点物質の固化が
始まる温度が検出されて加熱が行われるが低融点物質が
ずべて固化する迄は加熱体および封入物の温度低下は押
えられ加熱時には加熱量が多すぎても微かに融点の高い
物質の部分的な液化が始まるだけなので加熱体の温度を
狭い範囲に安定的に制御することが容易に行える。
A substance with a fixed melting point undergoes heating and heat radiation when solid and liquid coexist, and the temperature does not change, only the amount of solid or liquid changes. Therefore, if one person suspends such a substance in the cavity of the heating body, the temperature of the heating body will be similar to the temperature of the enclosed substance, and when the enclosed substance is in a solid-liquid coexistence state, it will be at a constant temperature. The greater the heat of fusion of a substance, the longer it will remain at a constant temperature. If the radiation from the heating element containing the enclosed substance exceeds a certain limit and all the enclosed substance solidifies, the temperature of the heating element will drop, and by detecting this, the heating element will be heated. Even if the applied energy is enough to liquefy all of the enclosed material, the temperature change of the heating element is slight and stable control is possible. When encapsulating two or three types of substances with slightly different melting points, the temperature at which the low melting point substance begins to solidify is detected and heating is performed, but the temperature of the heating element and the encapsulated material remains until the low melting point substance has completely solidified. The temperature drop in the heating element is suppressed, and even if the amount of heating is too large, only partial liquefaction of the substance with a slightly high melting point begins, making it easy to stably control the temperature of the heating element within a narrow range.

〔実施例〕〔Example〕

以下本発明をプラスチックびんをブロー成形するときの
プリフォームの加熱方法に応用した例を図面を参照して
説明する。
An example in which the present invention is applied to a method of heating a preform when blow molding a plastic bottle will be described below with reference to the drawings.

第1図に示すようにブリフオーム1を支持するマンドレ
ル3.3・・・は各回転テーブルの間を矢印で示す順序
で巡回する。すなわちプリフォーム受渡しテーブル4か
ら移送テーブル5、加熱ステーションテーブル6、アニ
ーリングステーションテーブル72.8、移送テーブル
9、ブロー成型ステージョンテーブル10、移送テーブ
ル11、を経て再びプリフォーム受渡しテーブル4ヘマ
ンドレル3.3・・・が巡回されるが各テーブルでのマ
ンドレルの保持機構や受渡し機構は従来公知の方法で・
行われるので図示していない。このように巡回されるマ
ンドレル3,3・・・の上に従来公知の供給装置から供
給テーブル12.13を経てプリフォーム1.1・・・
が装着される。ブリフA−ム1は第2図に示す断面形状
をしており有底円筒状の胴部15とねじ山や環状突起部
を有する口部16より成っている。このプリフォーム1
がマンドレル3に装着されて上記順路を巡回づる聞に加
熱ステーションテーブル6で胴部が加熱されブロー成型
ステーションテーブルで従来公知の方法で吹込成型され
、第3図に示す熱可塑性プラスチックびん2が製造され
る。製造された熱可塑性プラスチックびん2は受渡しテ
ーブル4に保持されているマンドレル3上から従来公知
の装置で抜き取られ送出テーブル14を経て送出される
。マンドレル3は第4図に示す断面形状であり各テーブ
ルで保持するための周溝17.17、と回転駆動するた
めのスプロケット18.18が一体に設けられている。
As shown in FIG. 1, the mandrels 3, 3, . . . supporting the brief form 1 circulate between the rotary tables in the order indicated by the arrows. That is, from the preform delivery table 4, through the transfer table 5, the heating station table 6, the annealing station table 72.8, the transfer table 9, the blow molding station table 10, the transfer table 11, and then back to the preform delivery table 4 he mandrel 3.3. ... is circulated, but the mandrel holding mechanism and delivery mechanism at each table are carried out using conventionally known methods.
It is not shown in the figure because it is performed. On the mandrels 3, 3, . . . which are circulated in this manner, preforms 1.1, .
is installed. The brief A-arm 1 has the cross-sectional shape shown in FIG. 2, and consists of a bottomed cylindrical body 15 and a mouth 16 having a screw thread or an annular protrusion. This preform 1
is attached to the mandrel 3 and as it travels along the above-mentioned route, the body is heated at the heating station table 6 and blow molded at the blow molding station table by a conventionally known method, producing the thermoplastic plastic bottle 2 shown in FIG. be done. The manufactured thermoplastic plastic bottle 2 is extracted from a mandrel 3 held on a delivery table 4 by a conventionally known device and sent out via a delivery table 14. The mandrel 3 has a cross-sectional shape shown in FIG. 4, and is integrally provided with circumferential grooves 17, 17 for holding on each table, and sprockets 18, 18 for rotationally driving.

加熱ステーションテーブル6およびアニーリングステー
ションテーブル7.8のマンドレル3.3・・・の通過
する部分にはチェーンが順次段違いとなるように張り回
らされて上または下のスプロケット18.18と噛み合
いマンドレルに自転運動を付与するように駆動される。
Chains are strung around the parts of the heating station table 6 and annealing station table 7.8 where the mandrels 3.3... pass through, so that they are sequentially arranged at different stages, and engage with the upper or lower sprockets 18, 18 to cause the mandrels to rotate. Driven to impart motion.

但しチェーンは図示してい4工い。However, the chain shown in the diagram is 4 pieces long.

次に加熱ステーションテーブル6に付属する装δと加熱
動作について第4図〜第9図を参照して説明する。加熱
ステーションテーブル6には保持装置19、加熱体21
を断熱体22を介して保持し上下方向に駆動するピスト
ンロッド23およびエアシリンダ20が周方向位置を一
致させて等間隔に取付けられている。加熱体21には第
1の加熱体の実施例として第9図に示すように空洞31
が穿設されており、その中に高融点金属として亜鉛が封
入されておりその融点は420℃である。
Next, the equipment δ attached to the heating station table 6 and the heating operation will be explained with reference to FIGS. 4 to 9. The heating station table 6 includes a holding device 19 and a heating body 21.
A piston rod 23 and an air cylinder 20, which are held via a heat insulator 22 and driven vertically, and an air cylinder 20 are mounted at equal intervals with their circumferential positions aligned. The heating body 21 has a cavity 31 as shown in FIG. 9 as an embodiment of the first heating body.
Zinc is sealed therein as a high melting point metal, and its melting point is 420°C.

また、第2の加熱体の実施例として第10図に示す様に
第1の空洞31と第2の空洞32とが穿設されており、
各々高融点金属と、低融点金属が封入されている。高融
点金属としては前記亜鉛が用いられており、低融点金属
としては錫とテルルの合金が用いられ、その合金は状態
図に於いて共晶点のおこる成分構成をなし原子%で表現
すると、錫15%テルル85%であり、融点に相当する
共品停滞湿度は約410℃である。
Further, as an example of the second heating body, as shown in FIG. 10, a first cavity 31 and a second cavity 32 are bored,
Each contains a high melting point metal and a low melting point metal. The above-mentioned zinc is used as the high melting point metal, and an alloy of tin and tellurium is used as the low melting point metal.The alloy has a composition in which the eutectic point occurs in the phase diagram, and when expressed in atomic percent, The composition is 15% tin and 85% tellurium, and the stagnation humidity corresponding to the melting point is about 410°C.

次に第3の加熱体の実施例として第11図に示す様に、
第1、第2、第3の空洞31.32.33が穿設されて
おり、その中に各々、錫−テルル合金、亜鉛、テルルが
封入されている。錫−テルルの合金は前記成分構成とな
っており、テルルの融点は約450℃である。
Next, as an example of the third heating body, as shown in FIG.
First, second, and third cavities 31, 32, and 33 are drilled into which are filled tin-tellurium alloy, zinc, and tellurium, respectively. The tin-tellurium alloy has the above-mentioned composition, and the melting point of tellurium is about 450°C.

加熱ステーションテーブル6は一定方向に回転しながら
定位置でマンドレル3を保持装置19で受は取りまた定
位置で保持装置から送り出す。従って加熱ステーション
テーブル6の周囲にはマンドレルの通過する部分と通過
しない部分がある。
While rotating in a fixed direction, the heating station table 6 picks up the mandrel 3 at a fixed position by a holding device 19 and sends it out from the holding device at the fixed position. Therefore, around the heating station table 6 there are parts through which the mandrel passes and parts through which it does not pass.

マンドレル3の通過する部分には加熱ユニット26.2
6・・・が、またマンドレルの通過しない部分には誘導
加熱ゾーン27が配置されている。
A heating unit 26.2 is installed in the part through which the mandrel 3 passes.
6..., and an induction heating zone 27 is arranged in the part through which the mandrel does not pass.

加熱」−ニット26は赤外線ヒータ24と反射鏡25と
から構成されておりマンドレル3と共に自転するプリフ
ォーム1に向けて赤外線を照射してこれを外部から加熱
する装置である。加熱体21はX ”J加熱により加熱
され易い金属で作られておりエアーシリンダ20により
、プリフォーム1内に挿入された状態と誘導加熱ゾーン
27内を通過する状態との2つの位訂をとるように駆動
される。
The heating unit 26 is composed of an infrared heater 24 and a reflecting mirror 25, and is a device that irradiates infrared rays toward the preform 1 that rotates together with the mandrel 3 to heat it from the outside. The heating element 21 is made of a metal that is easily heated by X''J heating, and can be placed in two positions using the air cylinder 20: inserted into the preform 1 and passed through the induction heating zone 27. It is driven as follows.

加熱ステーションテーブルでは第1図に示されるように
、多数のプリフォーム1が順次に送られて加熱されるが
、ある場合には、プリフォーム1が送られない状態、す
なわち、多数のマンドレル3のうち一つのものにはプリ
フオーム1が供給されない場合が生じることがある。そ
のような場合には、加熱体21は直接、赤外線ヒータ2
4に瞑されるので他のものに比べ熱エネルギーの放出が
少い。加熱ゾーン27では全ての加熱体を一定温度まで
加熱しなければならない。そのために加熱ゾーン27は
二つの誘導加熱コイルより構成されている。誘導加熱コ
イル28は加熱体の移動経路を覆うように円弧状に細長
く形成された多層巻ヘアピン状のものであり、その両端
は加熱体の移fJjを防げないように上方へ偏倚されて
いる。
On the heating station table, as shown in FIG. 1, a large number of preforms 1 are sequentially fed and heated. There may be a case where the preform 1 is not supplied to one of them. In such a case, the heating element 21 is directly connected to the infrared heater 2.
4, so less heat energy is released compared to other types. In the heating zone 27, all heating elements must be heated to a constant temperature. For this purpose, the heating zone 27 consists of two induction heating coils. The induction heating coil 28 is a multi-layered hairpin shaped like an arc and elongated so as to cover the moving path of the heating element, and both ends thereof are biased upward so as not to prevent the heating element from moving fJj.

誘導加熱コイル29は第6図に示されるような多層巻ヘ
アピン状のもので、コの字型フェライトコア31の両側
に巻かれており、加熱体をはさんだ相対するコイル部分
にはお互いに逆方向の高周波電流が流れている。誘導加
熱コイル29の良さは個々の加熱体21の間隔にほぼ等
しくなるように定められている。誘導加熱コイル29の
加熱能力を大きくすれば一定加熱の誘導加熱コイルを省
くことも可能である。
The induction heating coil 29 has a multilayer hairpin shape as shown in FIG. 6, and is wound on both sides of the U-shaped ferrite core 31. A high frequency current is flowing in the direction. The quality of the induction heating coil 29 is determined to be approximately equal to the spacing between the individual heating bodies 21. If the heating capacity of the induction heating coil 29 is increased, it is also possible to omit the constant heating induction heating coil.

加熱体21は第7図および第8図に示すように誘導加熱
コイル28.29内を通過するとき誘導加熱コイル28
.29を流れる高周波電流により誘導加熱され高温とな
りかつ封入金属が溶融し輻射熱を放射するようになる。
When the heating body 21 passes through the induction heating coils 28 and 29 as shown in FIGS.
.. The high frequency current flowing through the tube 29 causes induction heating to reach a high temperature, and the sealed metal melts and emits radiant heat.

第1図に示されるように、2.1加熱コイル28を通過
直後の加熱体21の温度は放射温度a130により検出
される。
As shown in FIG. 1, the temperature of the heating body 21 immediately after passing through the 2.1 heating coil 28 is detected by the radiation temperature a130.

第1の実施例の加熱体に一定の電力を与えた場合の昇温
曲線を第12図に示す。又、第12図に於いてA点まで
加熱したときの加熱体の自然放冷曲線を第13図に示す
。図中、t(工時間、■は加熱体21の温度を示しT1
は亜鉛の融点を示す。加熱体21は通常は第13図のフ
ラットな曲線部分に相当する高融点金属の融点湿度、T
1で加熱コイル29に近づくが、放射温度計、30によ
り加熱コイル29の直前で検出された温度が封入された
高融点金属の融点T1より実質的に低い、すなわち第1
3図に於いて、例えば0点の温度になっていた場合は、
第12図に示される様に融点との温度差によって決まる
プログラム化された高周波電力を掻く短時間(0,5秒
)、誘導加熱コイル29へ供給し、望ましくは、封入さ
れた高融点金属のすべてが液化する状態、B点まで加熱
される。
FIG. 12 shows a temperature rise curve when a constant electric power is applied to the heating element of the first embodiment. Further, FIG. 13 shows the natural cooling curve of the heating element when heated to point A in FIG. 12. In the figure, t (work time), ■ indicates the temperature of the heating element 21, and T1
indicates the melting point of zinc. The heating element 21 is normally heated at the melting point humidity of the high melting point metal, T, which corresponds to the flat curved portion in FIG.
1 approaches the heating coil 29, but the temperature detected just before the heating coil 29 by the radiation thermometer 30 is substantially lower than the melting point T1 of the encapsulated refractory metal, that is, the first
In Figure 3, for example, if the temperature is at point 0,
As shown in FIG. 12, programmed high-frequency power determined by the temperature difference between the melting point and the melting point is supplied to the induction heating coil 29 for a short period of time (0.5 seconds), preferably to It is heated to point B, where everything liquefies.

第2の実施例にお於いては加熱体21の昇温曲線は第1
4図、自然冷却曲線は第15図のごとくである。図中T
2は低融点全屈、すなわち揚−テルル合金の融点である
In the second embodiment, the temperature rise curve of the heating element 21 is the first one.
Figure 4 and the natural cooling curve are as shown in Figure 15. T in the diagram
2 is the low melting point, that is, the melting point of the fried tellurium alloy.

温度制御は第1の加熱体の実施例の通りであり、即ち第
15図の0点の様な温度であった場合には第14図のB
点まで温度があがる様に、誘導加熱コイル29へ電力が
与えられる。この場合にはたとえ放射温度計、30の検
出不良により、加熱体21が低い温度であったにもかか
わらず、温度が高いと検出されても、錫−テルル合金の
凝固熱により温度が下がりすぎることはない。
Temperature control is as in the embodiment of the first heating element, that is, when the temperature is at point 0 in FIG. 15, B in FIG.
Power is applied to the induction heating coil 29 so that the temperature rises to a point. In this case, even if the temperature of the heating element 21 is low due to a detection failure of the radiation thermometer 30 and is detected to be high, the temperature will drop too much due to the solidification heat of the tin-tellurium alloy. Never.

ざらに制御目標温度をC′点に選んだ場合に1.182
点まで温度が上がる様にルリ御されるが、検出器の不良
により温度差の検出を大きく検出し、その結果、加熱コ
イル29へ電力を供給し過たとしても加熱体の温度は亜
鉛の融解熱のため、上り過ぎることはなく良い制御がで
きる。第3の実fk例に於いては、加熱体21の昇温曲
線は第16図、自然冷却曲線は第17図のごとくである
1.182 when the control target temperature is roughly selected as point C'.
However, due to a defect in the detector, a large temperature difference is detected, and as a result, even if too much power is supplied to the heating coil 29, the temperature of the heating element will not reach the melting point of the zinc. Due to the heat, it does not rise too much and has good control. In the third actual fk example, the temperature rise curve of the heating element 21 is as shown in FIG. 16, and the natural cooling curve is as shown in FIG. 17.

図中、Toはテルルの融点を示す。第17図の0点の温
度を検出した場合には第16図のB点まで温度があがる
様に、第1、第2の実施例と同様の制御がなされるが、
融点の異なる3種類の金属を封入することにより、より
良い制御ができる。
In the figure, To indicates the melting point of tellurium. When the temperature at point 0 in FIG. 17 is detected, the same control as in the first and second embodiments is performed so that the temperature rises to point B in FIG. 16.
Better control can be achieved by encapsulating three metals with different melting points.

また加熱体が一巡する間に封入された金属の全体が固化
することのないように誘導加熱ゾーン27の加熱能力お
よび封入金属の子が設定されている。
Further, the heating capacity of the induction heating zone 27 and the size of the enclosed metal are set so that the entire enclosed metal does not solidify during one round of the heating element.

従って加熱8体は加熱ステーションを一周する問中常に
封入金属の一部は液体状態であり一部は固体状態であり
、実質的に封入された金属の各融点の温度またはこの間
の温度に保たれる。
Therefore, during the heating eight rounds around the heating station, part of the encapsulated metal is always in a liquid state and another part is in a solid state, and the encapsulated metal is kept at substantially the melting point of each melting point of the encapsulated metal or a temperature in between. It will be done.

すなわち第1の実施例の加熱体の温度は420℃に保た
れ、第2の実施例の温度は制御点を第15図に示す0点
に選んだ場合は420℃にC’!2に選んだ場合は41
0℃に保たれる。第3の実施例の場合は420℃に安定
的に保たれる。
That is, the temperature of the heating element in the first embodiment is maintained at 420°C, and the temperature in the second embodiment is 420°C when the control point is selected as the 0 point shown in FIG. 15. 41 if you choose 2
It is kept at 0℃. In the case of the third embodiment, the temperature is stably maintained at 420°C.

そして加熱された加熱体21がプリフォーム1内に挿入
されるとプリフォーム1は加熱体21と加熱ユニット2
6により内外から同時に加熱される。このようにしてブ
リフA−ム加熱ステージ」ン6で加熱されたプリフォー
ムはアニーリングステーション、7,8で均熱化されブ
ロー成型ステーションでびんに吹込成形される。
Then, when the heated heating element 21 is inserted into the preform 1, the preform 1 is heated by the heating element 21 and the heating unit 2.
6, it is heated from inside and outside at the same time. The preform thus heated in the brief heating stage 6 is soaked in annealing stations 7 and 8, and then blown into bottles in a blow molding station.

本実施例では加熱体は金属で作られ、誘導加熱法で加熱
されるが、発明はこれに限られることなく、セラミック
の加熱体が赤外線ヒータで加熱されてもよい。
In this embodiment, the heating body is made of metal and heated by an induction heating method, but the invention is not limited thereto, and a ceramic heating body may be heated by an infrared heater.

〔発明の効果〕〔Effect of the invention〕

加熱体に融点が一定の物体が封入されているので、この
封入物を固体と液体が共存する状態となるように制御目
標温度を設定すれば吸熱および放熱急が比較的大きく変
動しても加熱体の温度を狭い範囲に安定的に制御するこ
とができ、これをプラスチック成形用のプリフォーム加
熱の熱源として利用すればプリフォームは常に一定温度
に加熱され、成形品の品質を高めることができる。
Since a substance with a constant melting point is enclosed in the heating element, if the control target temperature is set so that the enclosed substance is in a state where solid and liquid coexist, heating will be possible even if the heat absorption and heat radiation rates vary relatively greatly. The body temperature can be stably controlled within a narrow range, and if this is used as a heat source for heating preforms for plastic molding, the preforms will always be heated to a constant temperature, improving the quality of molded products. .

【図面の簡単な説明】 第1図は本発明をプリフォームの加熱に応用した実施例
を示す平面図、第2図は本実施例において加熱されるプ
リフォーム1の断面図、第3図はブリフオーム1から吹
込成形によってIlI造される熱可塑性プラスチックび
んの断面図、第4図はプリフォーム1を支持するマンド
レル3の断面図、第5図は第1図におけるA−A方向断
面図、第6図は誘導加熱コイル29を示す斜視図、第7
図は第1図におけるB−8方向断面図、第8図は第6図
のC−C方向断面図、第9図は第1の実施例の加熱体2
1の拡大断面図、第10図、第11図はそれぞれ第2、
第3の実施例の加熱体の拡大断面図である。第12図は
第1の実施例の加熱体の加熱のai制御方法を示すため
の背温曲線、第13図は自然冷却温度曲線である。第1
4図、第15図は第2の実施例の加熱体のそれぞれ貸温
、冷却曲線を示し、第16図、第17図は第3の実施例
のそれぞれ昇温、冷却曲線を丞す。 1・・・ブリフオーム、2・・・熱可塑性プラスデック
びん、3・・・マンドレル、4・・・受渡しテーブル、
5゜9.11・・・移送テーブル、6・・・加熱ステー
ションテーブル、7,8・・・アニーリングステーショ
ンテーブル、10・・・ブロー成型ステーションテーブ
ル、12.13・・・供給テーブル、14・・・送出テ
ーブル、15・・・胴部、16・・・口部、17・・・
円満、18・・・スプロケット、19・・・保持装置、
20・・・エアシリンダ、21・・・加熱体、22・・
・所熱体、23・・・ピストンロッド、24・・・赤外
線ヒータ、25・・・反射鏡、26・・・加熱ユニット
、27・・・加熱ゾーン、28゜29・・・誘導加熱コ
イル、30・・・放射温度計、31・・・第1の空洞、
32・・・第2の空洞、33・・・第3の空洞。 出願人代理人  藤  木  博  光茗4図 $ コ G 第 6 図 芋9 図     羊lO呂 茶 ff  目
[Brief Description of the Drawings] Fig. 1 is a plan view showing an embodiment in which the present invention is applied to heating a preform, Fig. 2 is a sectional view of the preform 1 heated in this embodiment, and Fig. 3 is a plan view showing an embodiment in which the present invention is applied to heating a preform. 4 is a cross-sectional view of the mandrel 3 that supports the preform 1, FIG. 5 is a cross-sectional view along the line A-A in FIG. 1, and FIG. 6 is a perspective view showing the induction heating coil 29;
The figure is a sectional view taken along B-8 in FIG. 1, FIG. 8 is a sectional view taken along C-C in FIG. 6, and FIG.
1, FIG. 10, and FIG. 11 are the enlarged cross-sectional views of No. 2, and FIG.
FIG. 7 is an enlarged cross-sectional view of a heating element according to a third embodiment. FIG. 12 is a back temperature curve showing the ai control method for heating the heating element in the first embodiment, and FIG. 13 is a natural cooling temperature curve. 1st
4 and 15 show the heating and cooling curves, respectively, of the heating element of the second embodiment, and FIGS. 16 and 17 show the heating and cooling curves, respectively, of the third embodiment. 1... Brifohm, 2... Thermoplastic plus deck bottle, 3... Mandrel, 4... Delivery table,
5゜9.11... Transfer table, 6... Heating station table, 7, 8... Annealing station table, 10... Blow molding station table, 12.13... Supply table, 14... - Delivery table, 15...body, 16...mouth, 17...
harmonious, 18... sprocket, 19... holding device,
20... Air cylinder, 21... Heating body, 22...
- Heating body, 23... Piston rod, 24... Infrared heater, 25... Reflector, 26... Heating unit, 27... Heating zone, 28° 29... Induction heating coil, 30... Radiation thermometer, 31... First cavity,
32... second cavity, 33... third cavity. Applicant's agent Hiroshi Fujiki Mitsumei Figure 4 $ Ko G Figure 6 Imo 9 Figure Sheep lOrocha ff Eye

Claims (1)

【特許請求の範囲】 1、加熱体の内部に空洞を設け、該空洞に前記加熱体の
制御目標温度の範囲内に融点を有する物質を封入し、前
記加熱体の温度を測定し、その測定値に基づき、前記加
熱体の加熱を制御することにより加熱体を一定温度に保
つことを特徴とする加熱体の温度制御方法。 2、前記加熱体に少くとも2個の空洞を設け、各空洞に
互に異なる融点を有する物質を封入する特許請求の範囲
第1項記載の加熱体の温度制御方法。 3、前記加熱体の温度と封入する物質の融点との差の大
きさに比例した熱量を供給することを特徴とする特許請
求の範囲第1項記載の方法。 4、前記加熱体が誘導加熱により加熱されることを特徴
とする特許請求の範囲第1項記載の方法。
[Claims] 1. A cavity is provided inside the heating body, a substance having a melting point within the control target temperature range of the heating body is sealed in the cavity, and the temperature of the heating body is measured. A method for controlling the temperature of a heating element, characterized in that the heating element is maintained at a constant temperature by controlling the heating of the heating element based on the value. 2. The temperature control method of a heating body according to claim 1, wherein at least two cavities are provided in the heating body, and substances having different melting points are sealed in each cavity. 3. The method according to claim 1, characterized in that an amount of heat is supplied in proportion to the magnitude of the difference between the temperature of the heating body and the melting point of the substance to be sealed. 4. The method according to claim 1, wherein the heating body is heated by induction heating.
JP62278239A 1987-06-09 1987-11-05 Method for controlling temperature of heating body Granted JPH01120319A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP62278239A JPH01120319A (en) 1987-11-05 1987-11-05 Method for controlling temperature of heating body
US07/339,790 US5032700A (en) 1987-06-09 1988-06-08 Method of heating thermoplastic bottle of preform and method of controlling temperature of heating member utilized by the heating method
AU19374/88A AU609157B2 (en) 1987-06-09 1988-06-08 Method of heating thermoplastic plastic bottle or preform and method of temperature control of heating member using said heating method
CA000568979A CA1291604C (en) 1987-06-09 1988-06-08 Method of heating thermoplastic material
PCT/JP1988/000553 WO1988009717A1 (en) 1987-06-09 1988-06-08 Method of heating thermoplastic plastic bottle or preform and method of temperature control of heating member using said heating method
KR1019890700214A KR960001966B1 (en) 1987-06-09 1988-06-08 Method of heating thermoplastic plastic bottle or preform and
DE3888929T DE3888929T2 (en) 1987-06-09 1988-06-08 METHOD FOR HEATING A BOTTLE OR PRE-FORM MADE OF THERMOPLASTIC PLASTIC AND METHOD FOR CONTROLLING THE TEMPERATURE OF A HEATING DEVICE.
EP88905221A EP0317644B1 (en) 1987-06-09 1988-06-08 Method of heating thermoplastic plastic bottle or preform and method of temperature control of heating member using said heating method
US07/608,420 US5180893A (en) 1987-06-09 1990-11-02 Method of heating thermoplastic bottle or preform and method of controlling temperature of heating member utilized by the heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278239A JPH01120319A (en) 1987-11-05 1987-11-05 Method for controlling temperature of heating body

Publications (2)

Publication Number Publication Date
JPH01120319A true JPH01120319A (en) 1989-05-12
JPH0571027B2 JPH0571027B2 (en) 1993-10-06

Family

ID=17594558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278239A Granted JPH01120319A (en) 1987-06-09 1987-11-05 Method for controlling temperature of heating body

Country Status (1)

Country Link
JP (1) JPH01120319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374011U (en) * 1989-11-18 1991-07-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374011U (en) * 1989-11-18 1991-07-25

Also Published As

Publication number Publication date
JPH0571027B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
KR960001966B1 (en) Method of heating thermoplastic plastic bottle or preform and
US4079104A (en) Method for heating plastic articles
CN100441391C (en) Core for use in injection molding plastic articles
US11878469B2 (en) Apparatus, system and method of operating an additive manufacturing nozzle
US3787170A (en) Rapid heating of parison preforms
JP3371011B2 (en) Method and apparatus for heating a semi-finished product made of crystalline synthetic resin
US20060157896A1 (en) Method and apparatus for producing bottles and preforms having a crystalline neck
FR2542250B1 (en) METHOD OF MANUFACTURING BI-AXIALLY ORIENTED CONTAINER BY STRETCHING, HEATING THEN BLOWING, AND BLOWING MOLD USED FOR IMPLEMENTING SAID METHOD
CN109421245B (en) Container production plant and method allowing start-up production
JPH01120319A (en) Method for controlling temperature of heating body
EP3898194A1 (en) Apparatus, system and method of operating an additive manufacturing nozzle
JPH11235751A (en) Crystallization of plastic molded object
CN106424628B (en) Centrifugal casting automatic continuous production technique
AU609157B2 (en) Method of heating thermoplastic plastic bottle or preform and method of temperature control of heating member using said heating method
JPH02310021A (en) Temperature control method of preform heating body
JP4126090B2 (en) Method of crystallizing preform neck and neck
JPH0615203B2 (en) Method and apparatus for heating thermoplastic bottle or preform
JPH0571028B2 (en)
JPS5945134A (en) Manufacture of resin molding
JPS58660Y2 (en) Optical fiber material manufacturing equipment
JPH0464488B2 (en)
KR100277556B1 (en) Method and apparatus for heating a preformed blank made of partially crystalline synthetic resin produced by injection molding
SU490676A1 (en) Method of making glass-like products
JPS58943B2 (en) Melting and heating equipment for manufacturing amorphous materials
Muller Injection Molding Method for Plastic Materials